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Computational Learning Theory 

   The approach used in rectangular hypotheses is just 
one simple case: 
   Medium-built people 
   No general rule has been derived 

   Is there any means to determine if a function is PAC 
learnable and derive the right bound? 

   The answer is yes and it is based on theVapnik-
Chervonenkis dimension  (VC-dimension,  [Vapnik 
95]) 



VC-Dimension definition (1) 

   Def.1: (set shattering): a subset S of instances of a set 
X is shattered by a collection of function F if ∀ S'⊆ S 
there is a function f ∈ F such data: 

€ 

f (x) = 0   x ∈ S − ′ S 
1    x ∈ ′ S {



VC-Dimension definition (2) 

   Def. 2: the VC-dimension of a function set F (VC-
dim(F)) is the cardinality of the largest dataset that can 
be shattered by F 

   Observation: the type of the functions used for 
shattering data determines the VC-dim 



VC-Dim of linear functions (hyperplane) 

   In the plane (hyperplane = line): 
   VC (Hyperplanes) is at least 3 
   VC (Hyperplanes) < 4 since there is no set of 4 points, which 

can be shattered by a line. 
⇒ VC(H)=3. In general,  for a  k-dimension space VC(H)=k+1 
   NB: It is useless selecting a set of linearly independent points 



Upper Bound on Sample Complexity 



Lower Bound on Sample Complexity 



Bound on the Classification error using 
VC-dimension 



Example: Rectangles for learning medium-
built person concept have VC-dim > 4 

   We must choose 4-point set, which can be shattered in 
all possible ways 

   Given such 4 points, we assign them the {+,-} labels, 
in all possible ways. 

   For each labeling it must exist a rectangle which 
produces such assignment, i.e. such classification 



Example (cont’d) 

   Our classifier: inside the rectangle positive and outside 
negative examples, respectively 

   Given 4 points (linearly independent), we have the 
following assignments: 

a)  All points are “+” ⇒ use a rectangle that includes them 
b) All points are “-” ⇒ use a empty rectangle 
c)  3 points “-” and 1 “+” ⇒ use a rectangle centered on the 

“+” points  



Example (cont’d) 

d)  3 points “+” and one “-” ⇒ we can always find a rectangle 
which excludes the “-” points 

e)  2 points “+” and 2 points “-” ⇒ we can define a rectangle 
which includes the 2 “+” and excludes the 2 “-”. 

   To show d) and e) we should check all possibilities 



For example, to prove e) 

Given 4 points 



VC-dim cannot be 5 

   For any 5-point set, we can define a rectangle which 
has the most extern points as vertices 

   If we assign to such vertices the “+” label and to the 
internal point the “-” label, there will not be any 
rectangle which reproduces such assigment 



Applying general lower bound to 
rectangles 

   m = O((4+ln(1/δ))/ε)) 



Bound Comparison (lower bound) 

   m > (4/ε) ⋅ ln(4/δ)   (ad hoc bound) 

   m = O((1/ε) ⋅ (ln(1/δ) + 4)) =  (lower bound based on VC-dim) 

   Does the ad hoc bound satisfy the general bound? 

   (4/ε) ⋅ ln(4/δ) > (1/ε) ⋅ (ln(1/δ) + 4) 

⇔  ln(4/δ) >  ln(1/δ)/4 + 1 ⇔  ln(1/δ)+ln(4)  >  ln(1/δ)/4 + 1  

⇔  ln(4)  >  (-1+1/4)ln(1/δ) + 1 ⇐  ln(4) > 1 

⇔ ln(4) > ln(e) 
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Proposed Exercises 

   Try to formulate the concept medium-built people with 
squares instead of rectangles and apply the content of 
the PAC learning lecture to this new class of functions. 

   Could you build a better ad-hoc bound than the one we 
evaluated in class? (assume that the concept to learn is 
a square and not a rectangle) 



Propose Exercises 

   Evaluate the VC-dimension (of course in a plane) for 
   squares 
   circles 
   equilateral triangles 
   Sketch the proof of VC < k but do not spend to much time in 

formalizing such proof. 

   Compare the lower-bound to the sample complexity 
using squares (calculated with VC dimension) with 
your ad hoc bound derived from medium-built people 
(as we did it in class for rectangles). 


