
Linguistic Kernels for Answer Re-ranking
in Question Answering Systems

Alessandro Moschitti

University of Trento, Italy

Silvia Quarteroni

University of Trento, Italy

Email addresses:alessandro.moschitti@disi.unitn.it (Alessandro Moschitti),
silvia.quarteroni@disi.unitn.it (Silvia Quarteroni)

Preprint submitted to IPM special issue on Question Answering June 2, 2010

Linguistic Kernels for Answer Re-ranking
in Question Answering Systems

Alessandro Moschitti

University of Trento, Italy

Silvia Quarteroni

University of Trento, Italy

Abstract

Answer selection is the most complex phase of a Question Answering (QA) sys-
tem. To solve this task, typical approaches use unsupervised methods such as com-
puting the similarity between query and answer, optionallyexploiting advanced
syntactic, semantic or logic representations.

In this paper, we study supervised discriminative models that learn to select
(rank) answers using examples of question and answer pairs.The pair representa-
tion is implicitly provided by kernel combinations appliedto each of its members.
To reduce the burden of large amounts of manual annotation, we represent ques-
tion and answer pairs by means of powerful generalization methods, exploiting the
application of structural kernels to syntactic/semantic structures.

We experiment with Support Vector Machines and string kernels, syntactic and
shallow semantic tree kernels applied to part-of-speech tag sequences, syntactic
parse trees and predicate argument structures on two datasets which we have com-
piled and made available. Our results on classification of correct and incorrect pairs
show that our best model improves the bag-of-words model by 63% on a TREC
dataset. Moreover, such a binary classifier, used as a re-ranker, improves the Mean
Reciprocal Rank of our baseline QA system by 13%.

These findings demonstrate that our method automatically selects an appropri-
ate representation of question-answer relations.

Key words: Question Answering, Information Retrieval, Kernel Methods,
Predicate Argument Structures

Email addresses:alessandro.moschitti@disi.unitn.it (Alessandro Moschitti),
silvia.quarteroni@disi.unitn.it (Silvia Quarteroni)

Preprint submitted to IPM special issue on Question Answering June 2, 2010

1. Introduction

Automatic Question Answering (QA) systems return concise answers - i.e.
sentences or phrases - to questions in natural language. On one hand, QA is inter-
esting from an Information Retrieval (IR) viewpoint as it studies means to satisfy
the user’s information needs; on the other, the high linguistic complexity of QA
systems suggests a need for more advanced natural language techniques, that have
been shown to be of limited use for more basic IR tasks, e.g. document retrieval
[1].

As a matter of fact, the main source of complexity in QA lies inthe question
processing and answer extraction steps rather than in document retrieval, a step
usually conducted using off-the shelf IR modules [2, 3].

In question processing, useful information is gathered from the question to
create a query; the latter is submitted to the document retrieval module that pro-
vides the set of the most relevant documents. The latter are used by the answer
extractor to provide a ranked list of candidate answers. In the answer extraction
phase, unsupervised methods are usually applied: a similarity between query and
answer (such that higher similarity results in higher rank), is computed using sim-
ple bag-of-words(BOW) models or more advanced syntactic, semantic or logic
representations, e.g. [4, 5]. More recently, shallow semantic information has been
successfully exploited for such an approach in terms of predicate argument struc-
tures (PASs) [6].

In contrast, supervised machine learning methods that learn to rank answers
from examples of question and answer pairs [7, 8] rarely use representation more
complex than BOW. This is a major drawback, since different questions need dif-
ferent training data, and the only solution to overcome the burden of manual an-
notation is to reduce it by generalizing such data in terms ofsyntactic/semantic
structures. In previous work, this consideration led us to defining supervised ap-
proaches to answer extraction using syntactic and shallow semantic structures. In
particular, we proposed two tree kernel functions, named Shallow Semantic Tree
Kernel (SSTK) [9] and Partial Tree Kernel (PTK) [10], that exploit PASs in Prop-
Bank1 format for automatic answering to description questions. The use of shallow
semantics appears to be especially relevant in the case of non-factoid questions,
such as those requiring definitions, where the answer can be awhole sentence or
paragraph containing only one question word.

In this paper, we present a thorough study on the above ideas by focusing on
the use of kernel functions to exploit syntactic/semantic structures for relational

1www.cis.upenn.edu/ ˜ ace

3

learning from questions and answers. We start our study fromsimple linguistic
levels and gradually introduce more and more advanced language technology. In
more detail, we: (i) model sequence kernels for words and Part of Speech Tags that
capture basic lexical semantics and syntactic information, (ii) apply tree kernels to
encode deeper syntactic information and more structured shallow semantics and
(iii) analyze the proposed shallow semantic kernels in terms of both accuracy and
efficiency. Finally, we carry out comparative experiments between the different
linguistic/kernel models on question/answer classification by measuring the impact
of the corresponding classifiers on answer re-ranking.

It is worth noting that, since finding a suitable Question Answering corpus for
our study was difficult2, we designed and made available two different corpora,
named WEB-QA and TREC-QA. Their main characteristic is thatthey relate to
description questions from TREC 2001 [12], whose answers, retrieved from Web
and TREC data, respectively, were manually annotated by ourgroup.

The extensive experiments carried out on such corpora show that the gen-
eralization ability of kernel functions, successfully used in previous approaches
[13, 14, 15, 16, 17, 18, 19, 20], is essential. Indeed, a unique result of our approach
is that kernels applied to pairs of questions and answers areeffective for automat-
ically learning their relations. This is a further step in automation with respect to
previous work such as [11], that required human effort and intuition to design a
structural representation of question-answer pairs and use the latter to extract an
effective feature vector representation3.

Our main findings are that (i) kernels based on PAS, POS-tag sequences and
syntactic parse trees improve on the BOW approach on both datasets: on TREC-
QA, the improvement is high (about 63% in F1 score), making its application
worthwhile; (ii) PTK for processing PASs is more efficient and effective than SSTK
and can be practically used in answer re-ranking systems; and (iii) our best ques-
tion/answer classifier, used as a re-ranker, improves the Mean Reciprocal Rank
(MRR) of our QA basic system by 13%, confirming its promising applicability.
Such improvement is much larger on WEB-QA .

In the remainder of this paper, Section 2 presents our use of kernel functions
for structural information and Section 3 introduces the data representations we use
for question and answer pairs. Section 4 reports on our experiments with different
learning models and representations. Finally, Section 5 discusses our approach
with respect to related work and our final conclusions are drawn in Section 6.

2For supervised approaches we could use neither the Japanesecorpus used in [7, 8] nor the corpus
used in [11], since they are not publicly available.

3Machine Translation techniques were applied to make this task easier.

4

2. Kernel Methods for Structured Data

Kernel Methods refer to a large class of learning algorithmsbased on inner
product vector spaces, among which Support Vector Machines(SVMs) are well-
known algorithms. The main idea behind SVMs is to learn a hyperplaneH(~x) =
~w · ~x + b = 0, where~x is the representation of a classifying objecto as a feature
vector, while~w ∈ ℜn (indicating that~w belongs to a vector space ofn dimensions
built on real numbers) andb ∈ ℜ are parameters learnt from training examples by
applying theStructural Risk Minimization principle[21]. Objecto is mapped into
~x via a feature functionφ : O → ℜn, whereO is the set of objects;o is categorized
in the target class only ifH(~x) ≥ 0.

By exploiting the “kernel trick”, the decision hyperplane can be rewritten as:

H(~x) =
(

∑

i=1..l

yiαi~xi

)

· ~x + b =

=
∑

i=1..l

yiαi~xi · ~x + b =
∑

i=1..l

yiαiφ(oi) · φ(o) + b,

whereyi is equal to 1 for positive examples and to -1 for negative examples,αi ∈
ℜ (with αi ≥ 0, oi ∀i ∈ {1, .., l}) are the training instances and the product
K(oi, o) = 〈φ(oi) · φ(o)〉 is the kernel function associated with the mappingφ.

Note that instead of applying the mappingφ, we can directly useK(oi, o). Un-
der Mercer’s conditions [22], this allows to define abstractkernel functions gener-
ating implicit feature spaces. In turn, this alleviates thefeature extraction/design
step and enables the use of potentially infinite feature spaces, since the scalar prod-
uctK(·, ·) is implicitly evaluated.

In the remainder of this section, we extensively describe the following kernels:
the String Kernel (SK) proposed in [22] to evaluate the number of subsequences
between two sequences, the Syntactic Tree Kernel (STK) [13], that computes the
number of syntactic tree fragments, the Shallow Semantic Tree Kernel (SSTK) [9],
that considers fragments from PASs, and the Partial Tree Kernel (PTK) [23], that
provides a yet more general representation of trees in termsof tree fragments.

2.1. String Kernels

The String Kernels that we work with count the number of substrings shared
by two sequences containing gaps, i.e. some of the characters of the original string
are skipped. Gaps modify the weights associated with targetsubstrings as shown in
the following. LetΣ be a finite alphabet:Σ∗ =

⋃∞
n=0 Σn is the set of all possible

strings. Given a stringσ ∈ Σ∗, |σ| denotes the length ofσ, that can be written
ass1..s|s| with si ∈ Σ andσ[i : j] selects the substringsisi+1..sj−1sj from the

5

i-th to thej-th character. Now,u is a subsequence ofσ if there is a sequence of
indices~I = (i1, ..., i|u|), with 1 ≤ i1 < ... < i|u| ≤ |σ|, such thatu = si1..si|u|

or u = σ[~I] in short. Moreover,d(~I) is the distance between the first and last
character of the subsequenceu in σ, i.e. d(~I) = i|u| − i1 + 1. Finally, givenσ1, σ2

∈ Σ∗, σ1σ2 indicates their concatenation.
The set of all substrings of a text corpus forms a feature space denoted by

F ⊂ Σ∗. To map a stringσ into R
∞ space, we can use the following functions:

φu(σ) =
∑

~I:u=s[~I]

λd(~I)

for someλ ≤ 1. These functions count the number of occurrences ofu in the
string σ and assign them a weightλd(~I) proportional to their length. Hence, the
inner product of the feature vectors for two stringsσ1 andσ2 returns the sum of
all common subsequences weighted according to their lengthand occurrence fre-
quency:

SK(σ1, σ2) =
∑

u∈Σ∗

φu(σ1) · φu(σ2) =
∑

u∈Σ∗

∑

~I1:u=σ1[~I1]

λd(~I1)
∑

~I2:u=σ2[~I2]

λd(~I2)

=
∑

u∈Σ∗

∑

~I1:u=σ1[~I1]

∑

~I2:u=σ2[~I2]

λd(~I1)+d(~I2)

It is worth noting that: (a) longer subsequences receive lower weights; (b) se-
quences of the original string with some characters omitted, i.e. gaps, are valid
substrings; (c) gaps determine the weighting function sinced(.) counts the number
of characters in the substrings as well as the gaps that were skipped in the orig-
inal string, and (d) symbols of a string can also be whole words, as in the Word
Sequence Kernel [24].

2.2. Tree Kernels

The main idea underlying tree kernels is to compute the number of common
substructures between two treesT1 andT2 without explicitly considering the whole
fragment space. LetF = {f1, f2, . . . , f|F|} be the set of tree fragments andχi(n)
an indicator function equal to 1 if the targetfi is rooted at noden and equal to 0
otherwise. A tree kernel function overT1 andT2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2),

6

S

NP

NNP

Autism

VP

VBZ

is

NP

D

a

N

disease

⇒

VP

VBZ

is

NP

D

a

N

disease

VP

VBZ NP

D

a

N

disease

VP

VBZ

is

NP

D N

disease

VP

VBZ

is

NP

D N

VP

VBZ

is

NP

VP

VBZ NP

NP

D

a

N

disease

NP

NNP

Autism

NNP

Autism

VBZ

is

D

a

N

disease . . .

Figure 1: A tree for the sentence “Autism is a disease” (top left) with some of its syntactic tree
fragments (STFs).

whereNT1 andNT2 are the sets of nodes inT1 andT2, respectively, and

∆(n1, n2) =

|F|
∑

i=1

χi(n1)χi(n2).

The∆ function is equal to the number of common fragments rooted innodes
n1 andn2 and thus depends on the fragment type. Below, we report the algorithm
to compute∆ for syntactic tree fragments (STFs) [13], shallow semantictree frag-
ments (SSTFs) [9], and partial tree fragments (PTFs) [23].

2.2.1. Syntactic Tree Kernel (STK)
A syntactic tree fragment (STF) is a set of nodes and edges from the original

tree such that the fragment is still a tree, with the further constraint that any node
must be expanded with either all or none of its children. Thisis equivalent to
stating that the production rules contained in the STF cannot be partially applied.

To compute the number of common STFs rooted inn1 andn2, the Syntactic
Tree Kernel (STK) uses the following∆ function [13]:

1. if the productions atn1 andn2 are different then∆(n1, n2) = 0;
2. if the productions atn1 andn2 are the same, andn1 andn2 have only leaf

children (i.e. they are pre-terminal symbols) then∆(n1, n2) = λ;
3. if the productions atn1 andn2 are the same, andn1 andn2 are not pre-

terminals then∆(n1, n2) = λ
∏l(n1)

j=1 (1 + ∆(cn1(j), cn2(j)))

wherel(n1) is the number of children ofn1, cn(j) is thej-th child of noden and
λ is a decay factor penalizing larger structures.

Figure 1 shows a tree and 10 out of its 17 STFs: note that STFs satisfy the
constraint that grammatical rules cannot be broken. For example, [VP [VBZ NP]]

7

S

NP

NNP

Autism

VP

VBZ

is

NP

D

a

N

disease

⇒

VP

VBZ

is

NP

D

a

N

disease

VP

VBZ NP

D

a

N

disease

VP

VBZ

is

NP

D N

disease

VP

VBZ

is

NP

D N

S

NP

NNP

Autism

VP

NP

N

disease

S

VP

NP

N

disease

VP

VBZ

is

NP

N

disease

VP

VBZ

is

NP

VP

VBZ

is

NP

D

a

N

disease

NP

N

disease

NP

D

a

NP

NNP

Autism

NNP

Autism

VBZ

is

D

a

N

disease. . .

Figure 2: A tree for the sentence “Autism is a disease” (top left) with some of its partial tree fragments
(PTFs).

is a STF which has two non-terminal symbols,VBZ andNP, as leaves while[VP
[VBZ]] is not a STF. The computational complexity of STK isO(|NT1 ||NT2 |), al-
though it is shown in [23, 25] that the average running time islinear in the number
of tree nodes.

2.2.2. Shallow Semantic Tree Kernel (SSTK)
A shallow semantic tree fragment (SSTF) is almost identicalto a STF, the

difference being that the contribution of special nodes labeled withnull should be
zero. This is necessary as the Shallow Semantic Tree Kernel (SSTK) [9] is applied
to special trees containing SLOT nodes that, when empty, have children labeled
with null. Two steps are modified in the algorithm:

0. if n1 (or n2) is a pre-terminal node and its child label isnull, ∆(n1, n2) = 0;

3. ∆(n1, n2) =
∏l(n1)

j=1 (1 + ∆(cn1(j), cn2(j))) − 1,

The above steps do not change the computational complexity of the original algo-
rithm, which is thereforeO(|NT1 ||NT2 |).

2.2.3. Partial Tree Kernel (PTK)
If we relax the production rule constraint over the STFs, we obtain a more

general substructure type called partial tree fragment (PTF), generated by the ap-
plication of partial production rules such as [VP [VBZ [is]]] in Figure 2. The∆
function for the Partial Tree Kernel (PTK) is the following.Given two nodesn1

andn2, STK is applied to all possible child subsequences of the twonodes, i.e. the
String Kernel is applied to enumerate their substrings and the STK is applied on
each of such child substrings. More formally:

8

1. if the node labels ofn1 andn2 are different then∆(n1, n2) = 0;

2. else

∆(n1, n2) = 1 +
∑

~I1,~I2,l(~I1)=l(~I2)

l(~I1)
∏

j=1

∆(cn1(
~I1j), cn2(

~I2j))

where~I1 = 〈h1, h2, h3, ..〉 and~I2 = 〈k1, k2, k3, ..〉 are index sequences associated
with the ordered child sequencescn1 of n1 and cn2 of n2, respectively,~I1j and
~I2j point to thej-th child in the corresponding sequence, and again,l(·) returns
the sequence length, i.e. the number of children. Furthermore, we add two decay
factors:µ for the depth of the tree andλ for the length of the child subsequences
with respect to the original sequence, to account for gaps. It follows that

∆(n1, n2)=µ
(

λ2+
∑

~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)
∏

j=1

∆(cn1(
~I1j), cn2(

~I2j))
)

,

whered(~I1) = ~I1l(~I1) −
~I11 + 1 andd(~I2) + 1 = ~I2l(~I2) −

~I21+1. This way, both
larger trees and child subsequences with gaps are penalized. An efficient algorithm
for the computation of PTK is given in [23], where the worst case complexity
is O(ρ3|NT1 ||NT2 |), whereρ is the maximum branching factor of the two trees.
Note that the averageρ in natural language parse trees is very small and the overall
complexity can be reduced by avoiding the computation of node pairs with different
labels [23].

2.3. Kernel Engineering

Kernel engineering can be carried out by combining basic kernels via additive
or multiplicative operators or by designing specific data objects (vectors, sequences
and tree structures) for the target task. It is worth noting that kernels applied to new
structures produce new kernels. Indeed, let K(t1, t2) = φ(t1) · φ(t2) be a basic
kernel, wheret1 andt2 are two trees. If we mapt1 andt2 into two new structures
s1 ands2 with a mappingφM (·), we obtain:

K(s1, s2) = φ(s1)·φ(s2) = φ(φM (t1))·φ(φM (t2)) = φ′(t1)·φ
′(t2) = K ′(t1, t2),

that is a noticeably different kernel induced by the mappingφ′ = φ ◦ φM . In
this work, we use several such kernels, such as PASPTK and POSSK, obtained by
applying PTK and SK to predicate argument structures and sequences of Part of
Speech Tags, respectively.

9

3. Relational Representations for Question and Answer Pairs

Capturing the semantic relations between two text fragments is a complex task.
In Question Answering, this task is carried out during answer extraction, where
unsupervised approaches measure the similarity of questions and answers [4, 5,
26].

A key aspect of our work is that we apply supervised methods tolearn such
relations. More explicitly, we train classifiers for detecting whether an answer
correctly responds to the corresponding question or not (the problem is formally
defined in Sec. 3.1). This is a very different problem from typical answer extrac-
tion in that not only the relatedness between the target question and answer is taken
into account, but also other question-answer training pairs are used. The similarity
between pairs clearly depends on syntactic and semantic properties; thus, in addi-
tion to the usual bag-of-word approach (BOW), we study methods to capture Q/A
structures using String Kernels over word and POS-tag sequences and tree kernels
over full syntactic parse trees (PTs) and shallow semantic trees (PASs). The fol-
lowing sections describe the rationale behind our approachand the choice of such
features.

3.1. Classification of Paired Texts

A Q/A classifier receives question-answer pairs〈q, a〉 as input and judges whether
the candidate answera correctly responds toq. To design such a classifier, a set of
examples of correct and incorrect pairs is needed. The learning algorithm operates
by comparing the question and answer contents in a separate fashion rather than
just comparing a question with its corresponding candidateanswers. In a learning
framework where kernel functions are deployed, given two pairs p1 = 〈q1, a1〉 and
p2 = 〈q2, a2〉, a kernel function is defined as

K(p1, p2) = Kτ (q1, q2) ⊕ Kα(a1, a2),

whereKτ andKα are kernel functions defined over questions and over answers,
respectively, and⊕ is a valid operation between kernels, e.g. sum or multiplication.

In Section 2, we described sequence and tree kernels, that can be applied to the
sequential and tree representations of questions and answers, respectively. In the
following sections we describe several of such linguistically motivated representa-
tions.

3.2. Representation via Word and POS-tag sequences and Trees

For a basic syntactic and semantic representation of both questions and an-
swers, we adopt two different kernels: the Part of Speech Sequence Kernel (POSSK)

10

and the Word Sequence Kernel (WSK). The former is obtained byapplying the
String Kernel on the sequence of POS-tags of a question or answer. For example,
given the sentences0: What is autism?, the associated POS sequence isWP AUX
NN ?and possible subsequences extracted by POSSK areWP NNor WP AUX. In-
stead, WSK is applied to word sequences of questions or answers; givens0, sample
WSK substrings are:What is autism, What is, What autism, etc.

A more complete structure is the full parse tree (PT) of the sentence, that con-
stitutes the input of the STK. For instance, the STK accepts the following syntactic
parse tree fors0:

SBARQ

WHNP

WP

What

SQ

VP

AUX

is

NP

NN

autism

.

?

3.3. Shallow Semantic Representation

Our semantic representation is motivated by the intuition -supported by com-
putational linguistic evidence [27] - that definitions are characterized by a latent
semantic structure, thanks to whichsimilar conceptsresult instructurally similar
formulations. Indeed, understanding whether a candidate answer is correct for a
definition question would imply knowing the correct definition and comparing the
current candidate to the former. When such information is unavailable (as in open
domain QA) the learning algorithm must mimic the behavior ofa human who does
not know the exact definition but checks whether such an answer is formulated as
a “typical” definition and possibly whether answers definingsimilar concepts are
expressed in a similar way. A method to capture sentence structure is the use of
predicate argument structures [28], described hereafter.

3.3.1. Predicate Argument Structures
Shallow approaches to semantic processing are making largestrides in the di-

rection of efficiently and effectively deriving tacit semantic information from text.
Large data resources, annotated with semantic informationas in the FrameNet [29]
and ProbBank [30] projects, make it possible to design systems for the automatic
extraction of predicate argument structures (PASs) [31]. Such systems identify
predicates and their arguments in a sentence. For example, in the sentence, ‘John

11

likes apples.’, the predicate is ‘likes’ whereas ‘John’ and‘apples’, bear the seman-
tic role labels ofagent(A0) andtheme(A1). The crucial property about semantic
roles is that regardless of the overt syntactic structure variation, the underlying
predicates remain the same. For instance, given the sentences ‘John found a bug in
his code’ and ‘A bug was found in the code’, although ‘a bug’ isthe object of the
first sentence and the subject of the second, it is the ‘theme’in both sentences.

To represent PASs in the learning algorithm, we work with twotypes of trees:
Shallow Semantic Trees for SSTK and Shallow Semantic Trees for PTK, both
following PropBank definition, denoted by PASSSTK and PASPTK, respectively.
These are automatically generated by our system using the Semantic Role Label-
ing system described in [32]. As an example, let us consider sentences1: ‘Autism
is characterized by a broad spectrum of behavior that includes extreme inattention
to surroundings and hypersensitivity to sound and other stimuli’, resulting in the
PropBank annotationa1: [A1 Autism] is [rel characterized] [A0 by a broad spec-
trum of behavior] [R−A0 that] [relincludes] [A1 extreme inattention to surroundings
and hypersensitivity to sound and other stimuli].

Such an annotation can be used to design a shallow semantic representation to
be matched against other semantically similar sentences, e.g. s2: ‘Panic disorder
is characterized by unrealistic or excessive anxiety’, resulting in a2: [A1 Panic
disorder] is [rel characterized] [A0 by unrealistic or excessive anxiety].

It can be observed that, although autism is a different disease from panic disor-
der, the structure of the two above definitions and the latentsemantics they contain
(inherent to behavior, disorder, anxiety) are similar. Indeed,s2 would appear as a
definition even to one who only knows what the definition of autism looks like.

The above annotation can be compactly represented by predicate argument
structure (PAS) trees such as those in Figure 3. Here, we notice that the semantic
similarity between sentences is explicitly visible in terms of common fragments ex-
tracted by PTK from their respective PASs, as illustrated inFigure 3(c). An equiv-
alent PAS representation (PASSSTK) compatible with SSTK (see Section 2.2.2)
was introduced in [9] (see Figure 4). Here, arguments followa fixed ordering (i.e.
rel, A0, A1, A2, . . .) and a layer of SLOT nodes “artificially” allows SSTK to
generate structures containing subsets of arguments.

3.3.2. PTK vs. SSTK applied to PAS
A comparison between SSTK and PTK suggests the following remarks: first,

while PASPTK is semantically equivalent to PASSSTK, PTK is able to extract a
richer set of features which take gaps into account. This canbe seen by comparing
the first two fragments of Figures 3(c) and their equivalent in 4(b).

Second, PASPTK does not need SLOT nodes to extract fragments containing
argument subsets. This results in a visibly more compact representation (compare

12

PAS

A1

autism

rel

characterize

A0

spectrum

PAS

A0

behavior

R-A0

that

rel

characterize

A1

inattention
(a)

PAS

A1

disorder

rel

characterize

A0

anxiety
(b)

PAS

rel

characterize

PAS

A1 rel A0

PAS

A1 rel

characterize

PAS

rel

characterize

A0

rel

characterize

(c)

Figure 3: Compact PASPTK structures ofs1 (a) ands2 (b) and some fragments they have in common
as produced by the PTK (c). Arguments are replaced with theirmost important word (or semantic
head) to reduce data sparseness.

Figures 3(b) and 4(a)). Moreover, a more accurate computation of the matches
between two PASs is performed, since only nodes that are actually useful are rep-
resented.

Third, although the computational complexity of PTK is greater than the one of
SSTK, the structures to which PTK is applied are much smallerthan those input to
the SSTK. This makes PTK more efficient than SSTK. We show in the experiment
section that the running time of PTK is much lower than that ofSSTK (for both
training and testing).

Next, another interesting difference between PTK and SSTK is that the latter
requires an ordered sequence of arguments to evaluate the number of argument
subgroups (arguments are sorted before running the kernel). This implies a loss of
the natural argument order. In contrast, PTK is based on subsequence kernels thus
it naturally takes order into account; this is very important as syntactic/semantic
properties of predicates cannot be captured otherwise, e.g. passive and active forms
have the same argument order in PASSSTK.

Finally, PTK weighs predicate substructures based on theirlength; this also
accounts for gaps, e.g. the sequence〈A0, A1〉 is more similar to〈A0, A1, A-LOC〉
sequence than to〈A0, A-LOC, A1〉, which in turn produces a better match than
〈A0, A-LOC, A2, A1〉 (cf. Section 2.1). This is another important property for
modeling shallow semantic similarity.

13

PAS

SLOT

rel

characterize

SLOT

A0

anxiety

*

SLOT

A1

disorder

*

SLOT

null

. . .

(a)

PAS

SLOT

rel

characterize

SLOT

null

SLOT

null

. . .

PAS

SLOT

rel

SLOT

A0

SLOT

A1

. . .

(b)

Figure 4: Compact PASSSTK of s2 (a) and some of its fragments produced by the SSTK (b).

3.4. YourQA, a baseline QA system

As mentioned earlier, our research focus is on non-factoid Question Answer-
ing, where the expected answer type mainly consists of definitions or descriptions.
Non-factoid answer types are among the most complex and interesting in the litera-
ture [33, 34] as finding them requires deeper linguistic processing than for factoids.

Unfortunately, there has been limited interest this specific problem during offi-
cial QA evaluation campaigns. TREC-10, the 2001 edition of the major QA evalu-
ation campaign, remains to our knowledge the first and one of the few events where
a large number of description or definition questions was included in the test set
to be addressed by participant systems [12]. In a question classification taxonomy
designed to account for this edition, 138 questions were labeled as “description”4

[35]. We use the answers to such questions as a baseline to test our learning mod-
els.

In order to experiment with classifiers and re-rankers, an ordered list of candi-
date answers to each question is needed from an existing Question Answering sys-
tem to obtain training instances for answer classifiers and evaluate their re-ranking
abilities. To this end, we used YourQA [36], our Web-based Question Answer-
ing system, designed to address both factoid and non-factoid questions and return
answers alternatively from the Web or from a closed corpus.

YourQA is organized according to three phases: question processing, docu-
ment retrieval and answer extraction. During the first phase, the query is classified

4Seel2r.cs.uiuc.edu/ ˜ cogcomp/Data/QA/QC/

14

according to a taxonomy of factoid or non-factoid answer types; the two top ex-
pected answer types are estimated and the query is submittedto the underlying
IR engine. In the document retrieval phase, the topn documents found by the IR
engine are retrieved and split into sentences. Finally, during answer extraction, a
sentence-level similarity metric combining lexical, syntactic and semantic criteria
is applied to the query and to each retrieved document sentence to identify candi-
date answer sentences; candidate answers are ordered by relevance to the query,
while the IR engine rank of the answer source document is usedas a tie-breaking
criterion.

In particular, based on the outcome of the question classifier, the answer extrac-
tion module determines whether the expected answer belongsto the factoid group,
i.e. PERS, ORG, LOC, QTY, or TIME. If this is the case, the required factoid con-
tained in each candidate answer sentence is pinpointed downto the phrase or word
level using relevant factoid QA techniques, involving the use of Named Entity rec-
ognizers and the use of regular expressions. In the case of non-factoid expected
answer types, other similarity criteria are adopted to compute the similarity be-
tween the candidate answers and the original question; the final question-answer
similarity metricsim(q, a) results from a weighted combination of four simula-
rity metrics, respectively based on bag-of-words (bow), n−grams (ng), syntactic
chunks (chk), and head noun phrase-verb phrase-prepositional phrase (NP-VP-PP)
groups (hd):

sim(q, a) = α × bow(q, a) + β × ng(q, a) + γ × chk(q, a) + δ × hd(q, a). (1)

In particular, the bag-of-word similarity between the question q and a candi-
date answera, bow(q, a), is the number of matches between the question key-
words qi, with i < |q|, and the candidate answer keywordsaj , with j < |a|,
normalized by dividing by the number of question keywords,|q|: bow(q, a) =
P

i<|q|,j<|a| match(qi,aj)

|q| . As in many cases the presence of question keywords in
a candidate answer is not a sufficient criterion to establisha strong similarity be-
tween the question and such an answer, we resort to n-gram similarity, defining
ng(q, a) = |commonN(q,a)|

|ngrams(q)| , wherecommonN(q, a) is the number of shared n-
grams betweenq and a and ngrams(q) is the set of question n-grams. In the
current version of YourQA,n = 2.

Furthermore, chunk similaritychk(q, a) is a function of the number of com-
mon sentence chunks5 betweenq and a, |commonC(q, a)|. |commonC(q, a)|

5Chunks can be defined as groups of consecutive, semanticallyconnected words in the sentence,
which can be obtained using a shallow parser (in our case, theone provided by the OpenNLP chunker
at http://opennlp.sourceforge.net)

15

is then divided by the total number of chunks inq, |chunks(q)|: chk(q, a) =
|commonC(q,a)|

|chunks(q)| , wherecommonC(q, a) is the number of shared chunks betweenq

anda andchunks(q) is the set of question chunks. Finally,hd(q, a) is a varia-
tion of chunk similarity, where the focus is on word groups composed by a noun
phrase, a verb phrase and a prepositional phrase (NP, VP and PP in short). Hav-
ing identified the VPs inq anda that share the maximum number of tokens, named
maxV Pq resp.maxV Pa, we definehd(q, a) = µ×HNP (q, a)+ν×V P (q, a)+
ξ × PP (q, a). Here,V P (q, a) is the number of tokens shared betweenmaxV Pq

andmaxV Pa; HNP (q, a) is the number of common tokens between the head NPs
associated withmaxV Pq andmaxV Pa, respectively, andPP (q, a) is the number
of common tokens between the PPs associated withmaxV Pq andmaxV Pa, re-
spectively;µ, ν andξ are carefully chosen weights. The current version of YourQA
usesµ = ν = 0.4, ξ = 0.2, while following empirical observation of YourQA’s
results, theα, β, γ andδ coefficients in (1) have been tuned to their current values
of α = 0.6, β = 0.2, γ = δ = 0.1.

It must be noted that while thesim(q, a) similarity metric in (1) takes as ar-
guments a questionq and one of its candidate answersa – as done by the vast
majority of QA systems – the classification and re-ranking model proposed in Sec-
tion 3.1 takesquestion/answer pairsas arguments (or learning instances). More
concretely, the classifiers process two pairs at a time,〈q1, a1〉 and 〈q2, a2〉, and
compareq1 with q2 anda1 with a2 according to different functions, finally produc-
ing a combined similarity score. Such a comparison allows todetermine whether
an unknown question/answer pair contains a correct answer or not by assessing its
distance from another question/answer pair with a known label. In particular, an
unlabeled pair〈q2, a2〉 will be processed so that rather than “guessing” correctness
based on words or structures shared byq2 anda2, bothq2 anda2 will be compared
to their correspondent componentsq1 anda1 of the labeled pair〈q1, a1〉 on the
grounds of such words or structures.

To exemplify this, ifq1 is “What is autism?” and the candidate answers area1

“Autism may be defined as a mental disease” vsa
′

1 “Autism affects many people”,
comparison with the correct pair formed byq2 “What is a golden parachute?” and
a2 “A golden parachute may be defined as a manager’s privilege” will induce the
kernel method to prefera1 to a

′

1. Indeed,a1 has a similar wording and structure to
a2, hence〈q1, a1〉 will get a higher score than〈q1, a

′

1〉 using the kernel method; in
contrast, this wouldn’t be the case using a similarity scorematchingq1 to a1 resp.
a
′

1 as botha1 anda
′

1 contain theq1 keyword ”autism”.
This intuitively explains why even a bag-of-words kernel adjusting its weights

on question/answer pairs has a better chance to produce better results than a bag-

16

of-words question/answer similarity (or a variation thereof as implemented by
YourQA). This is experimentally proven in Sections 4.3 – 4.4. The above is even
more true in the case of the tf*idf model implemented by the underlying document
retrieval engine, as the latter similarity criterion is document-wide, as described in
Section 4.4.

3.5. The YourQA corpora: WEB-QA and TREC-QA

In order to obtain our answer corpora, during the Document Retrieval phase,
YourQA worked alternatively with two IR engines: Google6, to retrieve Web docu-
ments, and Lucene7, to retrieve news articles from the latest corpus released for the
TREC competition, AQUAINT 68. The two corpora are henceforth named WEB-
QA and TREC-QA, respectively9. The WEB-QA corpus was especially interest-
ing to test the abilities of a fully Web-based open domain QA system, a particularly
challenging task. We also wanted to assess whether creatingour relational data rep-
resentations based on the use of “off-the-shelf” parsers and semantic role labelers
(trained on “clean” data) on Web data would yield effective learning algorithms or
not. However, the TREC-QA corpus was necessary to align withthe methodology
followed by traditional QA system evaluation drawn from IR on a closed corpus.

The answers returned by YourQA are in the form of sentences with relevant
words or phrases highlighted and surrounded by their original passage. This choice
is due to the fact that the system is intended to provide a context to the exact
answer; moreover, our focus on non-factoids made it reasonable to provide answers
in the form of sentences [36]. Each sentence of the top 20 paragraphs returned
by YourQA was manually evaluated by two annotators based on whether or not
it contained a correct answer to the corresponding question. The inter-annotator
agreement was judged substantial (Cohenκ = 0.635).

To simplify the classification task, we isolated for each paragraph the sentence
with the maximal judgment and labeled it as a positive instance if it answered the
question, negative otherwise10. For instance, given the question ‘What are inver-
tebrates?’, the sentence ‘At least 99% of all animal speciesare invertebrates’ was
labeled−1 , while ‘Invertebrates are animals without backbones’ was labeled+1.
The resulting WEB-QA corpus contains 1309 sentences, 416 ofwhich are positive;

6google.com
7lucene.apache.org
8trec.nist.gov/data/qa
9Available at:disi.unitn.it/ ˜ silviaq/resources.html

10Positive judgments ranged from 3 to 5 to reflect increasing conciseness and correctness of the
answers, while negative ones ranged from 1 to 2. In our experiments, these groups of judgments are
further remapped to+1 resp.−1.

17

the TREC-QA corpus contains 2256 sentences, 261 of which arepositive11. The
difference in positive rate (31.8% and 11.6%, respectively) is due to the fact that
finding an answer to a question is simpler on the Web than on thesmaller TREC
corpus.

4. Experiments

The aim of our experiments is twofold: on one hand, we demonstrate that our
supervised approach applying kernels to pairs of questionsand answers is effective
for automatically learning their relation. On the other hand, we show that sequence,
syntactic and shallow semantic tree kernels provide important linguistic informa-
tion to describe the above-mentioned relations. As a general result, our models
can successfully re-rank the output of a basic question answering system such as
YourQA.

In more detail, we test the kernel functions elaborated for question and answer
representation against the WEB-QA and TREC-QA corpora described in Section
3.5. We begin our illustration by discussing our experimental setup (Sec. 4.1).
Then, we carry out a comparative analysis in terms of accuracy and efficiency of
two different kernels for predicate argument structures: the Partial Tree Kernel
(PTK) and the Shallow Semantic Tree Kernel (SSTK), respectively introduced in
Sections 2.2.3 and 2.2.2. Next, we focus on the accuracy of different classifiers on
both datasets in order to select the most promising combinations for complex QA
(Sec. 4.3). Our results show that our POSSK jointly used with PASPTK and STK
highly improves on BOW. We finally discuss the impact of the above classifiers in
re-ranking YourQA’s initial results (Sec. 4.4).

4.1. Experimental Setup

To run our experiments, we implement the following functions:

• the BOW and POS linear kernels;

• the WSK and POSSK sequence kernels;

• the STK on syntactic parse trees, derived automatically viathe Charniak
parser [37];

11It can be noted that the number of instances in the WEB-QA and TREC-QA corpora do not
amount to exactly 138 times 20 answer: indeed, this is due to the fact that not only the IR engine
does not always find 20 relevant documents for the query, but also that the QA system does not
always select as many as 20 answer paragraphs due to the low similarity score the latter may achieve
with respect to the query.

18

• the SSTK and PTK on Predicate Argument Structures, derived automatically
via the Semantic Role Labeling system described in [32].

Finally, we implement combinations of the above kernels in the SVM-light-TK
toolkit12, that supports the design of new functions in SVM-light [38].

Since answers often contain more than one PAS (see Figure 3(a)), we sum PTK
(or SSTK) applied to all pairsP1 ×P2, whereP1 andP2 are the set of PASs of the
first two answers. More formally, letPt andPt′ be the sets of PASs extracted from
text fragmentst andt′ by the PTK; the resulting kernel is

Kall (Pt, Pt′) =
∑

p∈Pt

∑

p′∈Pt′

PTK(p, p′).

Although different kernels can be used for questions and foranswers, we use (and
combine) the same sets of kernels on both questions and answers; the only excep-
tion are PASPTK and PASSSTK, that are only evaluated on answers.

We train and test our classifiers and answer re-rankers on thetwo datasets de-
scribed in Section 3.5. The accuracy of our classifiers is evaluated in terms of F1
score, whereas the QA system performance is measured in terms of Mean Recip-
rocal Rank (MRR). This is defined as:MRR = 1

n

∑n
i=1

1
ranki

, wheren is the
number of questions in the corpus andranki is the rank of the first correct answer
to questioni. We consider the top 5 available ranks returned by YourQA in MRR
computation. Moreover, each reported value in our figures refers to the average
over 5 different samples using five-fold cross-validation.

4.2. PTK vs SSTK: Performance and Efficiency

In a first set of experiments, we compare the performance of PTK with respect
to SSTK for predicate argument structures. We compute the classification accuracy
of SVMs by using either the PASSSTK or PASPTK data representations alone
on both the WEB-QA and TREC-QA datasets. Figure 5 shows the obtained F1
(average on 5 folds) according to different values of the cost-factor parameter used
for learning: higher values of the latter increase the cost of mistaking the positive
examples, in turn increasing classifier Recall13. We note that while on WEB-QA
the models are very close, PTK is slightly better than SSTK onTREC-QA. The
fact that both classifiers achieve much higher F1 on WEB-QA isnot surprising, as

12available atdit.unitn.it/moschitti/
13This parameter (-j option in SVM-light) multiplies the summation of the positive slack vari-

ables
P

i
ξ+

i , whereξi is roughly the error in mistaking the examplexi. Since such summation is
added to the objective functions of SVM optimization problem, an optimal solution tends to reduce
the mistakes of positive examples.

19

this dataset contains many more correct answers (balanced classification problems
are generally easier to solve).

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

cost-factor

F
1
-m
e
a
s
u
re PTK (WEB) SSTK (WEB)

SSTK (TREC) PTK (TREC)

Figure 5: Impact of PASPTK (PTK) and PASSSTK (SSTK) on answer classification

Another interesting test concerns kernel efficiency. SSTK runs on large struc-
tures containing as many slots as the number of possible predicate argument types.
This affects both memory occupancy and kernel computation speed. In contrast,
PTK is able to process the same information with much smallerstructures. To test
the above characteristics, we divide the training data into9 bins of increasing size
(with a step of 200 instances between two contiguous bins) and we measure the
training and test time14 for each bin. Figure 6 shows that in both the training and
test phases PTK is much faster than SSTK. In training, PTK is 40 times faster,
making the experimentation of SVMs with large datasets feasible. This is an inter-
esting result since for SSTK as well as for PTK we use the fast algorithms proposed
in [25, 23], typically denoting a linear average running time.

4.3. Results for Question-Answer Classification

In these experiments, we test different kernels and some of their most promis-
ing combinations. Since the nature of the applied kernels strongly depends on the

14Processing time in seconds of a Mac-Book Pro 2.4 Ghz.

20

0

20

40

60

80

100

120

140

160

180

200

220

240

200 400 600 800 1000 1200 1400 1600 1800

Training Set Size

T
im
e
 i
n
 S
e
c
o
n
d
s

PTK (training) PTK (test)

SSTK (test) SSTK (training)

Figure 6: Efficiency of PTK and SSTK

data they operate on, we simplify our notation by only using the name of the rep-
resentation instead of the more appropriate name combination (representation and
kernel). In other words, we use BOW, POS and PT to indicate that a linear kernel
is applied to bag-of-words and POS vectors and the syntactictree kernel is applied
to parse tree (PT). In the other notations, i.e. POSSK, PASSSTK and PASPTK,
the subscript indicates the applied kernel: this suggests that SK is applied to POS
sequences and that SSTK and PTK are applied to the PAS structures. The only ex-
ception is WSK, indicating the Word Sequence Kernel, i.e. a string kernel applied
to word sequences.

To produce kernel combinations, we use the sum between kernels15 since this
yields the joint feature space of the individual kernels [22].

First, we compute the F1 of our answer classifiers for different values of the
cost-factor parameter adjusting the ratio between Precision and Recall; this is in
order to verify whether any difference between models is systematically observed
regardless of the classifier parameters (Section 4.3.1). Furthermore, we examine
the differences between models for a fixed value of the cost-factor parameter (es-
timated from a held out set) to measure any significant difference (Section 4.3.2).

15All additive kernels are normalized to have a similarity score between 0 and 1, i.e.
K′(X1, X2) = K(X1,X2)√

K(X1,X1)×K(X2,X2)
.

21

Finally, to complete our analysis, we compute the Precision-Recall curves for a
number of models on a fixed fold of our cross-validation splits (Section 4.3.3).

4.3.1. F1 curves
Figure 7 shows the F1-plots of several kernels16 according to different values

of the above-mentioned cost-factor parameter.

60

61

62

63

64

65

66

67

68

69

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

cost-factor

F
1
-m
e
a
s
u
re

PT+WSK+PAS(PTK) PT

PT+BOW PT+POS

PT+WSK WSK

BOW PT+WSK+PAS(SSTK)

Figure 7: Impact of different feature sets on the WEB-QA dataset

First, we note that BOW achieves very high accuracy, comparable to the ac-
curacy of PT; this is surprising when considering that at test time, instances of the
training models (e.g. support vectors) are compared to different test examples since
questions cannot be shared between training and test set (indeed, sharing questions
between test and training sets would be an error from a machine learning view-
point as we cannot expect new questions to be identical to those in the training
set). Thus, we would expect answer wordings to be different and of low contribu-
tion to generalize rules for answer classification. However, error analysis reveals a
number of common patterns in the answers due to typical Web page phrasings that
indicate if a retrieved passage is an incorrect answer, e.g.Learn more about
X. Although the ability to detect these patterns is beneficialfor a QA system as

16In order to meet a trade-off between the readability of the plots and the representation of all
interesting systems, we always give the priority to the top accurate systems.

22

it improves its overall accuracy, it is slightly misleadingfor the study that we are
carrying out. This further motivates our experiments with the TREC-QA dataset,
which is cleaner from a linguistic viewpoint and also more complex from a QA
perspective as it contains fewer positive instances.

Figure 7 also shows that that the BOW+PT combination improves on both in-
dividual models; however, POS+PT produces a lower F1 than PTalone, indicating
that POS does not provide useful information for this dataset. Furthermore, WSK
improves on BOW and is further improved by WSK+PT, demonstrating that word
sequences and parse trees are very relevant for this task. Finally, both PASSSTK

and PASPTK improve on previous models, yielding the highest result (PT+WSK+
PASPTK). These findings are interesting as they suggest that the syntactic informa-
tion provided by STK and the semantic information brought byWSK and PASPTK

(or even PASSSTK) considerably improves on BOW.

20

22

24

26

28

30

32

34

36

38

40

4 6 8 10 12 14 16 18 20

cost-factor

F
1
-
m
e
a
s
u
r
e

PT POS+PT

POSSK+PT POSSK+PT+PAS-PTK

BOW+PT BOW+POS+PT

BOW POSSK+PT+PAS-SSTK

Figure 8: Impact of different feature sets on the TREC-QA dataset

In summary, our results for WEB-QA strengthen the expectation that BOW
may be outperformed by structural information in the TREC-QA dataset, where
the task is more complex and the data is less noisy. To this purpose, Figure 8
shows the plots of different classification models on the TREC-QA dataset. An
initial glance suggests that the F1 of all models is much lower than for the WEB-
QA dataset. Indeed, BOW shows the lowest accuracy and also the accuracy of
its combination with PT is lower than the one of PT alone. Interestingly, this
time POS seems helpful since its combination with PT improves on PT alone;

23

WEB Question/Answer Classification Corpus
BOW POS POSSK WSK PT PASSSTK PASPTK

65.3±2.9 56.8±0.8 62.5±2.3 65.7±6.0 65.1±3.9 52.9±1.7 50.8±1.2

BOW+POS BOW+PT POSSK+PT WSK+PT PT+PASSSTK PT+PASPTK

+WSK +WSK
63.7±1.6 66.0±2.7 65.3±2.4 66.6±3.0 68.0±2.7 68.2±4.3

Table 1: F1± std. dev. of the question/answer classifier using several kernels on the WEB corpus

however, again, summing BOW to POS+PT produces a decrease. Moreover, SK is
beneficial for exploiting POS information as POSSK+PT improves on POS+PT, yet
PAS adds further useful information as the best models are POSSK+PT+PASPTK

and POSSK+PT+PASSSTK.
In order to gain better numerical insights on our results, weprovide further

analysis in the following section, where we compare the accuracy of different mod-
els at a fixed cost-factor parameter.

4.3.2. Pointwise estimation and significance of results
The plots representing F1 versus the cost-factor parametersuggest that the

value of such parameter maximizing F1 can be reliably estimated. Thus, for each
model, we selected the minimum cost-factor associated withmaximum F1 value
on a held-out set17. This provides a single performance index for each system,
that can be used to compare the five different models obtainedvia cross-validation
using the pairedt−test.

Table 1 reports the average F1± the standard deviation over 5 folds achieved
by the different kernels on the WEB-QA corpus. When examining our results, we
note that:

• BOW achieves very high accuracy on the WEB dataset, comparable to the
one produced by PT, i.e. 65.3 vs 65.1;

• the BOW+PT combination reaches 66.0 accuracy, improving onboth BOW
and PT alone; however, BOW+POS produces a lower F1, i.e. 63.7, than
PT+BOW, indicating that POS does not provide useful information for this
dataset;

• WSK achieves 65.7 accuracy, thus improving on BOW; furthermore, WSK
is enhanced by WSK+PT (66.6). This demonstrates that word sequences and

17It turned out that a value of 10 is roughly the best for any kernel.

24

TREC Question/Answer Classification Corpus
BOW POS POSSK WSK PT PASSSTK PASPTK

24.2±5.0 26.5±7.9 31.6±6.8 4.0±4.2 33.1±3.8 21.8±3.7 23.6±4.7

BOW+POS BOW+PT POSSK+PT WSK+PT PT+PASSSTK PT+PASPTK

+POSSK +POSSK

31.9±7.8 30.2±5.3 36.4±9.3 23.7±3.9 36.2±7.1 39.1±6.9

Table 2: F1± std. dev. of the question/answer classifier using several kernels on the TREC-QA
corpus

parse trees are very relevant for this task;

• finally, the highest performing combinations of features are PASSSTK +
WSK + BOW and PASPTK + WSK + BOW, which reach 68.2 accuracy,
further improving on the already high performance of BOW as astandalone
(65.3).

Despite the observed improvement on BOW in terms of F1 averaged over five
folds, none of the results achieved on the WEB-QA corpus haveregistered a suf-
ficiently smallp value to reach statistical significance in thet−test. Indeed, even
the most performing combinations of syntactic and shallow semantic information,
exhibiting an improvement up to 3 points in F1 on the BOW feature, are affected
by the fact that the corpus contains a number of patterns indicating wrong answers
that – as stated earlier – can easily be captured by word-level features only. For this
reason, we now focus on the results obtained on the TREC-QA corpus, reported in
Table 2. A comparative analysis with respect to Table 1 suggests that:

• as observed in the curves, we can immediately register that the F1 of all
models is much lower than for the WEB-QA dataset, due to the presence of
fewer positive instances in the training corpus;

• BOW denotes the lowest accuracy (a F1 of 24.2), and also the accuracy of its
combination with PT (30.2) is lower than the accuracy of PT alone (33.1);

• Sequence Kernels are beneficial for exploiting POS information, as POSSK

+ PT reaches 36.4, improving on POS (99% significance,p < 0.01) and PT.

• Finally, Predicate Argument Structures add further information, as the best
model is POSSK + PT + PASPTK. The latter improves on BOW from 24.2
to 39.1, i.e. by 63%; this result is 95% significant (p < 0.05).

Our first conclusion is that on this “cleaner” corpus, BOW does not prove very
relevant to learn re-ranking functions from examples; while it is useful to establish

25

the initial ranking by measuring the similarity between question and answer, it is
almost irrelevant to capture typical rules that suggest whether a description is valid
or not. Indeed, since there is no trace of test questions in the training set, their
words as well as those of candidate answers are different. Most crucially, since
a question with its answer set originates training pairs with a large word overlap,
BOW tends to overfit.

Secondly, the results show that PT is important to detect typical description
patterns, however POS sequences provide additional information since they are
less sparse than tree fragments. Such patterns improve on the bag of POS-tags
feature by about 4%. This is a relevant result considering that in standard text
classification bigrams or trigrams are usually ineffective.

Third, although POSSK+PT generates a very rich feature set, consisting of
POS patterns provided by SK and tree fragments generated by STK, PASPTK is
still capable to improve on the POSSK+PT combination by about 3% in F1. This
suggests that shallow semantics can be very useful to detectwhether an answer is
well formed and related to a question.

Furthermore, error analysis reveals that PAS can provide patterns like:

• A1(X) R-A1(that) rel(result) A1(Y) and

• A1(X) rel(characterize) A0(Y) ,

whereX andY need not necessarily be matched. Finally, the best model, POSSK

+ PT + PASPTK, improves on BOW by 63%; as mentioned above, this result is
significant at 95% according to thet−test. This is strong evidence showing that
complex natural language tasks require advanced linguistic information that should
be exploited by powerful algorithms such as SVMs, and using effective feature
engineering techniques such as kernel methods.

4.3.3. Precision/Recall Curves
To better study the benefit of the proposed linguistic structures, we also re-

port Precision/Recall curves. Figure 9 displays the curvesof some interesting ker-
nels for one of the five folds of the WEB-QA dataset. As expected, BOW shows
the lowest curves; moreover, WSK, able to exploit n-grams (with gaps), produces
very high curves when summed to PT. In general, all kernel combinations tend to
achieve only slightly higher results than BOW. Again, the cause is the high contri-
bution of BOW, which prevents other models from clearly emerging.

The results on TREC-QA, reported in Figure 10 (for one of the five dataset
folds), are more interesting. Here, the contribution of BOWremains very low and
thus the difference in accuracy with the other linguistic models is more evident. In

26

0

10

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

P
r
e
c
is
io
n

Recall

PT

WSK+PT

"POSSK+PT+PTK"

BOW

"WSK"

Figure 9: Precision/Recall curves of some kernel combinations over one fold of the WEB dataset.

particular, POSSK +PT+PASPTK, that encodes the most advanced syntactic and
semantic information, shows a very high curve outperforming all the others.

In summary, the Precision/Recall figures further corroborate our observations
concerning classification accuracy and the role of structural data representations in
complex Question Answering.

4.4. Answer Re-ranking

The obvious application of an answer classifier consists in re-ranking the initial
answers extracted by a baseline Question Answering system:indeed, re-ranking
can be regarded as the real testbed of any QA classifier. We have been running a
number of re-ranking tests by taking the top classifiers obtained on the WEB-QA
and TREC-QA corpus, respectively, and using their binary output to rearrange the
answers returned by the YourQA system. Our re-ranking algorithm starts from the
top of the answer list and leaves the corresponding answer’srank unchanged if the
answer is classified as correct by the binary classifier; otherwise, the rank is pushed
down, until a lower ranked incorrect answer is found.

In order to compare the above re-ranking strategy to a reasonable baseline,
we first measure the Q/A classification ability of YourQA and its underlying IR
engine by examining the F1 and MRR of the answers corresponding to the top
five documents returned by the IR engine and the top five answers as ranked by

27

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
r
e
c
is
io
n

Recall

PT

POS+PT

POSSK+PT

"POSSK+PT+PTK"

BOW

Figure 10: Precision/Recall curves of some kernel combinations over one fold of the TREC dataset.

YourQA. In particular, the classification accuracy of the above systems is computed
by labeling each of the five retrieved answers as correct.

Our results, reported in theClassifier F1row of Table 3, show that the accuracy
of YourQA is slightly higher than the IR accuracy. Indeed, inthe WEB-QA dataset,
the IR engine (Google) is outperformed by YourQA since its ranks are based on
whole documents, not on single passages. Hence, Google may rank a document
containing several sparsely distributed question words higher than documents with
several words concentrated in one passage, which are more interesting. This is
reflected by the fact that, as visible in theMRRrows of Table 3, the ranking deriving
naturally from YourQA’s answer extractor improves on the original IR ranking by
gaining 7 points in MRR on the WEB-QA corpus (56.2 vs 49.0). Furthermore,
on the TREC-QA corpus, YourQA almost doubles the IR engine (Lucene) MRR,
taking it from 16.2 to 30.3. This result can be explained by the complexity of
the answer extraction task, as fewer documents are relevantto the question in the
TREC-QA corpus and for such documents, the emphasis on Precision provided by
the YourQA answer extractor yields an increase in answer relevance.

By now considering the performance of our best Q/A classifiers (“Re-ranker
(Best)” column), learned in Section 4, we can observe that the latter greatly out-
perform the F1 of YourQA, i.e. 68.6 vs 36.8 (on WEB-QA) and 39.0 vs 22.9 (on

28

IR engine YourQA Re-ranker Re-ranker
(BOW) (Best)

WEB-QA Classifier F1 35.9±4.0 36.8±3.6 65.3±2.9 68.6±2.3
MRR 49.0±3.8 56.2±3.2 77.4±2.7 81.1±2.1

TREC-QA Classifier F1 21.3±1.0 22.9±1.5 24.2±3.1 39.1±6.9
MRR 16.2±3.4 30.3±8.9 32.8±7.7 34.2±10.6

Table 3: Classifier F1 and MRR@5 (± std. dev.) of the IR engine (Google resp. Lucene), YourQA,
the BOW re-ranker and the best re-ranker on the WEB-QA resp. TREC-QA datasets

TREC-QA). This suggests that more information is exploitedby the re-ranking
classifier. Indeed, when the re-ranking algorithm is applied, YourQA achieves an
MRR of 81.1%, i.e. a 45% improvement, on WEB-QA. On the TREC-QA dataset,
the IR engine is also outperformed by YourQA and the re-ranker produces a fur-
ther improvement by about 13%. Such a smaller difference compared to the Web
re-ranker depends on the lower classification accuracy of the re-ranker, due in turn
to the higher complexity of the TREC dataset.

It may be noted that having proven that re-ranking is effective in improving QA
systems does not imply that structural features are useful.To show this, we need
to compare a re-ranker based on BOW against those based on linguistic structures.
The BOW result is reported in Table 3 (“Re-ranker (BOW)” column). It shows
that the F1 (Classifier F1row) of the BOW classifier is lower than that of the
“best” classifier in both the WEB-QA and TREC-QA cases: on theTREC-QA
dataset, the F1 of the BOW classifier is 24.2±3.1 while it is 39.1±6.9 for the
“best” classifier. This translates into a slightly lower MRR(MRRrows) obtained
with the BOW re-ranker in comparison to the re-ranker using structural features.
We can therefore conclude that not only the simple fact of using an answer re-
ranker is beneficial in terms of answer accuracy, but also that tree kernels applied
on structural features are yet more effective than simpler bag-of-word features in
identifying correct answers to complex questions.

4.4.1. Discussion
It should be noted that re-ranking approaches more elaborate than ours can be

applied, such as a “true” re-ranking based on pairs of instances [13, 39]. Although
this should in principle produce better results, it also hasthe drawback of doubling
the number of structures required to represent such pairs ofpairs. Since we have
carried out a study on about twenty-five different kernels, we preferred to keep our
models simpler.

A second option to improve our methods while keeping the model complexity

29

low would be the use of the classifier score to establish the relative ranking between
different answers classified as correct. One problem with this approach is that SVM
score, i.e. the margin of the classifying point, is not a probability. This means that
the relative distance between two scores is not a good indicator of the reliability of
a classification over the other. For example, for a given question, a difference of
0.5 between the scores of two candidate answers may not indicate a high reliability
for the higher-scored classification, whereas for another question a difference of
0.005 may indicate very high reliability for the higher-scored classification.

This problem is very critical in our context since the rankers (i.e. the classi-
fiers) may reach low F1, e.g. about 40% for TREC dataset. This causes both a high
variability and a limited reliability of results. Under such conditions, re-ranking
should be carefully carried out. Thestatus quo, i.e. the initial ranking provided
by the basic QA system, should only be changed when there is strong indication
of a misplaced answer (i.e. incorrect answer), as, for example, can be an exceeded
classification threshold. Thus, we argue that our heuristicapproach of pushing an-
swers down in the ranking when they are labeled as incorrect is more conservative
and has a higher chance to improve the basic QA.

A possible alternative would be the conversion of SVM scoresinto actual prob-
abilities, however once again these would not be reliable due to the scarcity of
available training data. A more effective solution would bethe adoption of meta-
classifiers to decide whether the current scores/probabilities within a given context
suggest a valuable change in the position of the target answer. The above ap-
proaches are interesting research directions, albeit beyond the aim of this paper.

5. Related Work

Early work on the use of syntax and semantics in Information Retrieval was
carried out in [40, 41, 42] and in [43, 44]. The results showedthat the use of ad-
vanced linguistic information was not effective for document retrieval. In contrast,
Question Answering work shows that semantics and syntax areessential to retrieve
punctual answers, e.g [45, 46, 47]. However, successful approaches in TREC-style
systems were based on several interconnected modules exploiting complex heuris-
tics and fine tuning. The effective combination of such modules strongly depended
on manual setting, which was often not disclosed.

In our study, we avoid this problem by focusing on a single phase of Question
Answering, namely answer extraction. The latter can be seenas a typical text
categorization task, i.e. the classification of pairs of text fragments constituted by
question and answer. Since some types of questions can be solved with relatively
simple representations, i.e. without the use of syntactic and semantic structures, we

30

focus on the more complex task of processing description (often called definition)
questions [48, 2, 6, 28, 9, 49].

In [2], answer ranks were computed based on the probabilities of bigram lan-
guage models generating candidate answers; language modelling was also applied
to definitional QA in [34] to learn soft pattern models based on bigrams. Other
related work, such as [7, 8], was also very tied to bag-of-words features.

Our approach is different from the above in that we attempt tocapture structural
information, which has proven to be very effective in our experiments, yielding a
very high MRR. In contrast to [11], our approach does not require the creation of
ad-hoc joint question-answer representations. In particular, we compare to previ-
ous work [6, 28, 9, 49] using predicate argument structures for re-ranking candidate
answer lists and reporting significant improvement. To our knowledge, our work
in [9] was the first to use kernel methods for answer re-ranking. We used a syn-
tactic tree kernel and a shallow semantic tree kernel based on predicate argument
structures for the design of answer re-rankers. However, aswe only experimented
with a Question Answering corpus derived from Web documentsand the reported
improvement, although significant, did not justify the adoption of computationally
expensive approaches like SVMs and kernel methods. In this paper, developing
with respect to subsequent work [10], we have experimented with many more ker-
nel types and with both Web and TREC documents and we could show that the
potential improvement reachable by our approach is much higher (about 63% over
BOW). Moreover, we have designed a faster kernel for the processing of semantic
information.

In summary, the main property of our approach with respect toprevious work
adopting syntactic and semantic structures is that we can define the latter with-
out requiring a thorough manual linguistic analysis. We do not carry out feature
engineering since we simply let kernel functions generate alarge feature set (tree
fragments or substrings) that represents semantic/syntactic information effectively.
The feasibility of this approach is due to the SVM theory which makes the learning
algorithm robust to many irrelevant features (often produced by NLP errors).

6. Conclusions

We have approached answer selection, the most complex phaseof a QA sys-
tem. To solve this task, typical approaches use unsupervised methods that involve
computing the similarity between query and answer in terms of lexical, syntactic,
semantic or logic representations. In contrast, we study supervised discriminative
models that learn to select (rank) answers from examples of question and answer
pairs, where the representation of the pair is implicitly provided by kernel combina-
tions applied to each of its components. To reduce the burdenof manual annotation

31

of such pairs, we use kernel functions applied to syntactic/semantic structures as
powerful generalization methods. The combination of the generalization properties
of such structures with the exponential space of substructures generated by kernel
functions provides an advanced form of back-off model in a discriminative setting,
that we have proved to be effective.

In particular, we use POS-tag sequences, syntactic parse trees and predicate
argument structures (PASs) along with sequence kernels andsyntactic and shallow
semantic tree kernels. Extensive experiments on two different corpora that we have
collected and made available show that: (i) on TREC data, theimprovement on the
bag-of-words feature (BOW) is very high (about 63% in F1 score) confirming that
our kernels/structures provide the right level of generalization; (ii) the Partial Tree
Kernel (PTK) for processing PASs is efficient and effective and can be practically
used to design answer re-ranking models; and (iii) our best question/answer clas-
sifier, used as a re-ranker, significantly improves the QA system MRR, confirming
its promising applicability.

Regarding PAS, deeper analysis reveals that PTK can learn definition patterns
such as:A1(X) R-A1(that) rel(result) A1(Y) (e.g. ‘German measles,
that resultin red marks on the skin, are a common disease’) and:
A1(X) rel(characterize) A0(Y) (e.g. ‘Autism ischaracterizedby the in-
ability to relate to other people’).

We believe that these are strong arguments in favor of the exploitation of ad-
vanced linguistic information by using powerful discriminative models such as
SVMs and effective feature engineering techniques such as kernel methods in chal-
lenging natural language tasks.

In the future, we would like to experiment with our model on larger and dif-
ferent datasets and compare with (or better re-rank) more advanced QA systems.
Moreover, an interesting open problem is how to jointly exploit the set of PASs
of a sentence/paragraph in a more effective and compositional semantics-driven
approach.

References

[1] J. Allan, Natural Language Processing for Information Retrieval, in: NAA-
CL/ANLP (tutorial notes), 2000.

[2] Y. Chen, M. Zhou, S. Wang, Reranking answers from definitional QA using
language models, in: Proceedings of ACL, 2006.

[3] K. Collins-Thompson, J. Callan, E. Terra, C. L. Clarke, The effect of docu-
ment retrieval quality on factoid QA performance, in: Proceedings of SIGIR,
2004.

32

[4] H. Yang, T. Chua, QUALIFIER: Question Answering by Lexical Fabric and
External Resources, in: Proceedings of EACL, 363–370, 2003.

[5] E. Hovy, U. Hermjakob, C. Lin, The Use of External Knowledge of Factoid
QA, in: Proceedings of TREC, Gaithersburg, MD, U.S.A., 2001.

[6] D. Shen, M. Lapata, Using Semantic Roles to Improve Question Answering,
in: Proceedings of EMNLP-CoNLL, 2007.

[7] Y. Sasaki, Question Answering as Question-Biased Term Extraction: A New
Approach toward Multilingual QA, in: Proceedings of ACL, 215–222, 2005.

[8] J. Suzuki, Y. Sasaki, E. Maeda, SVM Answer Selection for Open-Domain
Question Answering, in: Proceedings of Coling, 974–980, 2002.

[9] A. Moschitti, S. Quarteroni, R. Basili, S. Manandhar, Exploiting Syntactic
and Shallow Semantic Kernels for Question/Answer Classification, in: Pro-
ceedings of ACL, Prague, Czech Republic, 2007.

[10] A. Moschitti, S. Quarteroni, Kernels on Linguistic Structures for Answer Ex-
traction, in: Proceedings of ACL, Columbus, OH, USA, 2008.

[11] A. Echihabi, D. Marcu, A Noisy-Channel Approach to Question Answering,
in: Proceedings of ACL, 2003.

[12] E. M. Voorhees, Overview of the TREC 2001 Question Answering Track, in:
Proceedings of TREC, 2001.

[13] M. Collins, N. Duffy, New Ranking Algorithms for Parsing and Tagging:
Kernels over Discrete Structures, and the Voted Perceptron, in: Proceedings
of ACL, 2002.

[14] T. Kudo, Y. Matsumoto, Fast Methods for Kernel-Based Text Analysis, in:
E. Hinrichs, D. Roth (Eds.), Proceedings of ACL, 24–31, 2003.

[15] C. Cumby, D. Roth, Kernel Methods for Relational Learning, in: Proceedings
of ICML, Washington, DC, USA, 107–114, 2003.

[16] A. Culotta, J. Sorensen, Dependency Tree Kernels for Relation Extraction,
in: Proceedings of ACL04, Barcelona, Spain, 423–429, 2004.

[17] T. Kudo, J. Suzuki, H. Isozaki, Boosting-based Parse Reranking with Subtree
Features, in: Proceedings of ACL, Ann Arbor, MI, USA, 2005.

33

[18] K. Toutanova, P. Markova, C. Manning, The Leaf Path Projection View of
Parse Trees: Exploring String Kernels for HPSG Parse Selection, in: Pro-
ceedings of EMNLP, Barcelona, Spain, 2004.

[19] J. Kazama, K. Torisawa, Speeding up Training with Tree Kernels for Node
Relation Labeling, in: Proceedings of EMNLP, Toronto, Canada, 137–144,
2005.

[20] M. Zhang, J. Zhang, J. Su, Exploring Syntactic Featuresfor Relation Extrac-
tion using a Convolution Tree Kernel, in: Proceedings of NAACL, New York
City, USA, 288–295, 2006.

[21] V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.

[22] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, Cam-
bridge University Press, 2004.

[23] A. Moschitti, Efficient Convolution Kernels for Dependency and Constituent
Syntactic Trees, in: Proceedings of ECML, 2006.

[24] N. Cancedda, E. Gaussier, C. Goutte, J. M. Renders, Wordsequence kernels,
J. Mach. Learn. Res. 3 (2003) 1059–1082, ISSN 1533-7928.

[25] A. Moschitti, Making Tree Kernels Practical for Natural Language Learning,
in: Proceedings of EACL2006, 2006.

[26] Y. Wu, R. Zhang, X. Hu, H. Kashioka, Learning Unsupervised SVM Clas-
sifier for Answer Selection in Web Question Answering, in: Proceedings of
EMNLP-CoNLL, 2007.

[27] K. Deschacht, M.-F. Moens, Using the Latent Words Language Model for
Semi-Supervised Semantic Role Labeling, in: Proceedings of EMNLP, 2009.

[28] M. Bilotti, P. Ogilvie, J. Callan, E. Nyberg, Structured Retrieval for Question
Answering, in: Proceedings of ACM SIGIR, 2007.

[29] C. R. Johnson, C. J. Fillmore, The FrameNet tagset for frame-semantic and
syntactic coding of predicate-argument structures, in: Proceedings of ANLP-
NAACL, 56–62, 2000.

[30] P. Kingsbury, M. Palmer, From Treebank to PropBank, in:Proceedings of
LREC, 2002.

[31] X. Carreras, L. Màrquez, Introduction to the CoNLL Shared Task: SRL, in:
Proceedings of CoNLL, 2005.

34

[32] A. Moschitti, B. Coppola, A. Giuglea, R. Basili, Hierarchical Semantic Role
Labeling, in: Proceedings of the CoNLL 2005 shared task, 2005.

[33] H. Kazawa, H. Isozaki, E. Maeda, NTT Question Answeringsystem in TREC
2001, in: Proceedings of TREC, 2001.

[34] H. Cui, M. Kan, T. Chua, Generic soft pattern models for definitional QA, in:
Proceedings of SIGIR, ACM, Salvador, Brazil, 2005.

[35] X. Li, D. Roth, Learning Question Classifiers, in: Proceedings of ACL, 2002.

[36] S. Quarteroni, S. Manandhar, Designing an InteractiveOpen Domain Ques-
tion Answering System, Natural Language Engineering 15 (1)(2009) 73–95.

[37] E. Charniak, A Maximum-Entropy-Inspired Parser, in: Proceedings of
NAACL, 2000.

[38] T. Joachims, Making large-Scale SVM Learning Practical, in: B. Scḧolkopf,
C. Burges, A. Smola (Eds.), Advances in Kernel Methods, 1999.

[39] L. Shen, A. K. Joshi, An SVM-based voting algorithm withapplication to
parse reranking, in: Proceedings of CoNLL HLT-NAACL 2003, 9–16, 2003.

[40] E. M. Voorhees, Using WordNet to Disambiguate Word Senses for Text Re-
trieval, in: R. Korfhage, E. M. Rasmussen, P. Willett (Eds.), Proceedings of
ACM-SIGIR, ACM, ISBN 0-89791-605-0, 171–180, 1993.

[41] E. M. Voorhees, Query Expansion Using Lexical-Semantic Relations, in:
W. B. Croft, C. J. van Rijsbergen (Eds.), Proceedings of ACM-SIGIR,
ACM/Springer, ISBN 3-540-19889-X, 61–69, 1994.

[42] A. F. Smeaton, Using NLP or NLP resources for information retrieval tasks,
in: T. Strzalkowski (Ed.), Natural language information retrieval, Kluwer
Academic Publishers, Dordrecht, NL, 99–111, 1999.

[43] T. Strzalkowski, G. C. Stein, G. B. Wise, J. P. Carballo,P. Tapanainen,
T. Jarvinen, A. Voutilainen, J. Karlgren, Natural LanguageInformation Re-
trieval: TREC-7 Report, in: Proceedings of TREC, 164–173, 1998.

[44] T. Strzalkowski, J. P. Carballo, J. Karlgren, A. H. P. Tapanainen, T. Jarvinen,
Natural Language Information Retrieval: TREC-8 Report, in: Proceedings of
TREC, 1999.

35

[45] A. Hickl, J. Williams, J. Bensley, K. Roberts, Y. Shi, B.Rink, Question An-
swering with LCC CHAUCER at TREC 2006, in: Proceedings of TREC,
2006.

[46] E. M. Voorhees, Overview of the TREC 2004 question answering track, in:
Proceedings of TREC 2004, 2004.

[47] S. Small, T. Strzalkowski, T. Liu, S. Ryan, R. Salkin, N.Shimizu, P. Kantor,
D. Kelly, N. Wacholder, HITIQA: Towards Analytical Question Answering,
in: Proceedings of COLING, 2004.

[48] S. Blair-Goldensohn, K. R. McKeown, A. H. Schlaikjer, Answering Defini-
tional Questions: A Hybrid Approach, AAAI Press, 2004.

[49] M. Surdeanu, M. Ciaramita, H. Zaragoza, Learning to Rank Answers on
Large Online QA Collections, in: Proceedings of ACL-HLT, Columbus,
Ohio, 2008.

36

