
 Alessandro Moschitti 
Department of Computer Science and Information 

Engineering 
University of Trento  

Email: moschitti@disi.unitn.it 
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Introduction 



Course Schedule 

   Lectures 
   Tuesday, 14:00-16:00 

   Wednesday, 8:30-10:30 

   Room 107 

   Consulting Hours: 
   My office at third floor 

   Thursday at 14:30 

   Sending email is recommended  



Lectures 

   Introduction to ML 
   Vector spaces 

   PAC Learning 
   VC dimension 

   Perceptron 
   Vector Space Model 
   Representer Theorem 

   Support Vector Machines (SVMs) 
   Hard/Soft Margin (Classification) 
   Regression and ranking 



Lectures 

   Kernels Methods 
   Theory and Algebraic properties 
   Linear, Polynomial, Gaussian 
   Kernel construction, 

   Kernels for structured data 
   Sequence, Tree Kernels  

   Structured Output 



Lab 

   Automated Text Categorization 

   Question Classification (Question Answering) 



Reference Book + some articles 



Today 

   Introduction to Machine Learning 

   Vector Spaces 



   Anything is a function 
   From the planet motion 

   To the input/output actions in your computer 

   Any problem would be automatically solved 

Why Learning Functions 
Automatically? 



More concretely 

   Given the user requirement (input/output 

relations) we write programs 

   Different cases typically handled with if-then 

applied to input variables 

   What happens when 
   millions of variables are present and/or 

   values are not reliable (e.g. noisy data) 

   Machine learning writes the program (rules) for 

you 



What is Statistical Learning? 

   Statistical Methods – Algorithms that learn 

relations in the data from examples 

   Simple relations are expressed by pairs of 

variables: 〈x1,y1〉, 〈x2,y2〉,…, 〈xn,yn〉 

   Learning f such that evaluate y* given a new value 

x*, i.e. 〈x*, f(x*)〉 = 〈x*, y*〉 



You have already tackled the learning 
problem 
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Linear Regression 
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Machine Learning Problems 

   Overfitting 

   How dealing with millions of variables instead of 

only two? 

   How dealing with real world objects instead of real 

values? 



Learning Models 

   Real Values: regression 

   Finite and integer: classification 

   Binary Classifiers: 

   2 classes, e.g. 

   f(x)  {cats,dogs} 



The Idea of Statistical Learning 

Category 1 Category 2

Support 
Examples 



Similarity in Statistical Learning 
Theory  

   Similarity is intuitively useful to learn classification 

function 

   This does not lead to heuristic models 

   In statistical learning theory valid similarities are 

called Kernel Functions 
   Kernels map examples in vector spaces 

   Examples are classified based on geometric properties 

   Formally proved upperbound to the system error 
   Optimize trade-off 



kernels 

In other words 

z1 
z2 

z3 

Category 1

Category 2



Vector Spaces 



Definition (1) 

   A set V is a vector space over a field F (for example, the field of real 
or of complex numbers) if, given 

   an operation vector addition defined in V, denoted v + w (where v, w 
∈ V), and  

   an operation, scalar multiplication in V, denoted a * v (where v ∈ V 
and a ∈ F),  

   the following properties hold for all a, b ∈ F and u, v, and w ∈ V: 
   v + w belongs to V. 

(Closure of V under vector addition)  

   u + (v + w) = (u + v) + w 
(Associativity of vector addition in V)  

   There exists a neutral element 0 in V, such that for all elements v in V, 
v + 0 = v 
(Existence of an additive identity element in V)  



Definition (2) 

   For all v in V, there exists an element w in V, such that v + w = 0 
(Existence of additive inverses in V)  

   v + w = w + v 
(Commutativity of vector addition in V)  

   a * v belongs to V 
(Closure of V under scalar multiplication)  

   a * (b * v) = (ab) * v 
(Associativity of scalar multiplication in V)  

   If 1 denotes the multiplicative identity of the field F, then 1 * v = v 
(Neutrality of one)  

   a * (v + w) = a * v + a * w 
(Distributivity with respect to vector addition.)  

   (a + b) * v = a * v + b * v 
(Distributivity with respect to field addition.)  



An example of Vector Space 

   For all n, Rn forms a vector space over R, with 
component-wise operations.  

   Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi is a 
member of R={real numbers} 

   Let the field be R, as well 

   Define Vector Addition: 
For all v, w, in V, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn] 

   Define Scalar Multiplication: 
For all a in F and v in V, a*v=[a*v1,a*v2,a*v3,...,a*vn] 

   Then V is a Vector Space over R. 



Linear dependency 

   Linear combination: 

   α1 v1 + …+ αn vn = 0 for some α1…αn not all zero 

  ⇒ y = α1 v1 + …+ αn vn has a unique expression 

   In case αi > 0 and the sum is 1 it is called convex 
combination 



Normed Vector Spaces 

   Given a vector space V over a field K, a norm on V is a function 
from V to R,  

   it associates each vector v in V with a real number, ||v||  

   The norm must satisfy the following conditions: 
   For all a in K and all u and v in V,  

  1. ||v|| ≥ 0 with equality if and only if v = 0  
 2. ||av|| = |a| ||v||  

 3. ||u + v|| ≤ ||u|| + ||v||  

   A useful consequence of the norm axioms is the inequality 
   ||u ± v|| ≥ | ||u|| - ||v|| |  

   for all vectors u and v 



Inner Product Spaces  

   Let V be a vector space and u, v, and w be vectors in 
V and c be a constant.   

   Then, an inner product ( , ) on V is 
    a function with domain consisting of pairs of vectors and  

   range real numbers satisfying 

    the following properties:  

  1.  (u, u)  >  0 with equality if and only if u  =  0. 

  2.  (u, v)  =  (v, u) 

  3.  (u + v, w)  =  (u, w) + (v, w) 

  4.  (cu, v)  =  (u, cv)  =  c(u, v) 



Example 

   Let V be the vector space consisting of all continuous functions with the 
standard + and *.  Then define an inner product by 

          

   For example:          

   The four properties follow immediately from the analogous property of the 
definite integral: 

         



Inner Product Properties 

    (v, 0)  =   0 

     

   If (v, u)  =   0, v,u  are called orthogonal 

   Schwarz Inequality:  

   [(v, u)]2 ≤  (v, v) (u, u) 

   The classical scalar product is the component-wise product 
   (x1 , x2, … ,xn) (y1 , y2, … ,yn) = x1 y1 + x2 y2+ … +xn yn 
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Similarity Metrics 

   The simplest distance for continuous m-
dimensional instance space is Euclidian distance. 

   The simplest distance for m-dimensional binary 
instance space is Hamming distance (number of 
feature values that differ). 

   Cosine similarity is typically the most effective 



A Simple Example: Text 
Categorization 
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Text Classification Problem 

   Given: 
   a set of target categories: 

   the set T of documents,  

     define     f : T  →   2C 
€ 

C = C1,.., Cn{ }



The Vector Space Model (VSM) 

Berlusconi 
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Summary of VSM 

   VSM (Salton89’) 
   Features are dimensions of a Vector Space 

Linear Kernel 

   Documents and Categories are vectors of 
feature weights. 

   d is assigned to        if  

   Changing symbols 

  

€ 

 
d ⋅
 
C i > thiC

  

€ 

 w ⋅  x − th > 0⇒  w ⋅  x + b > 0



Summary of Today Machine Learning 
Concepts 

   Positive and Negative examples 

   Feature representation 
   Kernels 

   Learning Algorithm 

   Training and test set 

   Accuracy measurement 

   Generalization/Empirical error Trade-off 



What Next? 

   Can we learn any function? 

   Statistical Learning Theory 
   PAC learning 



END 



Several Kinds of Learning Algorithms 

   Logic boolean expressions, (e.g. Decision Trees). 

   Probabilistic Functions, (Bayesian Classifier). 

   Separating Functions working in vector spaces 
   Non linear: KNN, neural network multiple-layers,… 
   Linear: SVMs, neural network with one neuron,… 

   These approaches are largely applied In 
language technology 

   Very Simple Example: Text Categorization 


