MACHINE LEARNING Probably Approximately Correct (PAC) Learning

Alessandro Moschitti

Department of Information Engineering and Computer Science University of Trento Email: moschitti@disi.unitn.it

Objectives: defining a well defined statistical framework

- What can we learn and how can we decide if our learning is effective?
- Efficient learning with many parameters
- Trade-off (generalization/and training set error)
- How to represent real world objects

Objectives: defining a well defined statistical framework

- What can we learn and how can we decide if our learning is effective?
- Efficient learning with many parameters
- Trade-off (generalization/and training set error)
- How to represent real world objects

- Let *c* be the function (i.e. a *concept*) we want to learn
- Let *h* be the learned concept and *x* an instance (e.g. a person)
- error(h) = Prob [c(x) < > h(x)]
- It would be useful if we could find:
- $Pr(error(h) > \varepsilon) < \delta$
- Given a target error ε , the probability to make a larger error is less δ

- This methodology is called Probably Approximately Correct Learning
- The smaller ε and δ are the better the learning is
- Problem:
 - Given ε and δ , determine the size *m* of the training-set.
 - Such size may be independent of the learning algorithm
- Let us do it for a simple learning problem

A simple learning problem

- Learning the concept of **medium-built people** from examples:
 - *Interesting features* are: Height and Weight.
 - The training-set of examples has a cardinality of *m*.
 (*m* people for who we know if they are medium-built people size, their height and their size).
- Find *m* to learn this concept *well*.
- The adjective "well" can be expressed with probability error.

Graphical Representation of the target learning problem

Learning Algorithm and Learning Function Class

- If no positive examples of the concept are available
 ⇒ the learned concept is NULL
- 2. Else the concept is the smallest rectangular (parallel to the axes) containing all positive examples

We don't consider other complex hypotheses

We don't consider other complex hypothesis

How good is our algorithm?

- An example x is misclassified if it falls between the two rectangles.
- Let ε be the measure of the area
- \Rightarrow The error probability (error) of *h* is ε
 - With which assumption?

Proving PAC Learnability

- Given an error ε and a probability δ, how many training examples *m* are needed to learn the concept?
- We can find a bound to δ, *i.e.* the probability of learning a function h with an error > ε.
- For this purpose, let us compute the probability of selecting a hypothesis *h* which:
 - correctly classifies *m* training examples and;
 - shows an error greater than ε .
 - This is a *bad* function

Probability of Bad Hypotheses

• Given x, $P(h(x)=c(x)) < 1-\varepsilon$

since the error of bad function is greater than ε

- Given ε , *m* examples fall in the rectangle *h* with a probability $< (1-\varepsilon)^m$
- The probability of choosing a bad hypothesis h is $< (1-\varepsilon)^m \cdot N$
 - where N is the number of hypotheses with an error $> \varepsilon$.

Upper-bound Computation

- If we set a bound on the probability of bad hypotheses $N \cdot (1-\varepsilon)^m < \delta$
- we would be done but we don't know N
 - \Rightarrow we have to find a bound, independent of the number of bad hypothesis.
- Let us divide our rectangle in four strip of area $\varepsilon/4$

Initial Example

A bad hypothesis cannot intersect more than 3 strips at a time

Upper-bound computation (2)

- A bad hypothesis has error > $\varepsilon \Rightarrow$ it has an area < 1- ε
- A rectangle of area < 1- ε cannot intersect 4 strips ⇒ if the examples fall into all the 4 strips they cannot be part of the same bad hypothesis.
- A necessary condition to have a bad hypothesis is that all the *m* examples are at least outside of one strip.
- In other words, when *m* examples are outside of one of the 4 strips we may have a bad hypothesis.

 \Rightarrow the probability of "*outside at least one of the strips*" > probability of bad hypothesis.

Logic view

Bad Hypothesis ⇒ examples out of at least one strip
 (viceversa is not true)

- $A \Rightarrow B$
- $P(A) \leq P(B)$
- $P(bad hyp.) \le P(out of one strip)$

Upper-bound computation (3)

- $P(x \text{ out of the target strip}) = (1 \varepsilon/4)$
- $P(m \text{ points out of the target strip}) = (1 \varepsilon/4)^m$
- $P(m \text{ points out of at least one strip}) < 4 \cdot (1 \varepsilon/4)^m$
- $\Rightarrow P(\operatorname{error}(h) > \varepsilon) < 4 \cdot (1 \varepsilon/4)^m$

Expliciting *m*

- Our upperbound must be lower than δ , *i.e.*
- $4 \cdot (1 \varepsilon/4)^m < \delta$
- $\Rightarrow ln(1 \varepsilon/4)^m < \delta/4$
- $\Rightarrow m \cdot ln(1 \varepsilon/4) < ln(\delta/4)$
- $\Rightarrow m > ln(\delta/4) / ln(1-\epsilon/4)$
- change ">" into "<" as $ln(1 \epsilon/4) < 0$

Expliciting *m*

•
$$-ln(1-y) = y + y^2/2 + y^3/3 + ...$$

 $\Rightarrow ln(1-y) = -y - y^2/2 - y^3/3 - ... < -y$
 $\Rightarrow (1-y) < e^{(-y)}$ it holds strictly for $y > 0$ as in our case
• from $m > ln(\delta/4)/ln(1-\epsilon/4)$
 $\Rightarrow m > ln(\delta/4)/ln(e^{(-\epsilon/4)})$
 $\Rightarrow m > ln(\delta/4)/(-\epsilon/4) \Rightarrow m > ln(\delta/4) \cdot (4/-\epsilon)$
 $\Rightarrow m > ln((\delta/4)^{-1}) \cdot (4/\epsilon) \Rightarrow m > (4/\epsilon) \cdot ln(4/\delta)$

Numeric Examples

3	δ	<i>m</i>
0.1	0.1	148
0.1	0.01	240
0.1	0.001	332
0.01	0.1	1476
0.01	0.01	2397
0.01	0.001	3318
0.001	0.1	14756
0.001	0.01	23966
0.001	0.001	33176

Formal PAC-Learning Definition

- Let f be the function we want to learn, f: $X \rightarrow I$, $f \in F$
- D is a probability distribution on X
 - used to draw training and test test
- *h* ∈ *H*,
 - h is the learned function and H the set of such function class
- *m* is the training-set size
- error(h) = Prob [f(x) < > h(x)]
- *F* is a PAC learnable function class if there is a learning algorithm such that for each *f*, for all distribution *D* over *X* and for each $0 < \varepsilon$, $\delta < 1$, produces *h* : $P(error(h) > \varepsilon) < \delta$

Lower Bound on training-set size

- Let us reconsider the first bound that we found:
 - *h* is bad: $error(h) > \varepsilon$
 - P(f(x)=h(x)) for *m* examples is lower than $(1 \varepsilon)^m$
 - Multiplying by the number of bad hypotheses we calculate the probability of selecting a bad hypothesis
 - $P(bad hypothesis) < N \cdot (1 \varepsilon)^m < \delta$
 - $P(bad hypothesis) < N \cdot (e^{-\varepsilon})^m = N \cdot e^{-\varepsilon m} < \delta$

 $\Rightarrow m \geq (1/\epsilon) \left(ln(1/\delta) + ln(N) \right)$

This is a general lower bound

Example

- Suppose we want to learn a boolean function in *n* variable
- The maximum number of different function are 2^{2^n}

$$\Rightarrow m > (1/\epsilon) (ln(1/\delta) + ln(2^{2^n})) =$$
$$= (1/\epsilon) (ln(1/\delta) + 2^n ln(2))$$

n		epsilon		delta	m
==== 5 5 5 5	= == = 	0.1 0.1 0.01 0.01 0.01	= == = 	0.1 0.01 0.1 0.01	245 268 2450 2680
10 10 10 10	 	0.1 0.1 0.01 0.01	 	0.1 0.01 0.1 0.01	7123 7146 71230 71460

References

PAC-learning:

- MY SLIDES: http://disi.unitn.it/moschitti/ teaching.html
- MY BOOK:
- Artificial Intelligence: a modern approach (Second Edition) by Stuart Russell and Peter Norvig
- http://www.cis.temple.edu/~ingargio/cis587/readings/ pac.html
- Machine Learning, Tom Mitchell, McGraw-Hill.

