


Outline: preliminaries 

!   Motivation 
!   Structural Kernels 

!   Semantic/Syntactic Tree Kernels 
!   PTK 
!   SPTK 

!   Kernels for question answering 
!   Question Classification 

!   Jeopardy Cue Classification 

!   Answer reranking 



Outline: Kernels for NLP applications 

!   NLP applications 

!   Semantic Role Labeling 

!   Relation Extraction 

! Coreference Resolution 

!   Textual Entailment Recognition 

!   Kernels for Reranking 

!   Spoken Language Understanding 

!   Named Entity Recognition 



Motivation (1) 

!   Feature design most difficult aspect in designing a 

learning system 

!   complex and difficult phase, e.g., structural feature 

representation: 

!   deep knowledge and intuitions are required 

!   design problems when the phenomenon is described 

by many features 



Motivation (2) 

!   Kernel methods alleviate such problems 

!   Structures represented in terms of substructures 

!   High dimensional feature spaces 

!   Implicit and abstract feature spaces 

!   Generate high number of features 

!   Support Vector Machines “select” the relevant features 

!   Automatic feature engineering side-effect 



Motivation (3) 

!   High accuracy especially for new applications and   new 

domains 

!   Manual engineering still poor, e.g. arabic SRL 

!   Inherent higher accuracy when many structural patterns 

are needed, e.g. Relation Extraction 

!   Fast prototyping and adaptation for new domains and 

applications 

 



The Syntactic Tree Kernel (STK)  
[Collins and Duffy, 2002] 
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Explicit kernel space 
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!            counts the number of common substructures 
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Efficient evaluation of the scalar product 
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Efficient evaluation of the scalar product 

!   [Collins and Duffy, ACL 2002] evaluate Δ in O(n2): 
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Other Adjustments 

!   Normalization 
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!   Decay factor 



Syntactic/Semantic Tree Kernels  
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007] 
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!   Similarity between the fragment leaves 
!   Tree kernels + Lexical Similarity Kernel 



Syntactic/Semantic Tree Kernels  
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007] 



Merging of Kernels 
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= 1 * 1 * 0.5 * 1 = 0.5 



Delta Evaluation is very simple 



Partial Trees, [Moschitti, ECML 2006] 
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!   STK + String Kernel with weighted gaps on Nodes’ 

children 



Partial Tree Kernel 

!   By adding two decay factors we obtain: 



Running Time of Tree Kernel Functions 



Smoothed Partial Tree Kernels 

!   Same idea of Syntactic Semantic Tree Kernel but 

the similarity is extended to any node of the tree 

!   The tree fragments are those generated by PTK 

!   Basically it extends PTK with similarities 



Examples of Dependency Trees 

! Word+generralized POS-tag 

!   What is the width of a football field? 

!   SPTK can match with the 

length of the biggest tennis-

court à (length (the) ((the) 

(biggest (the)(tennis court))) 



Equation of SPTK 

If	  n1	  and	  n2	  are	  leaves	  then 

else 

PTK Lexical Similarity 



Same Task with PTK, SPTK and 
Dependency Trees 
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presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.
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Kernel Methods for 
Practical Applications 



Question Answering 



A QA Pipeline: Watson Overview 

Question 
Classification 

 



Question Classification 

!   Definition: What does HTML stand for?     

!   Description: What's the final line in the Edgar Allan Poe 
poem "The Raven"?   

!   Entity: What foods can cause allergic reaction in people? 

!   Human: Who won the Nobel Peace Prize in 1992?    

!   Location: Where is the Statue of Liberty?     

!   Manner: How did Bob Marley die?      

!   Numeric: When was Martin Luther King Jr. born?    

!   Organization: What company makes Bentley cars?   



Question Classifier based on Tree Kernels 

!   Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)   

[Lin and Roth, 2005]) 
!   Distributed on 6 categories: Abbreviations, Descriptions, Entity, 

Human, Location, and Numeric. 

!   Fixed split 5500 training and 500 test questions  

!   Using the whole question parse trees 
!   Constituent parsing 

!   Example 

        “What is an offer of direct stock purchase plan ?” 

 



Syntactic Parse Trees (PT) 



Similarity based on the number of 
common substructures 
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A portion of the substructure set 



Exercise with SVM-light-TK Software 

!   Encodes ST, STK and combination kernels  

    in SVM-light [Joachims, 1999] 

!   Available at http://dit.unitn.it/~moschitt/ 

!   Tree forests, vector sets 

!   The new SVM-Light-TK toolkit will be released asap (email 

me to have the current version) 



WordNet Hierarchy 



Sub-hierarchies in WordNet 



Similarity based on WordNet 



Question Classification with SSTK 
[Blohedorn&Moschitti, CIKM2007] 



Same Task with PTK, SPTK and 
Dependency Trees 
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when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
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presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).
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2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.
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i.e. the SPTK defined in [7].
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Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
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ble 1. The first column shows the different structures described
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• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).
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representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:
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the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
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• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
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NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).
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Classification in Definition vs not 
Definition in Jeopardy 

!   Definition: Usually, to do this is to lose a game 

without playing it   

   (solution: forfeit) 

!   Non Definition: When hit by electrons, a 

phosphor gives off electromagnetic energy in this 

form 

!   Complex linguistic problem: let us learning it with 

syntactic similarity from training examples 



Automatic Learning of a Question 
Classifier 

!   Similarity between definitions vs similarity 

between non definition 

!   Instead of using features-based similarity we used 

kernels 

!   Combining several linguistic structures with 

several kernels for representing a question q: 

!   K1(⟨q1,q2⟩)+K2(⟨q1,q2⟩)+…+Kn(⟨q1,q2⟩) 

!   Tree kernels measures similarity between trees 



NP 

D N 

VP 

V 

hit 

a  phosphor 

Syntactic Tree Kernel (STK) 
(Collins and Duffy 2002) 



Syntactic Tree Kernel (STK) 
(Collins and Duffy 2002) 



The resulting explicit kernel space 

zx

⋅

  

€ 

φ(T
x
) =
 
x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

!            counts the number of common substructures 

	  	  	  	  hit	  

phosphor phosphor 

phosphor phosphor 

  

€ 

φ(T
z
) =
 
z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

	  	  	  	  hit	  

phosphor phosphor 

phosphor 



Experimental setup 

!   Corpus: a random sample from 33 Jeopardy! 

Games 

!   306 definition and 4,964 non-definition clues 

!   Tools:  
! SVMLight-TK 

! Charniak’s constituency parser 

!   Syntactic/Semantic parser by Johansson and Nugues 
(2008) 

!   Measures derived with leave-on-out 



Constituency Tree (CT) 
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Dependency Tree (DT) 
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Predicate Argument Structure Set 
(PASS) 

negative mistake STK, ok PTK
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Sequence Kernels 

CSK: [general][science] 
(category sequence kernel) 

WSK: 

PSK: 

CSK: 



Individual models 



Model Combinations 

66.7% of relative improvement on RBC 



Impact of QC in Watson 

!   Specific evaluation on definition questions 
!   1,000 unseen games (60,000 questions) 

!   Two test sets of 1,606 and 1,875 questions derived 
with:  

!  Statistical model (StatDef) 
!  RBC (RuleDef) 

!   Direct comparison only with NoDef 

!   All questions evaluation 
!   Selected 66 unseen Jeopardy! games 

!   3,546 questions 



Watson’s Accuracy, Precision and 
Earnings 

!   Comparison between use or not QC 

!   Different set of questions 



Error Analysis 

Test Example 
•  PTK ok 
•  STK not ok  

Training 
Example 

PTK 
similarity 

STK 
similarity 



Answer/Passage Reranking 

Answer/Passage 
Reranking 

 



TASK: Question/Answer Classification 
[Moschitti, CIKM 2008] 

!   The classifier detects if a pair (question and answer) is 

correct or not 

!   A representation for the pair is needed 

!   The classifier can be used to re-rank the output of a basic 

QA system 



Bags of words (BOW) and POS-tags (POS) 

!   To save time, apply tree kernels to these trees: 

 

 

 

 

… 

BOX 

is What an offer of 

* * * * * 

… 

BOX 

VBZ WHNP DT NN IN 

* * * * * 



Word and POS Sequences 

!   What is an offer of…? (word sequence, WSK) 

 è What_is_offer 

 è What_is 

! WHNP VBZ DT NN IN…(POS sequence, POSSK) 

 è WHNP_VBZ_NN 

 è WHNP_NN_IN 

 



Predicate Argument Structures for 
describing answers (PASPTK) 

!   [ARG1 Antigens] were [AM−TMP originally] [rel defined] [ARG2 as non-
self molecules]. 

!   [ARG0 Researchers] [rel describe] [ARG1 antigens][ARG2 as foreign 

molecules] [ARGM−LOC in the body] 



Dataset 2: TREC data 

!   138 TREC 2001 test questions labeled as “description”  

!   2,256 sentences, extracted from the best ranked 

paragraphs (using a basic QA system based on Lucene 

search engine on TREC dataset) 

!    216 of which labeled as correct by one annotator 



Kernels and Combinations 

!   Exploiting the property: k(x,z) = k1(x,z)+k2(x,z) 

!   Given: BOW, POS, WSK, POSSK, PT, PASPTK 

⇒ BOW+POS, BOW+PT, PT+POS, … 

 



Results on TREC Data 
(5 folds cross validation) 
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Kernel Type 

BOW ≈ 24 
POSSK+STK+PAS_PTK≈ 39 
⇒62 % of improvement 
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Our Approach to Answer Selection 

!   Learn a classifier of <question,answer> pairs 
!   Positive: the answer is correct 

!   Negative: otherwise 

!   Kernel approach 
!   Several kernels applied to both questions and answers 



An example of Jeopardy Question 





Baseline Model 

Question 

Answer 

 

 

 

Methodology: 

1-Applying PTK without any extra annotation and 
evaluate the model as baseline. 
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Best Model 
 

Methodology: 

1-Applying lemmatization and stemming in 
leaves level. 

2-Add an anchor to pre-terminal and higher 
levels if the sub-trees are shared in Q and A. 

3-Ignore stop words in matching procedure. 

 

Question 

Answer 



!"#$%&'(



Issues 

!   Very large sentences 

!   The Jeopardy cues can be constituted by more 

than one sentence 

!   The answer is typically composed by several 

sentences 

!   Too large structures cause inaccuracies in the 

similarity and the learning algorithm looses some 

of its power 



Running example (randomly picked Q/A 
pair from Answerbag ) 

Question: Is movie theater popcorn vegan? 

Answer:  

(01) Any movie theater popcorn that includes butter 
-- and therefore dairy products -- is not vegan.  

(02) However, the popcorn kernels alone can be 
considered vegan if popped using canola, coconut 
or other plant oils which some theaters offer as an 
alternative to standard popcorn. 



Bag of features: words and part-of-speech 
tags (use STK on the following strictures) 
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Answer	  

(is)	  (movie)	  (theater)	  (popcorn)	  (vegan)	  

(any)	  (movie)	  (theater)	  (popcorn)	  (that)	  (includes)	  (bu:er)	  (and)	  (therefore)	  (dairy)	  (products)	  (is)	  (not)	  (vegan)	  

(DT)	  (NN)	  (NN)	  (NN)	  (WDT)	  (VBZ)	  (NN)	  (CC)	  (RB)	  (JJ)	  (NNS)	  (VBZ)	  (RB)	  (NN)	  

(VBZ)	  (NN)	  (NN)	  (JJ)	  (NN)	  
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Lexical	  matching	  is	  on	  word	  
lemmas	  (using	  WordNet	  
lemma3zer)	  
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Linking question with the answer 02 
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Lexical	  matching	  is	  on	  word	  
lemmas	  (using	  WordNet	  
lemma3zer)	  
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Linking question with the answer: 
relational tag 

Marking	  pos	  tags	  of	  the	  aligned	  
words	  by	  a	  rela3onal	  tag:	  “REL”	  



Re-ranking Framework 

!   Start from the most likely set of hypotheses 
(sometime generated by a basic classifiers) 

!    These are used to build annotation pairs,                 

!   positive instances if Hi is correct and Hj is not correct 

!   A binary classifier decides if Hi is more probable 
than Hj.  

!   Each candidate annotation Hi is described by a 
structural representation 

!   This way kernels can exploit all dependencies 
between features and labels 

Hi , Hj



Kernels for reranking 

where K x
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, y
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Re-ranking framework 

Local Model 



Answerbag data 

! www.answerbag.com: professional question 

answer interactions 

!   Divided in 30 categories, Art, education, culture,

… 

!   180,000 question-answer pairs 



Learning Curve-Answerbag 
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on relatively small datasets. Hence we studied the learn-
ing curves for these models on 50k and 100k training sets
and found that CH+REL with pruning at ray=1 provided
the steepest learning curve, while maintaining the optimal
tradeo� between the training runtime and accuracy. We also
prefer a simpler CH+REL model, which only requires to per-
form POS-tagging and chunking, over more refined models
with NER and WNSS tags, which require additional pre-
processing. Thus, we build learning curves for the CH+REL
models using STK and PTK reporting MRR (Fig. 11) and
REC1@1 (Fig. 12). The plots demonstrate nice scaling be-
havior when training CH+REL re-ranker model on larger
data. For example, the PTK-based rerankers improve BM25
by about 6 absolute points in MRR, i.e., 71.6 vs. 77.8, and
about 7 points in R1@1, i.e., 59.1 vs. 66.5, for a relative
error reduction of about 18-20% in R1@1.

5.5 Jeopardy! experiments
Since the size of Jeopardy! dataset does not allow for

building a meaningful learning curve we report the plot of
R1@x, which measures the percentage of questions with at
least one correct answer in the first x positions. We exper-
imented with PTK applied to CH+REL structures also en-
coding NER and WNSS. Figure 13 shows that for any rank
position, the simplest model outperforms semantic mod-
els. Most importantly, the Primary Search of Watson is
improved up to 5 points for an error reduction of 20%.

6. CONCLUSIONS
The key aspect in learning to rank answer passages for

QA systems is the use of relationships between the ques-
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Figure 13: Recall of 1 at di�erent rank position for the
Jeopardy! dataset.

tion and the supporting passages of its answer candidates.
Supervised methods can generalize the properties found in
di�erent question/answer pairs and use them to evaluate
the validity of new candidates. In this perspective, the most
di⇤cult aspect is the design of relational features that can
enable the learning algorithm to learn the properties above.
In this paper, we propose robust and simple models to learn
such properties from large datasets. On one hand, we use
shallow syntactic and semantic (at lexical level) represen-
tations, which can be e⇤ciently and automatically derived
with high accuracy. On the other hand, we exploit the power
of structural kernels for automatic engineering of a huge
number of structural features. Applied to large training sets
(hundreds of thousands) our models allow for e⇤cient learn-
ing of complex question/answer relationships.
Our experiments with Support Vector Machines (SVMs)

and various shallow models on two datasets: Answerbag and
Jeopardy! show that: (i) bag-of-features of question and
answer passages, ranging from words to POS-tags or trans-
lation probabilities are not e�ective; (ii) relational features,
i.e., encoding pair properties, become e�ective only when
used in structures, e.g, using SK; and (iii) the best compro-
mise between e⇤ciency and accuracy is given by the pure
shallow syntactic tree structures as NER or WNSS may in-
troduce noise. Additionally, large scale experiments show
significant improvement - about 18-20% of reduction in Re-
call error, on two strong baselines for passage re-ranking,
i.e., BM25 and IBM Watson primary search.
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Jeopardy data (T9) 

!   Total number of questions: 517 

!   50+ candidate answer passages per question 

!   Questions with at least one correct answer: 375 

!   Use only questions with at least one correct answer 

!   Each relevant passage is paired with each 
irrelevant 

!   Split the data: 
!   train 70% (259 questions) -> 63361 examples for re-

ranker 

!   test 30% (116 question) -> 5706 examples for re-ranker 



Jeopardy! data 
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on relatively small datasets. Hence we studied the learn-
ing curves for these models on 50k and 100k training sets
and found that CH+REL with pruning at ray=1 provided
the steepest learning curve, while maintaining the optimal
tradeo� between the training runtime and accuracy. We also
prefer a simpler CH+REL model, which only requires to per-
form POS-tagging and chunking, over more refined models
with NER and WNSS tags, which require additional pre-
processing. Thus, we build learning curves for the CH+REL
models using STK and PTK reporting MRR (Fig. 11) and
REC1@1 (Fig. 12). The plots demonstrate nice scaling be-
havior when training CH+REL re-ranker model on larger
data. For example, the PTK-based rerankers improve BM25
by about 6 absolute points in MRR, i.e., 71.6 vs. 77.8, and
about 7 points in R1@1, i.e., 59.1 vs. 66.5, for a relative
error reduction of about 18-20% in R1@1.

5.5 Jeopardy! experiments
Since the size of Jeopardy! dataset does not allow for

building a meaningful learning curve we report the plot of
R1@x, which measures the percentage of questions with at
least one correct answer in the first x positions. We exper-
imented with PTK applied to CH+REL structures also en-
coding NER and WNSS. Figure 13 shows that for any rank
position, the simplest model outperforms semantic mod-
els. Most importantly, the Primary Search of Watson is
improved up to 5 points for an error reduction of 20%.

6. CONCLUSIONS
The key aspect in learning to rank answer passages for

QA systems is the use of relationships between the ques-
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tion and the supporting passages of its answer candidates.
Supervised methods can generalize the properties found in
di�erent question/answer pairs and use them to evaluate
the validity of new candidates. In this perspective, the most
di⇤cult aspect is the design of relational features that can
enable the learning algorithm to learn the properties above.
In this paper, we propose robust and simple models to learn
such properties from large datasets. On one hand, we use
shallow syntactic and semantic (at lexical level) represen-
tations, which can be e⇤ciently and automatically derived
with high accuracy. On the other hand, we exploit the power
of structural kernels for automatic engineering of a huge
number of structural features. Applied to large training sets
(hundreds of thousands) our models allow for e⇤cient learn-
ing of complex question/answer relationships.
Our experiments with Support Vector Machines (SVMs)

and various shallow models on two datasets: Answerbag and
Jeopardy! show that: (i) bag-of-features of question and
answer passages, ranging from words to POS-tags or trans-
lation probabilities are not e�ective; (ii) relational features,
i.e., encoding pair properties, become e�ective only when
used in structures, e.g, using SK; and (iii) the best compro-
mise between e⇤ciency and accuracy is given by the pure
shallow syntactic tree structures as NER or WNSS may in-
troduce noise. Additionally, large scale experiments show
significant improvement - about 18-20% of reduction in Re-
call error, on two strong baselines for passage re-ranking,
i.e., BM25 and IBM Watson primary search.
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SEMANTIC ROLE LABELING 



Example on Predicate Argument 
Classification 

!   In an event: 
!   target words describe relation among different entities 

!   the participants are often seen as predicate's arguments. 

! Example: 
Paul gives a talk in Rome 



Example on Predicate Argument 
Classification 

!   In an event: 
!   target words describe relation among different entities 

!   the participants are often seen as predicate's arguments. 

! Example: 
[ Arg0 Paul] [ predicate gives ] [ Arg1 a talk] [ ArgM in Rome] 



Predicate-Argument Feature 
Representation 

Given a sentence, a predicate p: 

1.  Derive the sentence parse tree 

2.  For each node pair <Np,Nx>  
a.  Extract a feature representation set 

F 

b.  If Nx exactly covers the Arg-i, F is 
one of its positive examples 

c.  F is a negative example otherwise 



Vector Representation for the linear kernel 
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PAT Kernel [Moschitti, ACL 2004] 
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c) 

Arg.M 

!   These are Semantic Structures 

!   Given the sentence: 

  [ Arg0 Paul] [ predicate delivers] [ Arg1 a talk] [ ArgM in formal Style] 

 



In other words we consider… 
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Sub-Categorization Kernel (SCF) 
[Moschitti, ACL 2004] 
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Experiments on Gold Standard Trees 

!   PropBank and PennTree bank 
!   about 53,700 sentences 

!   Sections from 2 to 21 train., 23 test., 1 and 22 dev. 

!   Arguments from Arg0 to Arg5, ArgA and ArgM for 

    a total of 122,774 and 7,359 

!   FrameNet and Collins’ automatic trees 
!   24,558 sentences from the 40 frames of Senseval 3 

!   18 roles (same names are mapped together) 

!   Only verbs  

!   70% for training and 30% for testing 



Argument Classification with Poly Kernel 
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PropBank Results 

Args P3 PAT PAT+P PAT×P SCF+P SCF×P 
Arg0 90.8 88.3 92.6 90.5 94.6 94.7 
Arg1 91.1 87.4 91.9 91.2 92.9 94.1 
Arg2 80.0 68.5 77.5 74.7 77.4 82.0 
Arg3 57.9 56.5 55.6 49.7 56.2 56.4 
Arg4 70.5 68.7 71.2 62.7 69.6 71.1 
ArgM 95.4 94.1 96.2 96.2 96.1 96.3 
Global 
Accuracy 

90.5 88.7 91.3 90.4 92.4 93.2 

 



Argument Classification on PAT using 
different Tree Fragment Extractor 

0.75

0.78

0.80

0.83

0.85

0.88

0 10 20 30 40 50 60 70 80 90 100
% Training Data

Ac
cur

acy
   --

-

ST SST
Linear PT



FrameNet Results 

Roles P3 PAF PAF+P PAF×P SCF+P SCF×P 
agent 92.0 88.5 91.7 91.3 93.1 93.9 
cause 59.7 16.1 41.6 27.7 42.6 57.3 
degree 74.9 68.6 71.4 57.8 68.5 60.9 
depictive 52.6 29.7 51.0 28.6 46.8 37.6 
duration 45.8 52.1 40.9 29.0 31.8 41.8 
goal 85.9 78.6 85.3 82.8 84.0 85.3 
instrument 67.9 46.8 62.8 55.8 59.6 64.1 
manner 81.0 81.9 81.2 78.6 77.8 77.8 
Global Acc. 85.2 79.5 84.6 81.6 83.8 84.2 
(18 roles)       
 

!   ProbBank arguments vs. Semantic Roles  

 



Boundary Detection 
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Improvement by Marking Boundary nodes 



Node Marking Effect  



Experiments 

! PropBank and PennTree bank 
!   about 53,700 sentences 

! Charniak trees from CoNLL 2005 

!   Boundary detection: 
!   Section 2 training 

!   Section 24 testing 

! PAF and MPAF 



Number of examples/nodes of Section 2 



Predicate Argument Feature (PAF) vs. Marked 
PAF (MPAF) [Moschitti et al, CLJ 2008] 

  

State-of-the-art: 
-  Boundary detection PropBank 
-  Arabic SRL (Diab et al, 2008) 



Results on FrameNet SRL 
[Coppola and Moschitti, LREC 2010] 
!   135,293 annotated and parsed sentences. 

!   782 different frames (including split per pos-tag) 

!   90% of training data for BD and BC 121,798 sentences 

!   10% of testing data (1,345 sentences) 



Experiments on Luna Corpus 
[Coppola at al, SLT 2008] 

Evaluation Stage Precision Recall F1 

Boundary Detection 0.905 0.873 0.889 

Boundary Detection 

+ Role Classification 

0.774 0.747 0.760 

!   BD and RC over 50 Human-Human dialogs 
!   1,677 target words spanning 162 different frames 

!   manually-corrected syntactic trees 

!   Training 90% data and testing on remaining 10% 

 

!   Automatic SRL viable for Spoken Dialog Data. 

State-of-the-art: 
-  FrameNet (difficult comparison) 
-  First system on SLU 



RELATION EXTRACTION 



The Extraction Problem 

EMPLOYMENT 
CEO ↔ Google 

LOCATED 

research center ↔ Beijing 

Given a text with some available entities, 
how to recognize relations ? 

Last Wednesday, Eric 
Schmidt, the CEO of 
Google, defended the 
s e a r c h e n g i n e ' s 
c o o p e r a t i o n  w i t h 
Chinese censorship as 
h e a n n o u n c e d t h e 
creation of a research 
center in Beijing. 



Relation Extraction: The task 

!   Task definition: to label the semantic relation between 

pairs of entities in a sentence 
!   The governor from Connecticut 

 
 
 
 

!   Is there a relation between M1 and M2? 
If, so what kind of relation? 

M1 
type: PER 

M2 
type: LOC 

M := Entity Mention 



Relation Extraction defined in ACE 

!   Major relation types (from ACE 2004) 

 

 

 

 

 

 

!   Entity types: PER, ORG, LOC, GPE, FAC, VEH, WEA  



System Description (Nguyen et al, 2009) 

Tree Kernel-
based SVMs 

Multi-class 
Classification 

RELATIONS 

Stanford 
Parser 

Parse Trees with 
Entities Raw texts 

ACE documents 

Entities and 
Relations 



Relation Representation  
(Moschitti 2004;Zhang et al. 2006) 

corporation in established Iowa the by Pylant Andrew 

NNP VBN IN NNP 

NP 

T1-ORG 

NP 

DT 

T2-LOC 

PP 

VP 

NP 

IN NNP NNP 

NP 

PP 

PER 

!   The Path-enclosed tree captures the “PHYSICAL.LOCATED” relation 
between “corporation” and “Iowa” 



Comparison 

Method Data P (%) R (%) F1 (%) 

Zhang et al. 
(2006) 

Composite Kernel 
(linear) with Context-
Free Parse Tree  

ACE 2004 73.5 67.0 70.1 

Ours 
Composite Kernel 
(linear) with Context-
Free Parse Tree  

ACE 2004 69.6 68.2 69.2 

Both use the Path-Enclosed Tree for Relation Representation 



Several Combination Kernels  
[Vien et al, EMNLP 2009] 



State-of-the-art 



COREFERENCE RESOLUTION 



Syntactic Tree feature 

!   Subtree that covers both anaphor and antecedent 
candidate 

⇒ syntactic relations between anaphor & candidate 
(subject, object, c-commanding, predicate structure) 

!   Include the nodes in path between anaphor and 
candidate, as well as their first_level children 

– “the man in the room saw him”	

–  inst(“the man”, “him”)	




Context Sequence Feature 

!   A word sequence representing the mention 
expression and its context 
!   Create a sequence for a mention 

–   “Even so, Bill Gates says that he just doesn’t 
understand our infatuation with thin client versions of 
Word  ”	


–   (so)(,) (Bill)(Gates)(says)(that)	




Composite Kernel 

!   different kernels for different features 
!   Poly Kernel for baseline flat features 

!   Tree Kernel for syntax trees 

!   Sequence Kernel for word sequences 

!   A composite kernel for all kinds of features 

!   Composite Kernel = TK*PolyK+PolyK+SK 



Results for pronoun resolution 
[Vesley et al, Coling 2008] 

MUC-6 ACE-02-BNews 

R P F R P F 

All attribute 

value features 
64.3 63.1 63.7 58.9 68.1 63.1 

+ Syntactic Tree 

+ Word 

Sequence 

65.2 80.1 71.9 65.6 69.7 67.6 

State-of-the-art 



Results for over-all coreference 
Resolution using SVMs 

MUC-6 ACE02-BNews 

R P F R P F 
BaseFeature SVMs  61.5 67.2 64.2 54.8 66.1 59.9 
BaseFeature + 

Syntax Tree 
63.4 67.5 65.4 56.6 66.0 60.9 

BaseFeature

+SyntaxTree + Word 

Sequences 

64.4 67.8 66.0 57.1 65.4 61.0 

All Sources of 

Knowledge 
60.1 76.2 67.2 60.0 65.4 63.0 



RECOGNIZING TEXTUAL 
ENTAILMENT 



Target Problem 

T1 

H1 

“At the end of the year, all solid companies pay dividends.” 

“At the end of the year, all solid insurance companies pay dividends.” 

T1 ⇒ H1 

… the textual entailment recognition task:  
 determine whether or not a text T implies a hypothesis H  

“Traditional” machine learning approaches:  

similarity-based methods à distance in feature spaces 

learning textual entailment recognition rules 
from annotated examples 



Determine Intra-pair links 



Determine cross pair links 



Our Model (Zanzotto and Moschitti, ACL2006) 

Defining a similarity between pairs based on: 

 Kent((T’,H’),(T’’,H’’))=KI((T’,H’),(T’’,H’’))+KS((T’,H’),(T’’,H’’)) 

! Intra-pair similarity  

KI((T’,H’),(T’’,H’’))=s(T’,H’)×s(T’’,H’’) 

! Cross-pair similarity 

KS((T’,H’),(T’’,H’’))≈ KT(T’,T’’)+ KT(H’,H’’) 
 



Our Model: an example 



Our Model: an example 
Intra-pair operations 



Our Model: an example 
Intra-pair operations 
à Finding anchors 



Our Model: an example 
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Intra-pair operations 
à Finding anchors 
à Naming anchors with placeholders 
à Propagating placeholders 

Our Model: an example 
Cross-pair operations 
à Matching placeholders across pairs 
à Renaming placeholders 
à Calculating the similarity between syntactic trees with co-indexed leaves 



Our Model: an example 

!   The initial example: sim(H1,H3) > sim(H2,H3)? 



The final kernel 

where: 
!   c is an assignment of placeholders  

!   t transforms the trees according to the assigned 
placeholders 



Experimental Results 

BOW+LS + TK + Kent  
System 

Avg. 

RTE1 0.5888 0.6213 0.6300 0.54 

RTE2 0.6038 0.6238 0.6388 0.59 

!   RTE1 (1st Recognising Textual Entailment Challenge) [Dagan et al., 
2005] 
!   567 training and 800 test examples 

!   RTE2, [Bar Haim et al., 2006] 
!   800 training and 800 test examples 



RTE-2 results 

!   Most systems use ML 

!   Best systems use a lot of knowledge 

!   Average accuracy still low: 0.59 

X 



KERNELS FOR RE-RANKING 



Re-ranking framework 

!   Local classifier generates the most likely set of 

hypotheses. 

!    These are used to build annotation pairs,                . 
!   positive instances if Hi more correct than Hj, 

!   A binary classifier decides if Hi is more accurate than Hj.  

!   Each candidate annotation Hi is described by a structural 

representation 

!   This way Kernels can exploit all dependencies between 

features and labels 

€ 

H i , H j



Re-ranking framework 

Local Model 



Syntactic Parsing Re-ranking 

!   Pairs of parse trees (Collins and Duffy, 2002) 

! N-best parse generated by the Collins’ parser 

!   Re-ranking using STK in a perceptron algorithm 



SPOKEN LANGUAGE 
UNDERSTANDING 



Concept Segmentation and Classification 
task 

!   Given a transcription, i.e. a sequence of words, chunk and 

label subsequences with concepts 

!   Air Travel Information System (ATIS) 
!   Dialog systems answering user questions 

!   Conceptually annotated dataset 

!   Frames 



An example of concept annotation in ATIS 

!   User request: list TWA flights from Boston to 

Philadelphia 

!   The concepts are used to build rules for the dialog manager 

(e.g. actions for using the DB) 
!   from location 
!   to location 

!   airline code 



Our Approach  
[Dinarelli et al., SLT 2008-10, Interspeech 2009] 

!   Use of Finite State Transducer (or CRF) to generate word 

sequences and concepts 

!   Probability of each annotation 

⇒ m best hypothesis can be generated 

!   Idea: use a discriminative model to choose the best one 
!   Re-ranking and selecting the top one 



Re-ranking for SLU 

FST 

Input 
Utterance 

ASR 



Re-ranking concept labeling 

!   I have a problem with my monitor 

Hi: I NULL have NULL a PROBLEM-B problem PROBLEM-I 
with NULL my HW-B monitor HW-I 

Hj: I NULL have NULL a NULL problem HW-B with NULL 
my NULL monitor 



Luna Corpus 

!   Wizard of OZ, helpdesk scenario 



Media Corpus 



Flat tree representation  

have	
 a	
 problem	
 with	
 my	


NULL	


I	


NULL	




Cross-language approach: Italian version 



Multilevel Tree 



Enriched Multilevel Tree 



Results on LUNA 



Results on Media 

State-of-the-art on  
-  Luna 
-  Media 



Re-ranking for Named-Entity Recognition 
[Vien et al, 2010] 

! CRF F1 from 84.86 to 88.16 

!   Best Italian system F1 82, improved to 84.33 

State-of-the-art on  
-  Italian 
-  Near for English 



Today	
 a car	
 a ravine	


pushed	


Re-ranking Predicate Argument Structures 
[Moschitti et al, CoNLL 2006] 

!   SVMs F1 from 75.89 

to 77.25 

!   Today, a car was pushed into a ravine. 



Conclusions 

!   We used powerful ML algorithms 
!   e.g. Support Vector Machines 

!   robust to noise 

!   Abstract representations of examples 
!   Similarity functions (Kernel Methods) 

!   Structural syntactic/semantic similarity 

!   Modeling Question/Answer with: advanced syntactic and 

shallow semantic structures and relational marker 

!   Experiments demonstrate the benefit of such approach on 
! TREC 

!   The Grand Jeopardy! Challenge (good impact on Watson) 



Conclusions (cont’d) 

!   Kernel methods and SVMs are useful tools to design 
language applications 

!   Basic general kernel functions can be used to engineer 
new kernels 

!   Little effort in selecting and marking/tailoring/decorating/
designing trees or designing sequences 

!   Easy modeling produces state-of-the-art accuracy in many 
tasks, SRL, RE, CR, QA, NER, SLU, RTE 

!   Fast prototyping and model adaptation 



Future (on going work) 

!   Modeling more than one sentence with deeper structures: 

shallow semantics and discourse 

!   The objective is more compact and accurate models 

applicable to whole paragraphs. 

!   Use of reverse kernel engineering to study linguistic 

phenomena: 
!   [Pighin&Moschitti, CoNLL2009, EMNLP2009, CoNLL2010] 

!   To mine the most relevant fragments according to SVMs gradient 

!   To use the linear space 



Thank you 
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