MACHINE LEARNING

Introduction

Alessandro Moschitti

Department of Computer Science and Information
Engineering
University of Trento
Email: moschitti@disi.unitn.it

Course Schedule

- Lectures
- Tuesday, 14:00-16:00
- Wednesday, 8:30-10:30
- Room 107
- Consulting Hours:
- My office at third floor
- Thursday at 14:30
- Sending email is recommended

Lectures

- Introduction to ML
- Vector spaces
- PAC Learning
- VC dimension
- Perceptron
- Vector Space Model
- Representer Theorem
- Support Vector Machines (SVMs)
- Hard/Soft Margin (Classification)
- Regression and ranking

Lectures

- Kernels Methods
- Theory and Algebraic properties
- Linear, Polynomial, Gaussian
- Kernel construction,
- Kernels for structured data
- Sequence, Tree Kernels
- Structured Output

Lab

- Automated Text Categorization
- Question Classification (Question Answering)

Reference Book + some articles

Today

- Introduction to Machine Learning
- Vector Spaces

Why Learning Functions Automatically?

- Anything is a function
- From the planet motion
- To the input/output actions in your computer
- Any problem would be automatically solved

More concretely

- Given the user requirement (input/output relations) we write programs
- Different cases typically handled with if-then applied to input variables
- What happens when
- millions of variables are present and/or
- values are not reliable (e.g. noisy data)
- Machine learning writes the program (rules) for you

What is Statistical Learning?

- Statistical Methods - Algorithms that learn relations in the data from examples
- Simple relations are expressed by pairs of variables: $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle, \ldots,\left\langle x_{n}, y_{n}\right\rangle$
- Learning f such that evaluate y^{*} given a new value x^{*}, i.e. $\left\langle x^{*}, f\left(x^{*}\right)\right\rangle=\left\langle x^{*}, y^{*}\right\rangle$

You have already tackled the learning problem

Linear Regression

Degree 2

Degree

Machine Learning Problems

- Overfitting
- How dealing with millions of variables instead of only two?
- How dealing with real world objects instead of real values?

Learning Models

- Real Values: regression
- Finite and integer: classification
- Binary Classifiers:
- 2 classes, e.g.
$f(x) \rightarrow$ \{cats,dogs\}

The Idea of Statistical Learning

Similarity in Statistical Learning Theory

- Similarity is intuitively useful to learn classification function
- This does not lead to heuristic models
- In statistical learning theory valid similarities are called Kernel Functions
- Kernels map examples in vector spaces
- Examples are classified based on geometric properties
- Formally proved upperbound to the system error
- Optimize trade-off

In other words

Vector Spaces

Definition (1)

- A set V is a vector space over a field F (for example, the field of real or of complex numbers) if, given
- an operation vector addition defined in V , denoted $\mathbf{v}+\mathbf{w}$ (where \mathbf{v}, \mathbf{w} $\in V$), and
- an operation, scalar multiplication in V , denoted $a^{*} \mathbf{v}$ (where $\mathbf{v} \in \mathrm{V}$ and $a \in F$),
- the following properties hold for all $a, b \in \mathrm{~F}$ and \mathbf{u}, \mathbf{v}, and $\mathbf{w} \in \mathrm{V}$:
- $\mathbf{v}+\mathbf{w}$ belongs to V .
(Closure of V under vector addition)
- $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
(Associativity of vector addition in V)
- There exists a neutral element $\mathbf{0}$ in V , such that for all elements \mathbf{v} in V , $\mathrm{v}+0=\mathrm{v}$
(Existence of an additive identity element in V)

Definition (2)

- For all \mathbf{v} in V , there exists an element \mathbf{w} in V , such that $\mathbf{v}+\mathbf{w}=\mathbf{0}$ (Existence of additive inverses in V)
- $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$
(Commutativity of vector addition in V)
- $a^{*} v$ belongs to V
(Closure of V under scalar multiplication)
- $a^{*}\left(b^{*} \mathbf{v}\right)=(a b)^{*} \mathbf{v}$
(Associativity of scalar multiplication in V)
- If 1 denotes the multiplicative identity of the field F , then $1^{*} \mathbf{v}=\mathbf{v}$ (Neutrality of one)
- $a^{*}(\mathbf{v}+\mathbf{w})=a^{*} \mathbf{v}+a^{*} \mathbf{w}$
(Distributivity with respect to vector addition.)
- $(a+b)$ * $\mathbf{v}=a^{*} \mathbf{v}+b^{*} \mathbf{v}$
(Distributivity with respect to field addition.)

An example of Vector Space

- For all n, \mathbf{R}^{n} forms a vector space over \mathbf{R}, with component-wise operations.
- Let \mathbf{V} be the set of all n-tuples, $\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right]$ where v_{i} is a member of $\mathbf{R}=\{$ real numbers $\}$
- Let the field be \mathbf{R}, as well
- Define Vector Addition:

For all v , w , in \mathbf{V}, define $\mathrm{v}+\mathrm{w}=\left[\mathrm{v}_{1}+\mathrm{w}_{1}, \mathrm{v}_{2}+\mathrm{w}_{2}, \mathrm{v}_{3}+\mathrm{w}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}+\mathrm{w}_{\mathrm{n}}\right]$

- Define Scalar Multiplication:

For all a in F and v in \mathbf{V}, $a^{*} v=\left[a^{*} v_{1}, a^{*} v_{2}, a^{*} v_{3}, \ldots, a^{*} v_{n}\right]$

- Then \mathbf{V} is a Vector Space over \mathbf{R}.

Linear dependency

- Linear combination:
- $\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{n} \mathbf{v}_{n}=0$ for some $\alpha_{1} \ldots \alpha_{n}$ not all zero $\Rightarrow \mathrm{y}=\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{n} \mathbf{v}_{n}$ has a unique expression
- In case $\alpha_{i}>0$ and the sum is 1 it is called convex combination

Normed Vector Spaces

- Given a vector space V over a field K, a norm on V is a function from V to R,
- it associates each vector \mathbf{v} in V with a real number, $\|\mathbf{v}\|$
- The norm must satisfy the following conditions:
- For all a in K and all \mathbf{u} and \mathbf{v} in V,

1. $\|\mathbf{v}\| \geq 0$ with equality if and only if $\mathbf{v}=\mathbf{0}$
2. $\|a v\|=|a|\|v\|$
3. $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$

- A useful consequence of the norm axioms is the inequality
- \|u $\pm \mathbf{v}\|\geq|\|\mathbf{u}\|-\|\mathbf{v}\||$
- for all vectors \mathbf{u} and \mathbf{v}

Inner Product Spaces

- Let V be a vector space and \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in V and c be a constant.
- Then, an inner product (,) on V is
- a function with domain consisting of pairs of vectors and
- range real numbers satisfying
- the following properties:

1. $(\mathbf{u}, \mathbf{u}) \geq 0$ with equality if and only if $\mathbf{u}=\mathbf{0}$.
2. $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$
3. $(\mathbf{u}+\mathbf{v}, \mathbf{w})=(\mathbf{u}, \mathbf{w})+(\mathbf{v}, \mathbf{w})$
4. $(\mathbf{c u}, \mathbf{v})=(\mathbf{u}, \mathbf{c} \mathbf{v})=\mathrm{c}(\mathbf{u}, \mathbf{v})$

Example

- Let V be the vector space consisting of all continuous functions with the standard + and *. Then define an inner product by

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

- For example: $\left(x, x^{2}\right)=\int_{0}^{1}(x)\left(x^{2}\right) d x=\frac{1}{4}$
- The four properties follow immediately from the analogous property of the definite integral:

$$
\begin{aligned}
& (f+g, h)=\int_{0}^{1}(f+g)(t) h(t) d t \\
& =\int_{0}^{1}[f(t) h(t)+g(t) h(t)\} d t=\int_{0}^{1} f(t) h(t) d t+\int_{0}^{1} g(t) h(t) d t \\
& =(f, h)+(g, h)
\end{aligned}
$$

Inner Product Properties

- $(\mathbf{v}, \mathbf{0})=0$
- $\|v\|=\sqrt{(v, v)}$
- If $(\mathbf{v}, \mathbf{u})=0, \mathbf{v}, \mathbf{u}$ are called orthogonal
- Schwarz Inequality:
- $[(\mathbf{v}, \mathbf{u})]^{2} \leq(\mathbf{v}, \mathbf{v})(\mathbf{u}, \mathbf{u})$
- The classical scalar product is the component-wise product
- $\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\mathrm{y}_{1}, y_{2}, \ldots, y_{n}\right)=x_{1} \mathrm{y}_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$
- $\cos (u, v)=\frac{(u, v)}{\|u\| \cdot\|v\|}$

Projection

- From $\cos (\vec{x}, \vec{w})=\frac{\vec{x} \cdot \vec{w}}{\|\vec{x}\| \cdot\|\vec{w}\|}$
- It follows that

$$
\|\vec{x}\| \cos (\vec{x}, \vec{w})=\frac{\vec{x} \cdot \vec{w}}{\|\vec{w}\|}=\vec{x} \cdot \frac{\vec{w}}{\|\vec{w}\|}
$$

- Norm of \vec{x} times the cosine between \vec{x} and \vec{w}, i.e. the projection of \vec{x} on \vec{w}

Similarity Metrics

- The simplest distance for continuous m dimensional instance space is Euclidian distance.
- The simplest distance for m-dimensional binary instance space is Hamming distance (number of feature values that differ).
- Cosine similarity is typically the most effective

A Simple Example: Text Categorization

Berlusconi
acquires
Ibrahimović
before elections

Politic
C_{1}

Text Classification Problem

- Given: $C=\left\{C^{1}, . ., C^{n}\right\}$
- a set of target categories:
- the set T of documents, define $f: T \rightarrow 2^{C}$

The Vector Space Model (VSM)

Summary of VSM

- VSM (Salton89')
- Features are dimensions of a Vector Space Linear Kernel
- Documents and Categories are vectors of feature weights.
- d is assigned to C^{i} if $\vec{d} \cdot \vec{C}^{i}>t h$
- Changing symbols

$$
\vec{w} \cdot \vec{x}-t h>0 \Rightarrow \vec{w} \cdot \vec{x}+b>0
$$

Summary of Today Machine Learning Concepts

- Positive and Negative examples
- Feature representation
- Kernels
- Learning Algorithm
- Training and test set
- Accuracy measurement
- Generalization/Empirical error Trade-off

What Next?

- Can we learn any function?
- Statistical Learning Theory
- PAC learning

END

Several Kinds of Learning Algorithms

- Logic boolean expressions, (e.g. Decision Trees).
- Probabilistic Functions, (Bayesian Classifier).
- Separating Functions working in vector spaces
- Non linear: KNN, neural network multiple-layers,...
- Linear: SVMs, neural network with one neuron,...
- These approaches are largely applied In language technology
- Very Simple Example: Text Categorization

