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Abstract

To address the issue of text document clustering, a suitable func-
tion is needed for measuring the distance between documents. In this
paper we explore a function for scoring document similarity based on
probabilistic considerations: similarity is scored according to the ex-
pectation of the same words appearing in two documents. This score
enables the investigation of different smoothing methods for estimat-
ing the probability of a word appearing in a document, for purposes of
clustering. Our experimental results show that these different smooth-
ing methods may be more or less effective, depending on the degree of
separability between the clusters. Furthermore, we show that the co-
sine coefficient widely used in information retrieval can be associated
with a particular form of probabilistic smoothing in our model. We
also introduce a specific scoring function that outperforms the cosine
coefficient and its extensions, such as TFIDF weighting, in our ex-
periments with document clustering tasks. This new scoring is based
on normalizing (in the probabilistic sense) the cosine similarity score,
and adding a scaling factor based on the characteristics of the corpus
being clustered. Finally, our experiments indicate that our model,
which assumes an asymmetry between positive (word appearance) and
negative (word absence) information in the document clustering task,



outperforms standard mixture models that weight such information
equally.

1 Introduction

As the amount of on-line information continues to grow at an ever-increasing
rate, the need for tools to help manage this information also rises. One
such tool is the capability to cluster documents of similar content, to aid
in both the retrieval of information and its presentation to the user. Early
work in information retrieval (IR) stressed the use of clustering as a means of
improving the ability to find documents relevant to a query [vRJ71] [Sal71].
This work was based on the Cluster Hypothesis [vRT9], which states that
“closely associated documents tend to be relevant to the same requests.”
With this as a working assumption, document collections could be clustered
a priori, and then new queries could simply be matched against clusters rather
than against each document individually. Such cluster-based matching could
speed the retrieval process and possibly find relevant documents that do not
explicitly contain the words in the user’s query.

More recently, applications of document clustering such as Scatter/Gather
[CKPT92] [HP96] have been used to enable entire collections and query re-
trieval results to be browsed more easily. Work in this area has shown that
document clustering is often an effective way to give the user a better sense
of the topics present in a set of documents [PSHD96].

The success of such systems often hinges on the effectiveness of the clus-
tering methods employed. There is a long history of empirical work in doc-
ument clustering, an excellent survey of which is given by Willett [Wil88].
Indeed, the description of Scatter/Gather is very specific about the clustering
methods used, reflecting the years of comparative work in the IR community
that continues today [SS97].

While empirical work in document clustering has advanced the state of
the art in performance, no equivalent advancement in theoretical analysis
explains why the methods arrived at through experimentation work as well as
they do. In this paper, we seek to provide a foundational analysis of document
clustering with the tools of probability theory. In this way, we can formalize
the assumptions and models used in document clustering. Our objective is to
gain new insights into the effectiveness of current clustering algorithms as well



as to open the door to improved, well-founded extensions. Uncovering the
explicit distributional assumptions made in many text clustering algorithms
has prompted us to investigate issues such as the treatment of evidence and
different approaches to density estimation. Consequently, in this paper we
propose a probability-based score for document overlap that outperforms
traditional IR methods in our experiments on text clustering.

In general terms, the clustering problem consists of finding groups of data
points that possess strong internal similarities. The problem is not formalized
until we define what is meant by similarity. In practice, this formalization
involves two separate issues: first, how one should measure similarity between
data samples, and second, how one should evaluate a partitioning of a set
of samples into clusters. Working in the context of document clustering,
we propose a probabilistic score for measuring similarity between documents
and evaluating clustering partitions.

In this context, and more generally throughout IR, a commonly used
measure of similarity is obtained by representing documents as normalized
vectors and then computing the inner product to find the cosine of the angle
between the vectors. This measure of similarity is generally referred to as
the cosine coefficient [SalTl]. Each dimension of the vector corresponds to
a distinct word in the union of all words in the corpus being clustered. A
document is then represented as a vector containing the normalized frequency
counts of the words in it. Intuitively, this measure tries to capture the degree
of word overlap between two documents.

On similar grounds, we investigate a probabilistic function for document
overlap that scores the expectation of the same words appearing in two docu-
ments. This score prompts the investigation of different smoothing methods
for estimating the probability of a word appearing in a document. As our
empirical evaluation shows, different smoothing methods may be more or less
effective, depending on the degree of separability between the clusters. We
also show that the widely used cosine coefficient can be associated with a
particular form of probabilistic smoothing in our framework. Moreover, this
analysis reveals a scaling factor, given by the inverse of the probability of a
word appearing in the corpus, that, when combined with our probabilistic
similarity score, yields a clustering method that outperforms those based on
the cosine coefficient and TFIDF weighting [SB87] in our experiments. Fi-
nally, we also experiment with alternative probabilistic approaches based on
mixture models such as AutoClass [CKS*88], showing that they generally
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produce inferior results.

We point out that the probabilistic score we present can easily be ex-
tended to include more sophisticated notions of document overlap, based on
equivalence classes of words (e.g., synonyms), phrases, or, in general, any
function on groups of words in the corpus. In this way, our score can cleanly
capture the full generality of probabilistic indexing [Fuh89] techniques used
in other contexts. Moreover, the parameters defining the contributions of
different words or functional characteristic of the documents to the overall
similarity score in these cases can be learned directly from the data. Finally,
it should be clear that another advantage of a probabilistic score is the pos-
sibility of cleanly fusing information coming from different modalities (such
as video and audio) into similarity scores over multimedia domains. These
issues are the focus of our current research.

2 Probabilistic Document Overlap

To formalize the problem of document clustering, we first need to explicitly
define a notion of similarity between documents. The similarity function
that we will use for clustering will be based on establishing the degree of
overlap between pairs of documents. To this end, we will assume that each
document imposes a multinomial distribution over the set of words in the
corpus. Each document doc; is associated with an n-dimensional feature
vector d;. Each dimension of this vector corresponds to a distinct word in
the union of all words in the corpus. The value of the jth component of
the vector is the number of times the word corresponding to this component
appears in the document. Thus, this vector representation of documents
provides the sufficient statistics for computing the expected overlap between
any given pair of documents. Let doc; and doc; be two documents in a
corpus D. We will then compute the expected overlap between doc; and doc;
in terms of the corresponding vectors d; and d;. We denote this expected
overlap measure as FO(d;,d;, D) and compute it as follows:

Z P(Yi:w|di7M)'P(Yj:w|dij)v (1)

wEd;Nd;



where Y; = w denotes the event that a word selected from document doc;
is equal to w. M, the model, contains information about the corpus D,
including the total number of times each word appears in the corpus, as well
as information about the partitioning of documents into clusters.

This equation is intuitively appealing. It says that the overlap between
two documents ¢ and j can be computed by estimating the probability that
each word appears in each document, and then multiplying these results. As
will be seen shortly, the way this probability is estimated will greatly influ-
ence the results of clustering. We focus on the different ways of estimating
this probability from the statistics in each vector d; and M, as well as the
relationship of this equation to the cosine coefficient [Sal71] below. We first
provide a derivation of Equation 1.

2.1 Deriving the Probabilistic Overlap

Here we investigate one possible derivation of Equation 1 and reveal its un-
derlying assumptions. We start by defining the expected degree of overlap
between two documents doc; and doc; in the corpus D, using the correspond-
ing vectors of word statistics d; and d;. This definition is given by

EP(YZ'ECZZ',Y]‘Edj,YZ':w,Y]’:wwi,dj,M), (2)

weW
which can be rewritten as

Z P(Y; € d;,Y; € dilY; = w,Y; = w, d;, d;, M)- (3)
weW P(K:wvi/j:wklivdij)‘
The event Y; € d; denotes whether the word assigned to Y; appears in d; (i.e.,
has a nonzero count).

The events Y; € d; and Y] € d; are clearly independent when conditioned
on Y;, Y;, and the vectors of statistics d; and d;. Moreover, the value of
Y € d; depends only on the choice of Y;, and d; within a given model M:

P(Y; € &i|Y; = w,d;, M)
Z P(}/]'Edjn/j:wvdjaM)' : (4)
weW P(K:waifj:wklivdj?M)



Note that P(Y; € d;|Y; = w,d;, M) and P(Y; € d;|Y; = w,d;, M) are
simply indicator functions that limit the set of words that contribute to the
sum to only those w € d; Nd;. This reduces the sum above to

Z P(Yi:wayj:w|di7dj7M)' (5)
wEd;Nd;

By applying Bayes Theorem, we find that the summation in Equation 5
is equal to

( P(Y, =w,Y; = w|M)
b P41 ' ©

wEd;Nd;

P(d;,d;|Y; = w,Y; = w, M)- )

We make the assumption that, given the information in M, documents
are independently distributed so that the statistics about different documents
are independent of each other: P(d;,d;|M) = P(d;|M)- P(d;|M) .

From probability theory we can write

P(di,d]-|Yi:w,Yj:w,M): (7)
P(di|d;, Y, =w,Y; =w,M)- P(d;|Y; =w,Y; =w,M) .
Note that any probabilistic dependence between d; and d; as the result of
Y, = w and Y; = w must be captured through the effect of each single word

w. Since we believe that this effect is small, especially given that documents
are made up of many distinct words, we make the approximation that

P(d2|d],YZ = w,Y]’ = w,M)
~ PdlYi=wY,=w,M) (8)
Y = w, M) . )
Substituting this approximation into Equation 7 yields
P(dz,dﬂYZ = w,Y]’ = w,M)
~ P(dznfzzwaM)P(d]D/]:va) (10)
Our final assumption will be that, given the statistics of the corpus (which

are part of the model M), the probability of drawing a given word from two
different documents are independent events. Hence,

P(Yi = w,Y; = w|M)
— P(Y; = w|M)- P(Y; = w|M). (11)
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Substituting Equations 10 and 11 into Equation 6 yields
(P(dim_wM) P(d;|Y; = w, M)- )

5 PYi = w[M) - P(Y; = w|M)

P(di|M) - P(d;| M)

P Y= w|M) - P(d,Y; = w]M) (12)
P(di|M) - P(d;|M)
= P(Y; = w|d;, M) - P(Y; = w|d;, M) , (13)

which is equal to Equation 1.

As was pointed out above, this derivation embodies a series of assump-
tions of probabilistic independence. We assume, for example, that the prob-
ability of the statistics about different documents d; are independent of each
other, given the information in M. We also assume that the probability of
these statistics remains independent, given the additional information that
a particular word was drawn from both. We remark that, given the relation
we establish in the next section, these assumptions are also present in the
use of the cosine coefficient to compute similarity. Our analysis above merely
makes these assumptions explicit, opening opportunities for further research
on verifying or even finding ways to avoid making them. Such research is,
however, beyond the scope of this paper.

2.2 Probability Estimation and Smoothing

We now focus on estimating the term P(Y = wl|d, M) in Equation 1. An
initial approach is to take the maximum likelihood (ML) estimate for this

probability:
{(w,d)

Zwed f(wv d) 7

where £(w,d) is the number of times that word w appears in document doc
(represented by the vector d).

PML(Y = w|d, M) = (14)

This is bound to be a poor estimate, as some words that are “important”
to the topic of a document may appear only a few times, whereas other

1We drop the subscript previously used with Y for the sake of readability.



“unindicative” terms may appear very often. Also, with shorter documents
such as news clips, this estimate will be even more prone to word “spikes”
(i.e., will have high variance).

In trying to control variance in estimating P(Y = wl|d, M), it becomes
critical to perform some type of smoothing. A simple smoothing technique
that has been used in the context of computational linguistics [Cha93] is
to use the arithmetic mean (AM) of Pyr(Y = w|d, M) and the maximum
likelihood estimate of the unconditional distribution, Par,(Y = w|M), where

PML(Y _ w|M) . EdocED f(wv d) (15)

B EdocED Zwedoc £(w7 d) ‘

For the case of P(Y = w|M), the ML estimate is appropriate because this
computation is an average over all documents in the entire corpus and is

therefore likely to attenuate any word spikes that may appear in a single
document. Formally, arithmetic mean smoothing yields

PAM(Y:UJ|CZ,M) = (16)
%PML(Y = w|d, M) + %PML(Y = w|M) .
Another form of smoothing involves the taking the geometric mean (GM)

of these two ML distributions?:

PGM(Y = w|d, M) =
Pur(Y = w|d, M)z - Pyp(Y = w|M)? . (17)
The GM estimate in Equation 17 does not define a true probability dis-
tribution because it will generally not sum to 1. We thus introduce a true
probability distribution based on the geometric mean, by simply adding a
normalization factor. This gives us the following normalized geometric mean

(NGM) estimate:

PNGM(Y = w|d, M) =
PML(Y:w|d,M)%~PJ\;[L(Y:w|M)% . (18)
EwewPML(Y:uJ|d,M)§-PML(Y:u}|M)5

2This is also equivalent to taking the arithmetic mean in the log space: log Pga (Y =

wld, M) = %logPML(Y =w|d, M)+ %logPML(X =w|M).



We continue to pursue the unnormalized GM formulation further, since
it is related to the computation of similarity between documents using the
normalized vector dot product, also known as the “cosine coefficient.”

Consider the similarity score of two documents, doc; and doc;, computed
by using the cosine represented by Equation 19:

Z f(wadz) . f(wvdj) .
wew (Duea, E(w, di)2)7 (T e, é(w, d;)?)?

(19)

The sum in this equation can be reduced to include only those words w €
d;Nd;, since any words not in both documents will have £(w, d) = 0 for at least
one of the documents and will not influence the sum. Furthermore, when the
cosine similarity score is used in information retrieval and clustering, the raw
frequency scores often are not actually used as the features in a document
vector. Rather, these frequencies are attenuated by a monotone shrinkage
factor such as the log or square root. It has been reported that for the
document clustering task, using the square root generally appears to give
better performance than using the log [CKPT92]. Incorporating this factor
into Equation 19 yields

Y wedind £(w,di)? R £(w,d,)? -

T (e, € ) TT (e, (60d) D)) (20)
— wd) g Ewdy) g

= Zwediﬁd](zwedi f(w,di)) (Ewed] f(’LU,dJ)) .

Now if we cast Equation 20 in terms of the unnormalized GM estimate
defined above, we obtain

2.

wed;Nd;

Peu(Y; = wld;, M) - Peu(Y; = wld;, M)

PML(Y =w JW) (21)

Thus, the cosine similarity metric with square root dampening that has
found empirical success in the IR community is actually utilizing a form of ge-
ometric smoothing to account for the high variability in word appearances.
Furthermore, casting the cosine in our probabilistic framework uncovers a
scaling factor for the axes of the word space. Intuitively, this scaling makes
sense, since it incorporates additional knowledge in the form of the frequency
of word usage in the corpus to be clustered. In our experiments below we



evaluate the expected overlap given by Equation 1 using the various esti-
mation and smoothing proposals introduced in this section, plus a variant
that incorporates the scaling factor in Equation 21. As will be seen, the best
results are obtained by using the NGM of Equation 18 augmented with the
scaling factor from Equation 21 in the denominator.

3 Clustering Algorithms

Having defined a similarity score for documents, we now turn to the problem
of the actual document clustering algorithms. While a number of methods
for clustering exist, the two most widely applied to text domains are hier-
archical agglomerative clustering (HAC) and iterative clustering techniques
such as K-means [Ras92]. Both of these methods rely on the definition of
a similarity score between pairs of documents. For the sake of generality,
we will refer to this similarity score as Stm(doc, doc’) and will subsequently
instantiate 1t with our measure of probabilistic overlap, using different prob-
ability estimation methods.

3.1 Hierarchical Agglomerative Clustering

The most common clustering method employed in the information retrieval
community over the past decade is HAC [FBY92]. This family of methods
begins by placing each document into a distinct cluster. Pairwise similarities
between all such clusters are computed, and the two closest clusters are then
merged into a new cluster. This process, computing pairwise similarities
and merging the closest two clusters, is repeatedly applied, generating a
dendogram structure that contains only one cluster (encompassing all the
data) at its root. By selecting an appropriate level of granularity in this
dendogram, we can generate a partitioning into as many clusters as desired.
Criteria such as a minimum number of documents per cluster are often used
to prevent outlier documents from being considered a separate cluster. In our
experiments we heuristically set this minimum cluster size at 10 documents.

Depending on how the similarity of a document to a cluster is defined,
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we can obtain different “flavors” of HAC; the most common are the single
link, complete link, and group average methods. Previous work in IR [Wil8§]
has pointed out that the group average method generally produces superior
results. We will concentrate on this method in this paper.

The group average method defines the similarity between a document doc
and a cluster C' as the average of the pairwise similarities between doc and
each of the documents in C: Sim(doc,C') =3 joercc |é—|5im(d0c, doc").

A simple probabilistic interpretation of the group average method is that
each document in a cluster is an equally likely representative of that cluster.
This is evident in the |17| weighting given to each term in the sum. Note
that we can obtain many variations of HAC by replacing the term |17| with
alternate distributions over the “weight” of documents in a cluster (e.g., a

Gaussian based on a document’s distance from the cluster centroid).

3.2 Iterative Clustering

[terative clustering techniques, also referred to as reallocation methods, at-
tempt to optimize a given clustering by repeatedly reassigning documents
to the cluster to which they are most similar. The general form for such
algorithms, given a specification of the number of clusters k, is as follows.

1. Initialize the k clusters.?

2. For each document doc, compute the similarity of doc to each cluster.
3. Assign each document doc to the cluster to which it is most similar.
4. Goto 2, unless some convergence criterion is satisfied.

As in the case of HAC, we define the similarity of a document to a cluster
by the group average similarity. Our exit criterion in Step 4 can be met by
simply running the algorithm for 10 iterations (although we observed that
often far fewer were needed for convergence.)

We note that the initialization in Step 1 will affect the convergence point
of the algorithm. We experimented using various runs with random initial

3The random assignment of documents to clusters is one simple method of initialization.
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Number of | Number of Baseline
Data Set | Documents Words Categories Error Rate
D1 486 1143 nat-gas, soybean, dlr 53.3%
D2 466 1001 gold, coffee, sugar 59.0%
D3 289 552 thill, yen, reserves 56.1%
D4 467 1126 gnp, livestock, sugar 60.4%
D5 1426 1953 loan, interest, money-fx 57.1%

Table 1: Data sets used in clustering experiments.

Data Set | U-ML | U-AM | U-NGM | S-ML | S-AM | S-NGM | Cos | TFIDF
D1 0.14 0.09 0.22 0.27 | 0.30 0.34 0.41 | 0.26
D2 0.16 0.11 0.26 0.35 | 0.38 0.43 0.47 | 0.28
D3 0.25 0.22 0.42 0.35 | 0.42 0.49 0.54 | 0.35
D4 0.17 0.11 0.31 0.34 | 0.38 0.48 0.52 | 0.32
D5 0.26 0.16 0.40 0.37 | 0.41 0.48 0.63 | 0.47

Table 2: Ratios of average between label to within label similarity.

clusters, and with using HAC as a method to find an initial clustering. The
results of the former were often comparable and in some cases worse than the
later. For reasons of space we report only on the experiments where HAC
determined the initial set of clusters.

4 Results

The objective of the experiments we describe in this section is to test
the different estimation schemes for the computation of the expected overlap
between documents. We are also interested in evaluating the effect of axis
scaling on the expected overlap measure revealed from the derivation of the
cosine coefficient. As will be seen below, the scaled NGM score of overlap
performs better (in some case dramatically better) than any other score we
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tested, including the cosine coefficient and TFIDF weighting method com-
monly used in IR [SB8T7].

Realizing that methods for evaluating clustering algorithms are not with-
out controversy, we use the following strategy (keeping aware of its limita-
tions). We use previously labeled data and measure how well the clustering
recovers the known label structure in the data. To this end, we specified the
number of clusters to be the number of known class labels in the data. The
clustering algorithm, however, is given no information about the true label
of each document. After clustering is completed, we designate the predicted
label for all documents in each cluster to be the true label that the majority
of documents in that cluster have. Once we have an actual and predicted
label for each document, we can now simply compute the classification error.
This also gives us a baseline (maximal) error for each data set, which we
would get if all instances were classified in the majority class.

Our experiments were conducted on various subsets of the Reuters-22173
data set.* We expect that the results of selecting a corpus such as the
Reuters-22173 news articles will be that the labeling will indeed reflect some
semantic coherence that can be trusted for evaluation. The data sets used
here were created from only documents with one of a particular subset of class
labels from the Reuters collection. We also applied a simple preprocessing
feature selection to these data sets using a standard Zipf’s Law analysis to
eliminate any words that appeared fewer than 10 or greater than 1000 times,
as providing too little discriminating power between documents. A descrip-
tion of these data sets is given in Table 1.

Seeking to characterize the data sets in our study according to the dif-
ficulty of recovering the underlying class structure, we also measured the
ratio of the average interlabel similarity with the average intralabel similar-
ity. These values, shown in Table 2, indicate the relative difficulty we would
expect each measure of similarity to have with each data set. An increase in
these values indicates that documents within a class appear more and more
similar to documents outside the class, thus making the recovery of the true
class structure much more difficult. From these values we find that data sets
D1, D2, and D3 are clearly in order of increasing difficulty for all the simi-

*An updated version of this data set, Reuters-21578, is now publically available from

David Lewis at http://www.research.att.com/"lewis.
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Data Set | U-ML | U-AM | U-NGM | S-ML | S-AM | S-NGM | Cos | TFIDF
D1 4.3% | 4.3% 4.9% 53% | 4.7% 2.3% 1.0% 3.9%
D2 6.9% | 4.1% 1.1% 13.3% | 9.0% 4.7% 5.4% 9.4%
D3 31.8% | 22.5% | 23.2% | 11.8% | 16.3% | 3.1% | 20.8% | 12.5%
D4 24.0% | 47.3% | 23.8% 9.4% | 10.5% | 5.4% | 55.9% | 42.4%
D5 25.8% | 21.5% | 55.8% |35.2% | 27.2% | 26.5% | 50.3% | 50.8%
Table 3: Error rates from hierarchical agglomerative clustering.
Data Set | U-ML | U-AM | U-NGM | S-ML | S-AM | S-NGM | Cos | TFIDF
D1 2.1% | 1.0% 1.9% 0.8% | 0.8% 0.6% 0.6% 0.6%
D2 2.6% | 0.9% 1.5% 7.5% | 3.0% 1.5% 3.0% 4.3%
D3 31.5% | 20.4% | 20.4% 4.8% | 5.5% 4.2% 1233% | 7.6%
D4 10.0% | 9.5% 11.9% 6.6% | 6.6% 4.1% 19.1% | 40.0%
D5 24.7% | 32.0% | 31.6% | 29.2% | 24.9% | 20.3% | 22.4% | 47.3%

Table 4: Error rates from iterative clustering using HAC seeding.

larity measures. Data sets D4 and D5 show more relative variability, which
is reflected in the results of our experiments.

We empirically evaluated our measure of probabilistic overlap, using a
number of different estimation schemes. First, we computed document over-
lap using the ML, AM, and GM estimates for P(Y = wl|d, M). In these
cases we did not scale the axes of the word space, so these computations are
denoted “Unscaled” (U-). We then modified the computation of document
overlap to include a scaling factor based on the marginal probability of word
appearance, yielding

2.

wEd;Nd;

P(Y; = w|di, M) - P(Y; = w|d;, M)
PML(Y = w|M)

(22)

We identify these runs as “Scaled” (S-). For comparison, we also performed
clustering using the cosine coefficient (with square root dampening) as a sim-
ilarity score as in Equation 21. Also, recognizing the use of TFIDF weighting
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in the IR literature [SB87] as an alternate means of term scaling, we also used
this weighting scheme, in conjunction with the Cosine rule (without square
root dampening), as yet another similarity score for comparison. For our
TFIDF weighting we used the commonly used scheme: T'F(w,d) = £{(w, d)
and IDF(w) = log(L), where N is the total number of documents and n,,
is the number of documents in which word w appears at least once.

The error rates for clustering using HAC are given in Table 3. Those for
iterative clustering, using HAC as an initialization, are given in Table 4. We
note that applying the iterative optimization after performing HAC almost
always leads to improved results, as seen in the reduction in error rates from
Table 3 to Table 4. Hence, we focus our attention on Table 4.

Our first conclusion is that the use of axis scaling often improves the
performance of the similarity measure using ML, AM, and NGM estimates.
As a matter of fact, the error rate is reduced in 11 cases (often drastically),
is increased in 3 cases (only slightly), and remains unchanged in 1 case. To
investigate whether a measurable characteristic in the data sets themselves
points to the benefit of using scaling, we performed a chi-squared test on
each data set. The purpose of this test is to check the hypothesis that the
marginal probabilities of each word in a data set are uniformly distributed,
in which case we would expect scaling not to help. As could be expected,
the hypothesis of uniformity was rejected for every data set with an error
probability of less than 107°.

Our second, and most important, conclusion highlights the utility of S-
NGM as a similarity score. In general, the scaled probabilistic similarity
measures using ML, AM, and NGM perform extremely well in comparison
to both the cosine and TFIDF similarity scores, which are currently the
state of the art in information retrieval. Most significantly, we draw the
reader’s attention to the S-NGM similarity score, which always produces an
error rate comparable to or significantly less than that of either the cosine
or the TFIDF methods! Noting that the cosine coefficient is equivalent to a
scaled but unnormalized GM estimate, we see that the use of normalization
to obtain true probabilities, as in the S-NGM case, not only can preserve the
clean, well understood probabilistic semantics of our overlap measure, but
also can have a significant beneficial impact on the empirical performance.
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5 Alternative Probabilistic Models

An alternative approach to text clustering is based on the use of probabilistic
mixture modeling, such as the AutoClass system [CKS*88]. In our investiga-
tions of this approach, documents were represented as binary vectors (rather
than word frequency counts). AutoClass was used to cluster documents as
mixtures of independent binomial distributions over word appearances. This
representation has two immediate consequences: (1) it loses word frequency
information and (2) it treats evidence about whether or not a word appears
in a document in a symmetrical manner.

The loss of word frequency estimation may be remedied by the use of more
complex statistical models (e.g., parametric distributions, such as Gaussians
or Poissons, over word frequencies) to fit the data. This approach, however,
requires a commitment to a particular parametric model of word appearance.
Our initial investigation along these lines, using Gaussian distributions, in-
dicates that this approach may not be promising.

In the context of text clustering, the symmetrical treatment of evidence is
more problematic. By “symmetrical treatment” we mean that word appear-
ance and absence are given the same weight in a binomial distribution such as
the one described above. One would expect, however, that the appearance of
particular words in a text would be more indicative of a particular topic than
the absence of some other word. Note that our probabilistic model (which
is based on a single multinomial) proposed in the overlap score places much
more importance on the information about the appearance of words than on
their absence. Thus, the model matches our intuitions about word usage in
text.

To test these arguments, we convert the data sets previously described
to binary representations. The objective is to compare the two probabilistic
models on fair grounds by removing the word frequency information. We
then cluster this data, using the S-NGM and cosine similarity scores. As
before, we use both HAC alone and HAC followed by iterative clustering
as the clustering methods. We also run AutoClass (which is a priori given
the proper number of clusters to find), with initial clusters set with the
results from HAC or randomly. To help alleviate the problems with bad
initial conditions in the random case, we run AutoClass multiple times with
different random initial clusters, and report the results for the best clustering
chosen according to AutoClass’s own model selection criterion. The results
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HAC HAC + Iter AutoClass
Data Set | SSNGM | Cos | S-NGM | Cos | S-NGM | Cos | Random
D1 23% 1395% | 0.4% 0.4% 2.1% |38.3% | 53.3%
D2 7.7% [35.8% | 5.4% |13.9% | 9.0% | 35.6% | 54.3%
D3 201% | 22.8% | 29.1% | 15.6% | 35.3% | 27.3% | 47.4%
D4 24.0% | 51.8% | 14.6% | 43.3% | 29.4% | 53.6% | 46.4%
D5 22.6% | 50.8% | 22.7% | 43.8% | 27.8% | 51.6% | 40.3%

Table 5: Error rates using binary data.

of these experiments are given in Table 5.

As expected, the lack of word frequency information generally hinders
both S-NGM and cosine across both non-AutoClass clustering regimes. Most
striking, however, is the poor performance of AutoClass on any of the text
data sets. AutoClass with random initialization fails to find any real structure
in any of the data sets. Furthermore, even when “reasonable” initial clusters
are provided by HAC (using S-NGM and cosine), AutoClass outputs final
clusters that are much worse than the other methods.

As an aside, we note that while this intuition about asymmetry of ev-
idence is useful for text clustering where categories must be discovered, it
generally does not hold true for text classification tasks where the categories
are known a priori. This has also been observed empirically in the successful
application of such symmetric probabilistic models to classification problems
in text [LR94] [KS97] and other other domains [FGG97]. A full discussion
of this point is beyond the scope of this paper.

6 Conclusion

We have presented a probability-based measure for document similarity that
is quite effective for clustering. We have also shown how the widely used
cosine similarity coefficient can be captured as a particular form of probability
estimation within our framework. Moreover, this formulation of the cosine
coefficient has revealed a scaling factor that can be effectively integrated
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into our probabilistic framework and that yields results superior to those of
traditional IR methods.

In future work we will seek to extend our probabilistic similarity score
to include arbitrary functions over words in documents (such as phrases and
logical operations). This can be done by expanding the domain of the multi-
nomial distributions we currently use to compute expected document overlap.
In this way we will be able to easily incorporate much more information than
word frequencies into our similarity score. We also wish to extend the use
of such a similarity measure to problems in other domains such as video
segmentation, using different estimation techniques as appropriate. We have
obtained promising initial results on such problems.

As a long-term goal, we plan to use the well understood probabilistic
semantics of our model as leverage in developing a clean fusion of information
from different modalities to aid in multimedia information retrieval.
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