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Abstract

Answer selection is the most complex phase of a Question Ansg (QA) sys-
tem. To solve this task, typical approaches use unsuperaisthods such as com-
puting the similarity between query and answer, optionakploiting advanced
syntactic, semantic or logic representations.

In this paper, we study supervised discriminative modeds kbarn to select
(rank) answers using examples of question and answer Jdisspair representa-
tion is implicitly provided by kernel combinations appliemleach of its members.
To reduce the burden of large amounts of manual annotatierrepresent ques-
tion and answer pairs by means of powerful generalizatiothaus, exploiting the
application of structural kernels to syntactic/semantiaciures.

We experiment with Support Vector Machines and string Ksrrsgntactic and
shallow semantic tree kernels applied to part-of-speeghsémuences, syntactic
parse trees and predicate argument structures on two tiavasieh we have com-
piled and made available. Our results on classification wecband incorrect pairs
show that our best model improves the bag-of-words model38% 6n a TREC
dataset. Moreover, such a binary classifier, used as a kerramproves the Mean
Reciprocal Rank of our baseline QA system by 13%.

These findings demonstrate that our method automaticdégtsean appropri-
ate representation of question-answer relations.
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1. Introduction

Automatic Question Answering (QA) systems return concisswers - i.e.
sentences or phrases - to questions in natural languagen®imamd, QA is inter-
esting from an Information Retrieval (IR) viewpoint as itidies means to satisfy
the user’s information needs; on the other, the high lingusomplexity of QA
systems suggests a need for more advanced natural langadgegues, that have
been shown to be of limited use for more basic IR tasks, e.gurdent retrieval
[1].

As a matter of fact, the main source of complexity in QA lieghe question
processing and answer extraction steps rather than in daturatrieval, a step
usually conducted using off-the shelf IR modules [2, 3].

In question processing, useful information is gathereanftbe question to
create a query; the latter is submitted to the documengex@irimodule that pro-
vides the set of the most relevant documents. The latter sed by the answer
extractor to provide a ranked list of candidate answers.hénanswer extraction
phase, unsupervised methods are usually applied: a simietween query and
answer (such that higher similarity results in higher raikfomputed using sim-
ple bag-of-words(BOW) models or more advanced syntactic, semantic or logic
representations, e.g. [4, 5]. More recently, shallow sdimamformation has been
successfully exploited for such an approach in terms ofipagel argument struc-
tures (PASS) [6].

In contrast, supervised machine learning methods that learank answers
from examples of question and answer pairs [7, 8] rarely epeesentation more
complex than BOW. This is a major drawback, since differargsgions need dif-
ferent training data, and the only solution to overcome tinelén of manual an-
notation is to reduce it by generalizing such data in termsyotactic/semantic
structures. In previous work, this consideration led usdbnihg supervised ap-
proaches to answer extraction using syntactic and shakomastic structures. In
particular, we proposed two tree kernel functions, nameall@k Semantic Tree
Kernel (SSTK) [9] and Partial Tree Kernel (PTK) [10], thaipdit PASs in Prop-
Bank! format for automatic answering to description questiorige Tise of shallow
semantics appears to be especially relevant in the casenefantoid questions,
such as those requiring definitions, where the answer canvidj®k sentence or
paragraph containing only one question word.

In this paper, we present a thorough study on the above ide&scbsing on
the use of kernel functions to exploit syntactic/semantiactures for relational
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learning from questions and answers. We start our study Biomple linguistic
levels and gradually introduce more and more advanced &gtechnology. In
more detail, we: (i) model sequence kernels for words antidP&peech Tags that
capture basic lexical semantics and syntactic informatigrapply tree kernels to
encode deeper syntactic information and more structuratioshsemantics and
(iii) analyze the proposed shallow semantic kernels in seofrboth accuracy and
efficiency. Finally, we carry out comparative experimengdween the different
linguistic/kernel models on question/answer classifically measuring the impact
of the corresponding classifiers on answer re-ranking.

It is worth noting that, since finding a suitable Question weasng corpus for
our study was difficult, we designed and made available two different corpora,
named WEB-QA and TREC-QA. Their main characteristic is thay relate to
description questions from TREC 2001 [12], whose answetsgrved from Web
and TREC data, respectively, were manually annotated bgraup.

The extensive experiments carried out on such corpora shatvthe gen-
eralization ability of kernel functions, successfully dse previous approaches
[13, 14,15, 16, 17, 18, 19, 20], is essential. Indeed, a @nigsult of our approach
is that kernels applied to pairs of questions and answersfgetive for automat-
ically learning their relations. This is a further step irt@uoation with respect to
previous work such as [11], that required human effort andition to design a
structural representation of question-answer pairs apdhses latter to extract an
effective feature vector representafion

Our main findings are that (i) kernels based on PAS, POS-tqgesees and
syntactic parse trees improve on the BOW approach on bo#isetast on TREC-
QA, the improvement is high (about 63% in F1 score), makisgapplication
worthwhile; (ii) PTK for processing PASs is more efficientlaffective than SSTK
and can be practically used in answer re-ranking systenas(i@nour best ques-
tion/answer classifier, used as a re-ranker, improves thenMReciprocal Rank
(MRR) of our QA basic system by 13%, confirming its promisimplicability.
Such improvement is much larger on WEB-QA .

In the remainder of this paper, Section 2 presents our userotkfunctions
for structural information and Section 3 introduces thedapresentations we use
for question and answer pairs. Section 4 reports on our erpats with different
learning models and representations. Finally, Sectionsbudises our approach
with respect to related work and our final conclusions arevdria Section 6.

2For supervised approaches we could use neither the Japanipss used in [7, 8] nor the corpus
used in [11], since they are not publicly available.
3Machine Translation techniques were applied to make thls¢asier.



2. Kernel Methods for Structured Data

Kernel Methods refer to a large class of learning algorithrased on inner
product vector spaces, among which Support Vector Machiags/ls) are well-
known algorithms. The main idea behind SVMs is to learn a hylpee H (%) =
- T+ b = 0, whereZ is the representation of a classifying objedts a feature
vector, whilewj € ®R™ (indicating thatd belongs to a vector spaceofdimensions
built on real numbers) ande R are parameters learnt from training examples by
applying theStructural Risk Minimization principl§21]. Objecto is mapped into
Z via a feature functio : © — R", whereQ is the set of objects; is categorized
in the target class only iff (%) > 0.

By exploiting the “kernel trick”, the decision hyperplanancbe rewritten as:

H(Z) = < Z y,-a,-fi) SZ+b=

i=1..1

= Z Yiou i - T+ b= Z yicip(0;) - #(0) + b,
i=1..1 i=1..1
wherey; is equal to 1 for positive examples and to -1 for negative gtasio; €
R (with o; > 0, 0; Vi € {1,..,1}) are the training instances and the product
K (0;,0) = (¢(0;) - ¢(0)) is the kernel function associated with the mapping

Note that instead of applying the mappiggwe can directly usé (o;, 0). Un-
der Mercer’s conditions [22], this allows to define abstiael functions gener-
ating implicit feature spaces. In turn, this alleviates fibgture extraction/design
step and enables the use of potentially infinite featureespaince the scalar prod-
uct K (-, -) is implicitly evaluated.

In the remainder of this section, we extensively descrileedfaiowing kernels:
the String Kernel (SK) proposed in [22] to evaluate the nundiesubsequences
between two sequences, the Syntactic Tree Kernel (STK) {8} computes the
number of syntactic tree fragments, the Shallow Semanée Kernel (SSTK) [9],
that considers fragments from PASs, and the Partial Treaedk¢PTK) [23], that
provides a yet more general representation of trees in tefinee fragments.

2.1. String Kernels

The String Kernels that we work with count the number of sulug$é shared
by two sequences containing gaps, i.e. some of the chasaaftére original string
are skipped. Gaps modify the weights associated with tardestrings as shown in
the following. LetX be a finite alphabett* = | J;2 , X" is the set of all possible
strings. Given a string € ¥*, |o| denotes the length of, that can be written
assi..s With s; € X andoli : j] selects the substrings;1..sj_1s; from the



i-th to thej-th character. Nowy is a subsequence of if there is a sequence of
indicesI = (i1, .., i), With 1 < iy < ... < i, < |o], such thatu = s;, .5,
oru = ol[I] in short. Moreoverd(I) is the distance between the first and last
character of the subsequencén o, i.e. d(f) =i, — i1 + 1. Finally, givenay, o3
€ ¥*, o109 indicates their concatenation.

The set of all substrings of a text corpus forms a feature espienoted by
F C X*. To map a stringr into R* space, we can use the following functions:

Z )\d(f)

Tu=s]I]

for someX < 1. These functions count the number of occurrences of the
string o and assign them a weight!) proportional to their length. Hence, the
inner product of the feature vectors for two stringsandos returns the sum of
all common subsequences weighted according to their leagdhoccurrence fre-
quency:

SK(oy,02) = Z¢u o1) - u(02) Z Z Ad(71) Z \d(E)

uex uEX™ [ u=c [I1] Lyu=03[I5)]

— Z Z Z \d(1)+d(I2)

UERT [V iu=01 (1] Toru=02[I2)

It is worth noting that: (a) longer subsequences receivetameights; (b) se-
guences of the original string with some characters omjiited gaps, are valid
substrings; (c) gaps determine the weighting functionesitic) counts the number
of characters in the substrings as well as the gaps that Wwgigesl in the orig-
inal string, and (d) symbols of a string can also be whole woeas in the Word
Sequence Kernel [24].

2.2. Tree Kernels

The main idea underlying tree kernels is to compute the nurobeommon
substructures between two tréBsand7; without explicitly considering the whole
fragment space. Lek = {f1, f2,. .., f#} be the set of tree fragments aggn)
an indicator function equal to 1 if the targgtis rooted at node and equal to O
otherwise. A tree kernel function ovéi andT5 is defined as

TK(T,T)= Y > Aln,n),

ni ENTl 7L2€NT2



S VP VP VP VP
VRN / N\ / N\ / N\ / N\
NP VP = VBZ NP VBZ NP VBZ NP VBZ NP

| / N\ | / N\ / N\ | /\ | /\
NNP VBZ NP is D N D N is D N is D N
A | I N
Autism is D N a disease a disease disease
| I
a disease
VP VP NP NP NNP VBZ D N

/ \ / \ / N\ | I 1 [

VBZ NP VBZ NP D N NNP Autism is a disease ‘**
I | I I

is a disease Autism

Figure 1: A tree for the sentence “Autism is a disease” (tdp) leith some of its syntactic tree
fragments (STFs).

whereN7, and Ny, are the sets of nodes i andT5, respectively, and

17
A(ny,ng) =Y xi(n)xi(na).
i=1

The A function is equal to the number of common fragments rootetbites
n1 andns and thus depends on the fragment type. Below, we report ¢gfogitidm
to computeA for syntactic tree fragments (STFs) [13], shallow semange frag-
ments (SSTFs) [9], and partial tree fragments (PTFs) [23].

2.2.1. Syntactic Tree Kernel (STK)

A syntactic tree fragment (STF) is a set of nodes and edges the original
tree such that the fragment is still a tree, with the furthtmrstraint that any node
must be expanded with either all or none of its children. Tifigquivalent to
stating that the production rules contained in the STF cabagartially applied.

To compute the number of common STFs rootedjrandns, the Syntactic
Tree Kernel (STK) uses the followingy function [13]:

1. if the productions at; andn, are different them\(ny,ny) = 0;

2. if the productions at; andny are the same, and, andns have only leaf
children (i.e. they are pre-terminal symbols) thfnq,ns) = A;

3. if the productions at; andn, are the same, and; andns are not pre-
terminals them (n1, n2) = ATT Y (1 4+ A(en, (), €y (7))

wherel(n1) is the number of children oty, ¢, (j) is thej-th child of noder and
M is a decay factor penalizing larger structures.

Figure 1 shows a tree and 10 out of its 17 STFs: note that STii$ysthe
constraint that grammatical rules cannot be broken. Fomeia [VP [VBZ NP]]
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S VP VP VP VP S S
VRN / N\ / \ / \ / \ / \

NP VP = VBZ NP VBZ NP VBZ NP VBZ NP NP VP VP

| / N\ | / N\ / \ | /\ | /\ | | |

NNP VBZ NP is D N D N is D N is D N NNP NP NP
I /N | I | I I I I

Autism is D N a disease a disease disease Autism N N

| I I I
a disease diseasdlisease

VP VP VP NP NP NP NP NNP VBZ D N
/ \ / \ | / N\ | | | | | | |
VBZ NP VBZ NP VBZ D N N D NNP Autism is a disease -
| | | | | | |
is N is is a disease disease a Autism
|
disease

Figure 2: Atree for the sentence “Autism is a disease” (tép\éth some of its partial tree fragments
(PTFs).

is a STF which has two non-terminal symbol&Z andNP, as leaves whil¢vpP
[VBZ]] is not a STF. The computational complexity of STKO$| Nz, || Nz, |), al-
though it is shown in [23, 25] that the average running timesar in the number
of tree nodes.

2.2.2. Shallow Semantic Tree Kernel (SSTK)

A shallow semantic tree fragment (SSTF) is almost identioad STF, the
difference being that the contribution of special nodegliedh withnull should be
zero. This is necessary as the Shallow Semantic Tree K&84AIK) [9] is applied
to special trees containing SLOT nodes that, when emptye khildren labeled
with null. Two steps are modified in the algorithm:

0. if ny (orny) is a pre-terminal node and its child labehisll, A(n,ns) = 0;

3. A(n1,na) = [0 (1 + Aleny (5), e (1)) — 1,

The above steps do not change the computational compleiibe riginal algo-
rithm, which is therefor€ (| Nz, || Nz, |).

2.2.3. Partial Tree Kernel (PTK)

If we relax the production rule constraint over the STFs, Ww&aim a more
general substructure type called partial tree fragmenEjPdenerated by the ap-
plication of partial production rules such as [VP [VBZ [ikih Figure 2. TheA
function for the Partial Tree Kernel (PTK) is the followingiven two nodes:,
andny, STK is applied to all possible child subsequences of theriodes, i.e. the
String Kernel is applied to enumerate their substrings &ed3TK is applied on
each of such child substrings. More formally:

8



1. if the node labels of; andn, are different them\(ny,ny) = 0;

2. else

I(I1)
A(nlanZ) =1+ Z H A(Cn1([1j)7cn2([2j))
I, Do 1(I)=1(T2) 7=1

wherel; = (hy, ho, hs,..) andlo = (ky, ks, ks, ..) are index sequences associated
with the ordered child sequencegs, of n; andc,, of na, respectively,flj and
fgj point to thej-th child in the corresponding sequence, and agdin,returns
the sequence length, i.e. the number of children. Furthexnvee add two decay
factors: i for the depth of the tree anilfor the length of the child subsequences
with respect to the original sequence, to account for gagelidws that

L

)
A(nl,nz)zu()\2+ Z \U1)+d(12) Alcp, ([1j),cn2 (.[2]'))),
I, Lo (1) =1(T2) 7=t

—

whered(D1) = I, 7, — T + 1 andd(l) + 1 = I, 7, — Iy +1. This way, both
larger trees and chifd subsequences with gaps are penafinegificient algorithm

for the computation of PTK is given in [23], where the worsseacomplexity

is O(p®| N1, ||N1,|), Wherep is the maximum branching factor of the two trees.
Note that the averagein natural language parse trees is very small and the overall
complexity can be reduced by avoiding the computation onmadrs with different

labels [23].

-

2.3. Kernel Engineering

Kernel engineering can be carried out by combining basioédsrvia additive
or multiplicative operators or by designing specific datgeots (vectors, sequences
and tree structures) for the target task. It is worth notireg kernels applied to new
structures produce new kernels. Indeed, lét;kt2) = ¢(t1) - ¢(t2) be a basic
kernel, wherg, andt, are two trees. If we mafy andi, into two new structures
s1 andsy with a mappingp, (-), we obtain:

K (s1,82) = ¢(s1)-¢(s2) = d(oar(t1))- d(dnr(t2)) = ¢'(t1)- ¢ (t2) = K'(t1,t2),

that is a noticeably different kernel induced by the mappig= ¢ o ¢5;. In
this work, we use several such kernels, such asfASand POgg, obtained by
applying PTK and SK to predicate argument structures andesexps of Part of
Speech Tags, respectively.



3. Relational Representations for Question and Answer Pagr

Capturing the semantic relations between two text fragsierda complex task.
In Question Answering, this task is carried out during anmsewraction, where
unsupervised approaches measure the similarity of qusstod answers [4, 5,
26].

A key aspect of our work is that we apply supervised methodedm such
relations. More explicitly, we train classifiers for deiagt whether an answer
correctly responds to the corresponding question or net §toblem is formally
defined in Sec. 3.1). This is a very different problem fromidgpanswer extrac-
tion in that not only the relatedness between the targetigmesnd answer is taken
into account, but also other question-answer trainingspaie used. The similarity
between pairs clearly depends on syntactic and semangenies; thus, in addi-
tion to the usual bag-of-word approach (BOW), we study mdtho capture Q/A
structures using String Kernels over word and POS-tag seggeand tree kernels
over full syntactic parse trees (PTs) and shallow semargast(PASs). The fol-
lowing sections describe the rationale behind our appreachthe choice of such
features.

3.1. Classification of Paired Texts

A Q/A classifier receives question-answer pairs:) as input and judges whether
the candidate answarcorrectly responds tg. To design such a classifier, a set of
examples of correct and incorrect pairs is needed. Theitepaigorithm operates
by comparing the question and answer contents in a sepasti®on rather than
just comparing a question with its corresponding candidatvers. In a learning
framework where kernel functions are deployed, given twospa = (¢1,a;) and
p2 = (g2, az), a kernel function is defined as

K(p1,p2) = K-(q1,92) ® Kq(a1,a2),

where K, and K, are kernel functions defined over questions and over answers
respectively, aneb is a valid operation between kernels, e.g. sum or multipbca

In Section 2, we described sequence and tree kernels, thaecapplied to the
sequential and tree representations of questions and es)s@spectively. In the
following sections we describe several of such linguidiijoamotivated representa-
tions.

3.2. Representation via Word and POS-tag sequences angl Tree

For a basic syntactic and semantic representation of batistigms and an-
swers, we adopt two different kernels: the Part of Speech&eg Kernel (PO&y)

10



and the Word Sequence Kernel (WSK). The former is obtainedgplying the
String Kernel on the sequence of POS-tags of a question areangor example,
given the sentence): What is autism?the associated POS sequencé/iB AUX
NN ?and possible subsequences extracted by 8eWP NNor WP AUX In-
stead, WSK is applied to word sequences of questions or assgireens,, sample
WSK substrings aréiVhat is autismWhat is What autismetc.

A more complete structure is the full parse tree (PT) of theesece, that con-
stitutes the input of the STK. For instance, the STK accdyddllowing syntactic
parse tree fogg:

SBARQ
AN
WI-IlNP SQ :
|
WP VP ?
| N
What ALIJX NIP
is NIN
autism

3.3. Shallow Semantic Representation

Our semantic representation is motivated by the intuitisapported by com-
putational linguistic evidence [27] - that definitions alearacterized by a latent
semantic structure, thanks to whishmilar conceptgesult instructurally similar
formulations. Indeed, understanding whether a candidagever is correct for a
definition question would imply knowing the correct defioitiand comparing the
current candidate to the former. When such information &vaitable (as in open
domain QA) the learning algorithm must mimic the behavioa tluman who does
not know the exact definition but checks whether such an anisermulated as
a “typical” definition and possibly whether answers defingmgilar concepts are
expressed in a similar way. A method to capture sentencetsteuis the use of
predicate argument structures [28], described hereafter.

3.3.1. Predicate Argument Structures

Shallow approaches to semantic processing are makingdides in the di-
rection of efficiently and effectively deriving tacit senti@rinformation from text.
Large data resources, annotated with semantic informasan the FrameNet [29]
and ProbBank [30] projects, make it possible to design syster the automatic
extraction of predicate argument structures (PASs) [3lJchSsystems identify
predicates and their arguments in a sentence. For examplee sentence, ‘John

11



likes apples., the predicate is ‘likes’ whereas ‘John’ &qubles’, bear the seman-
tic role labels ofagent(A0) andtheme(A1). The crucial property about semantic
roles is that regardless of the overt syntactic structureatian, the underlying
predicates remain the same. For instance, given the sestélahn found a bug in
his code’ and ‘A bug was found in the code’, although ‘a bughis object of the
first sentence and the subject of the second, it is the ‘thamtmth sentences.

To represent PASs in the learning algorithm, we work with tymes of trees:
Shallow Semantic Trees for SSTK and Shallow Semantic Tree®TK, both
following PropBank definition, denoted by PASrx and PAS 1k, respectively.
These are automatically generated by our system using ther8e Role Label-
ing system described in [32]. As an example, let us consigletesices;: ‘Autism
is characterized by a broad spectrum of behavior that iesl@ktreme inattention
to surroundings and hypersensitivity to sound and otheruii, resulting in the
PropBank annotation;: [ 41 Autism] is [..; characterized] {o by a broad spec-
trum of behavior] k_ 49 that] [.¢;includes] [4; extreme inattention to surroundings
and hypersensitivity to sound and other stimuli].

Such an annotation can be used to design a shallow semgnéseatation to
be matched against other semantically similar sentenagss£ ‘Panic disorder
is characterized by unrealistic or excessive anxiety’ulte® in as: [41 Panic
disorder] is [.; characterized] Jo by unrealistic or excessive anxiety].

It can be observed that, although autism is a different dessé@m panic disor-
der, the structure of the two above definitions and the latemtantics they contain
(inherent to behavior, disorder, anxiety) are similar.ead, s, would appear as a
definition even to one who only knows what the definition ofsmtlooks like.

The above annotation can be compactly represented by ptedicgument
structure (PAS) trees such as those in Figure 3. Here, weenthtat the semantic
similarity between sentences is explicitly visible in tsraf common fragments ex-
tracted by PTK from their respective PASSs, as illustrateBigure 3(c). An equiv-
alent PAS representation (PASrx) compatible with SSTK (see Section 2.2.2)
was introduced in [9] (see Figure 4). Here, arguments foldiixed ordering (i.e.
rel, A0, Al, A2, ...) and a layer of SLOT nodes “artificially” allows SSTK to
generate structures containing subsets of arguments.

3.3.2. PTKvs. SSTK applied to PAS

A comparison between SSTK and PTK suggests the followingarksn first,
while PASprk is semantically equivalent to PASrx, PTK is able to extract a
richer set of features which take gaps into account. Thisesseen by comparing
the first two fragments of Figures 3(c) and their equivalant(b).

Second, PASrx does not need SLOT nodes to extract fragments containing
argument subsets. This results in a visibly more compaceseptation (compare

12



PAS PAS

All rtlal A0 AIO R—lAO rtlel All
I
autism characterize spectrum behavior that characterize inattention
(a)
PAS
— | ~
Al rel A0

| | |
disorder characterize anxiety

PAS PAS PAS PAS rel
| RN / \ / \ | )
rtlal Al rel AO Al r(lal rtlal AO characterize
characterize charazc)terize characterize
C

Figure 3: Compact PASr k structures of; (a) ands2 (b) and some fragments they have in common
as produced by the PTK (c). Arguments are replaced with thest important word (or semantic
head) to reduce data sparseness.

Figures 3(b) and 4(a)). Moreover, a more accurate computatf the matches
between two PASs is performed, since only nodes that aralactiseful are rep-
resented.

Third, although the computational complexity of PTK is gezdhan the one of
SSTK, the structures to which PTK is applied are much sméikan those input to
the SSTK. This makes PTK more efficient than SSTK. We showeretperiment
section that the running time of PTK is much lower than thaS8fTK (for both
training and testing).

Next, another interesting difference between PTK and STikat the latter
requires an ordered sequence of arguments to evaluate mhieenwf argument
subgroups (arguments are sorted before running the kefrtgh implies a loss of
the natural argument order. In contrast, PTK is based oresuigsice kernels thus
it naturally takes order into account; this is very impottaa syntactic/semantic
properties of predicates cannot be captured otherwisepasgive and active forms
have the same argument order in RASx .

Finally, PTK weighs predicate substructures based on thegth; this also
accounts for gaps, e.g. the sequefs@, Al) is more similar to/AO, A1, A-LOC)
sequence than t0AO, A-LOC, A1), which in turn produces a better match than
(A0, A-LOC, A2, A1) (cf. Section 2.1). This is another important property for
modeling shallow semantic similarity.

13



PAS

- \\
&g@ SLOT SLOT—~
rtlel A|0 Al null

characterize anxiety disclerer
|
*

@

PAS
—"/ \ —"/ \
SL|OT SL|OT SL|OT SL|OT SLIOT SLIOT
rlel null null rel AO Al

characterize

(b)
Figure 4: Compact PA& Tk of s2 (a) and some of its fragments produced by the SSTK (b).

3.4. YourQA, a baseline QA system

As mentioned earlier, our research focus is on non-factaidsfjon Answer-
ing, where the expected answer type mainly consists of diefisior descriptions.
Non-factoid answer types are among the most complex anegtieg in the litera-
ture [33, 34] as finding them requires deeper linguistic essing than for factoids.

Unfortunately, there has been limited interest this spepifoblem during offi-
cial QA evaluation campaigns. TREC-10, the 2001 editiornefrhajor QA evalu-
ation campaign, remains to our knowledge the first and oneedieww events where
a large number of description or definition questions wakided in the test set
to be addressed by participant systems [12]. In a questassiication taxonomy
designed to account for this edition, 138 questions wereléabas “descriptiorf’
[35]. We use the answers to such questions as a baseling tmtdsarning mod-
els.

In order to experiment with classifiers and re-rankers, dermed list of candi-
date answers to each question is needed from an existingiQuésiswering sys-
tem to obtain training instances for answer classifiers &atliate their re-ranking
abilities. To this end, we used YourQA [36], our Web-basedkgion Answer-
ing system, designed to address both factoid and non-fagteéstions and return
answers alternatively from the Web or from a closed corpus.

YourQA is organized according to three phases: questiongssing, docu-
ment retrieval and answer extraction. During the first phtsequery is classified

4Seel2r.cs.uiuc.edu/ ~cogcomp/Data/QA/QC/
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according to a taxonomy of factoid or non-factoid answeegyghe two top ex-

pected answer types are estimated and the query is subnuttieé underlying

IR engine. In the document retrieval phase, thesitappcuments found by the IR
engine are retrieved and split into sentences. Finalljinduanswer extraction, a
sentence-level similarity metric combining lexical, syatic and semantic criteria
is applied to the query and to each retrieved document semtendentify candi-

date answer sentences; candidate answers are orderedcevgnid to the query,
while the IR engine rank of the answer source document is asedtie-breaking
criterion.

In particular, based on the outcome of the question clagdtfie answer extrac-
tion module determines whether the expected answer betortgs factoid group,
i.e. PERS, ORG, LOC, QTY, or TIME. If this is the case, the iieggifactoid con-
tained in each candidate answer sentence is pinpointed tothie phrase or word
level using relevant factoid QA techniques, involving tise wf Named Entity rec-
ognizers and the use of regular expressions. In the casenefactoid expected
answer types, other similarity criteria are adopted to asiephe similarity be-
tween the candidate answers and the original question; nbheduestion-answer
similarity metric sim(q, a) results from a weighted combination of four simula-
rity metrics, respectively based on bag-of-worélsu(), n—grams ¢g), syntactic
chunks ¢hk), and head noun phrase-verb phrase-prepositional ph&se/P-PP)

groups fd):
sim(q,a) = a x bow(q,a) + B x ng(q,a) + v x chk(q,a) + 0 x hd(q,a). (1)

In particular, the bag-of-word similarity between the digsq and a candi-
date answewr, bow(q,a), is the number of matches between the question key-
words ¢;, with i < |¢|, and the candidate answer keywords with j < |al,

normalized by dividing by the number of question keywords, bow(q,a) =

i match(q;,a;
iclglj<le } ‘ @:%)  ps in many cases the presence of question keywords in

a candldate answer is not a sufficient criterion to estalalistrong similarity be-
tween the question and such an answer, we resort to n-graitarsiyn defining
ng(q,a) = %, wherecommonN (q,a) is the number of shared n-
grams betwee and a andngrams(q) is the set of question n-grams. In the
current version of YourQA, = 2.

Furthermore, chunk similarityhk(q, a) is a function of the number of com-

mon sentence chunkdetweeng and a, [commonC(q,a)|. |commonC(q,a)|

5Chunks can be defined as groups of consecutive, semanioalhected words in the sentence,
which can be obtained using a shallow parser (in our casenrovided by the OpenNLP chunker
at http://opennlp.sourceforge.net )
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is then divided by the total number of chunksdn|chunks(q)|: chk(q,a) =

W’%, wherecommonC'(q, a) is the number of shared chunks between
chunks(q)]

anda and chunks(q) is the set of question chunks. Finalkl(q,a) is a varia-
tion of chunk similarity, where the focus is on word groupsngmsed by a noun
phrase, a verb phrase and a prepositional phrase (NP, VPR $hort). Hav-

ing identified the VPs iy anda that share the maximum number of tokens, named
maxV P, resp.maxV P,, we definehd(q,a) = ux HNP(q,a)+v xVP(q,a)+

¢ x PP(q,a). Here,V P(q,a) is the number of tokens shared betweeazV P,
andmazV P,; HN P(q, a) is the number of common tokens between the head NPs
associated withnaxV P, andmaxV P,, respectively, an®P(q, a) is the number

of common tokens between the PPs associated withV P, andmaxzV F,, re-
spectively;u, v and¢ are carefully chosen weights. The current version of YourQA
usesy = v = 0.4, £ = 0.2, while following empirical observation of YourQA's
results, thex, 3,~ andé coefficients in (1) have been tuned to their current values
ofa=0.6,0=02,v=6=0.1.

It must be noted that while theim(q, a) similarity metric in (1) takes as ar-
guments a question and one of its candidate answers- as done by the vast
majority of QA systems — the classification and re-rankingledi@roposed in Sec-
tion 3.1 takegguestion/answer pairas arguments (or learning instances). More
concretely, the classifiers process two pairs at a tifgg,a1) and (g2, a2), and
comparey; with g3 anday with ay according to different functions, finally produc-
ing a combined similarity score. Such a comparison allowdetermine whether
an unknown question/answer pair contains a correct answetdy assessing its
distance from another question/answer pair with a knowallalm particular, an
unlabeled paifq, a2) will be processed so that rather than “guessing” correstnes
based on words or structures sharedipginda,, bothgs anda, will be compared
to their correspondent componengsand a; of the labeled paifg;,a;) on the
grounds of such words or structures.

To exemplify this, ifg; is “What is autism?” and the candidate answersaare
“Autism may be defined as a mental disease’(’z'yéAutism affects many people”,
comparison with the correct pair formed by“What is a golden parachute?” and
as “A golden parachute may be defined as a manager’s privilegiéinduce the
kernel method to prefer; to a'l. Indeed,a; has a similar wording and structure to
as, hence(qy, a1) will get a higher score thafy;, a;) using the kernel method; in
contrast, this wouldn'’t be the case using a similarity seoatchingq; to a; resp.
ay as botha; anda; contain they; keyword "autism”.

This intuitively explains why even a bag-of-words kerngjuating its weights
on question/answer pairs has a better chance to produes bestlts than a bag-
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of-words question/answer similarity (or a variation tlefras implemented by
YourQA). This is experimentally proven in Sections 4.3 — 4T4he above is even
more true in the case of the tf*idf model implemented by thdartying document

retrieval engine, as the latter similarity criterion is dowent-wide, as described in
Section 4.4.

3.5. The YourQA corpora: WEB-QA and TREC-QA

In order to obtain our answer corpora, during the Documentié@l phase,
YourQA worked alternatively with two IR engines: Googjléo retrieve Web docu-
ments, and Lucerieto retrieve news articles from the latest corpus releasethé
TREC competition, AQUAINT 8. The two corpora are henceforth named WEB-
QA and TREC-QA, respectively The WEB-QA corpus was especially interest-
ing to test the abilities of a fully Web-based open domain @#eam, a particularly
challenging task. We also wanted to assess whether creatirrglational data rep-
resentations based on the use of “off-the-shelf” parsedssamantic role labelers
(trained on “clean” data) on Web data would yield effectigarhing algorithms or
not. However, the TREC-QA corpus was necessary to aligntivéimethodology
followed by traditional QA system evaluation drawn from IR @ closed corpus.

The answers returned by YourQA are in the form of sentencés eievant
words or phrases highlighted and surrounded by their aigiassage. This choice
is due to the fact that the system is intended to provide aegorib the exact
answer; moreover, our focus on non-factoids made it redd®t@provide answers
in the form of sentences [36]. Each sentence of the top 2Qymphs returned
by YourQA was manually evaluated by two annotators based luethver or not
it contained a correct answer to the corresponding quesfitie inter-annotator
agreement was judged substantial (Coken 0.635).

To simplify the classification task, we isolated for eachagaaph the sentence
with the maximal judgment and labeled it as a positive instaihit answered the
question, negative otherwi$e For instance, given the question ‘What are inver-
tebrates?’, the sentence ‘At least 99% of all animal spemiesnvertebrates’ was
labeled—1 , while ‘Invertebrates are animals without backbones’ vedeled-1.
The resulting WEB-QA corpus contains 1309 sentences, 4ibich are positive;

8google.com

"lucene.apache.org

8trec.nist.gov/data/qa

%Available at:disi.unitn.it/ ~ silviag/resources.html

Opositive judgments ranged from 3 to 5 to reflect increasimriseness and correctness of the
answers, while negative ones ranged from 1 to 2. In our exygais, these groups of judgments are
further remapped te-1 resp.—1.
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the TREC-QA corpus contains 2256 sentences, 261 of whicpasigive'l. The

difference in positive rate (31.8% and 11.6%, respectjvislydue to the fact that
finding an answer to a question is simpler on the Web than osrtialer TREC
corpus.

4. Experiments

The aim of our experiments is twofold: on one hand, we demategsthat our
supervised approach applying kernels to pairs of questindsanswers is effective
for automatically learning their relation. On the other thame show that sequence,
syntactic and shallow semantic tree kernels provide ingpbtinguistic informa-
tion to describe the above-mentioned relations. As a gémnesalt, our models
can successfully re-rank the output of a basic question amsgsystem such as
YourQA.

In more detail, we test the kernel functions elaborated mstjon and answer
representation against the WEB-QA and TREC-QA corporaritestin Section
3.5. We begin our illustration by discussing our experiraksetup (Sec. 4.1).
Then, we carry out a comparative analysis in terms of acguaad efficiency of
two different kernels for predicate argument structurdwe Partial Tree Kernel
(PTK) and the Shallow Semantic Tree Kernel (SSTK), respelgtiintroduced in
Sections 2.2.3 and 2.2.2. Next, we focus on the accuracyffefet classifiers on
both datasets in order to select the most promising conibimafor complex QA
(Sec. 4.3). Our results show that our P&Sointly used with PAS i and STK
highly improves on BOW. We finally discuss the impact of thexabclassifiers in
re-ranking YourQAs initial results (Sec. 4.4).

4.1. Experimental Setup
To run our experiments, we implement the following function

e the BOW and POS linear kernels;
e the WSK and PO§x sequence kernels;

e the STK on syntactic parse trees, derived automaticallythiaCharniak
parser [37];

it can be noted that the number of instances in the WEB-QA @REJ-QA corpora do not
amount to exactly 138 times 20 answer: indeed, this is dukedact that not only the IR engine
does not always find 20 relevant documents for the query, Isottaat the QA system does not
always select as many as 20 answer paragraphs due to thendarity score the latter may achieve
with respect to the query.
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e the SSTK and PTK on Predicate Argument Structures, derivezhzatically
via the Semantic Role Labeling system described in [32].

Finally, we implement combinations of the above kernelshim VM-light-TK
toolkit!?, that supports the design of new functions in SVM-light [38]

Since answers often contain more than one PAS (see FigyjewBésum PTK
(or SSTK) applied to all pair®;, x P», whereP; and P, are the set of PASs of the
first two answers. More formally, |€?, and P, be the sets of PASs extracted from
text fragments andt’ by the PTK; the resulting kernel is

Ka (P, Pu)=>_ > PTK(p,p).

pEP; p'EP,

Although different kernels can be used for questions andisivers, we use (and
combine) the same sets of kernels on both questions and emshe only excep-
tion are PASrx and PAS g7k, that are only evaluated on answers.

We train and test our classifiers and answer re-rankers omwthdatasets de-
scribed in Section 3.5. The accuracy of our classifiers ituated in terms of F1
score, whereas the QA system performance is measured in tdriiean Recip-
rocal Rank (MRR). This is defined as/ RR = =+ Y1, L, wheren is the
number of questions in the corpus anchk; is the rank of the first correct answer
to questioni. We consider the top 5 available ranks returned by YourQA RRVI
computation. Moreover, each reported value in our figuréersdo the average
over 5 different samples using five-fold cross-validation.

4.2. PTK vs SSTK: Performance and Efficiency

In a first set of experiments, we compare the performance Kf\With respect
to SSTK for predicate argument structures. We compute Hesification accuracy
of SVMs by using either the PA3Tx or PASprx data representations alone
on both the WEB-QA and TREC-QA datasets. Figure 5 shows th&ired F1
(average on 5 folds) according to different values of theé-Gsor parameter used
for learning: higher values of the latter increase the cbstistaking the positive
examples, in turn increasing classifier RetfalWe note that while on WEB-QA
the models are very close, PTK is slightly better than SSTKIREC-QA. The
fact that both classifiers achieve much higher F1 on WEB-Q#otssurprising, as

T2available adit.unitn.it/moschitti/

3This parameter-{ option in SVM-light) multiplies the summation of the posislack vari-
ables} ", &, whereg; is roughly the error in mistaking the exampte. Since such summation is
added to the objective functions of SVM optimization probjean optimal solution tends to reduce
the mistakes of positive examples.
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this dataset contains many more correct answers (balateresification problems
are generally easier to solve).
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Figure 5: Impact of PASrx (PTK) and PASsTx (SSTK) on answer classification

Another interesting test concerns kernel efficiency. SSU&ron large struc-
tures containing as many slots as the number of possiblécatedargument types.
This affects both memory occupancy and kernel computag@ed. In contrast,
PTK is able to process the same information with much smsalterctures. To test
the above characteristics, we divide the training data9nbns of increasing size
(with a step of 200 instances between two contiguous bind)wa measure the
training and test timé for each bin. Figure 6 shows that in both the training and
test phases PTK is much faster than SSTK. In training, PTKDisirhes faster,
making the experimentation of SVMs with large datasetsilié&asThis is an inter-
esting result since for SSTK as well as for PTK we use the fgetithms proposed
in [25, 23], typically denoting a linear average runningeim

4.3. Results for Question-Answer Classification

In these experiments, we test different kernels and someeafiinost promis-
ing combinations. Since the nature of the applied kernetsgly depends on the

Mprocessing time in seconds of a Mac-Book Pro 2.4 Ghz.
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Figure 6: Efficiency of PTK and SSTK

data they operate on, we simplify our notation by only ushmgyname of the rep-
resentation instead of the more appropriate name combméepresentation and
kernel). In other words, we use BOW, POS and PT to indicatealhiaear kernel
is applied to bag-of-words and POS vectors and the syntiietgckernel is applied
to parse tree (PT). In the other notations, i.e. BRSPASssTx and PAS rk,
the subscript indicates the applied kernel: this suggéstsSK is applied to POS
sequences and that SSTK and PTK are applied to the PAS sasicithe only ex-
ception is WSK, indicating the Word Sequence Kernel, i.griagkernel applied
to word sequences.

To produce kernel combinations, we use the sum betweenlg&rsince this
yields the joint feature space of the individual kernels|[22

First, we compute the F1 of our answer classifiers for differalues of the
cost-factor parameter adjusting the ratio between Poetiand Recall; this is in
order to verify whether any difference between models isesyatically observed
regardless of the classifier parameters (Section 4.3.Ithé&mwnore, we examine
the differences between models for a fixed value of the @uttf parameter (es-
timated from a held out set) to measure any significant diffee (Section 4.3.2).

1Al additive kernels are normalized to have a similarity ecdoetween 0 and 1, i.e.

K'(X1. Xo) = K(X1,X5) .
(X1, X2) VEX; X1)x K (X3,X3)
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Finally, to complete our analysis, we compute the Precifienall curves for a
number of models on a fixed fold of our cross-validation sp8ection 4.3.3).

4.3.1. F1 curves
Figure 7 shows the F1-plots of several kerelccording to different values
of the above-mentioned cost-factor parameter.
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Figure 7: Impact of different feature sets on the WEB-QA data

First, we note that BOW achieves very high accuracy, contparm the ac-
curacy of PT; this is surprising when considering that attiese, instances of the
training models (e.g. support vectors) are compared terift test examples since
guestions cannot be shared between training and test deefinsharing questions
between test and training sets would be an error from a madbarning view-
point as we cannot expect new questions to be identical teetiothe training
set). Thus, we would expect answer wordings to be differadta low contribu-
tion to generalize rules for answer classification. Howeswor analysis reveals a
number of common patterns in the answers due to typical Wgé phrasings that
indicate if a retrieved passage is an incorrect answerlLegrn more about
X. Although the ability to detect these patterns is benefitala QA system as

%In order to meet a trade-off between the readability of ttetsphnd the representation of all
interesting systems, we always give the priority to the topusate systems.
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it improves its overall accuracy, it is slightly misleadifay the study that we are
carrying out. This further motivates our experiments with TREC-QA dataset,
which is cleaner from a linguistic viewpoint and also morenptex from a QA
perspective as it contains fewer positive instances.

Figure 7 also shows that that the BOW+PT combination immmreboth in-
dividual models; however, POS+PT produces a lower F1 thaal®Je, indicating
that POS does not provide useful information for this ddtasarthermore, WSK
improves on BOW and is further improved by WSK+PT, demottistgathat word
sequences and parse trees are very relevant for this tasally-both PAS sk
and PASx improve on previous models, yielding the highest result{yBK+
PASpr k). These findings are interesting as they suggest that thadiminforma-
tion provided by STK and the semantic information broughY¥$K and PAS 1k
(or even PAgsT ) considerably improves on BOW.
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Figure 8: Impact of different feature sets on the TREC-Q/Aadet

In summary, our results for WEB-QA strengthen the expemtathat BOW
may be outperformed by structural information in the TREE&-@ataset, where
the task is more complex and the data is less noisy. To thigogat Figure 8
shows the plots of different classification models on the TREA dataset. An
initial glance suggests that the F1 of all models is much tavan for the WEB-
QA dataset. Indeed, BOW shows the lowest accuracy and adsadturacy of
its combination with PT is lower than the one of PT alone. regéngly, this
time POS seems helpful since its combination with PT impsove PT alone;
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WEB Question/Answer Classification Corpus

BOW POS POS k WSK PT PASssT K PASpr K
65.3t2.9| 56.8:0.8 | 62.5+-2.3| 65.746.0 |65.1£3.9| 52.9+1.7 50.8£1.2
BOW+POS BOW+PT| POS +PT| WSK+PT| PT+PAS s | PTHPAS 1 ¢
+WSK +WSK
63.741.6 | 66.0+2.7| 65.3t2.4 | 66.6:3.0| 68.0+2.7 68.2+4.3

Table 1: F1+ std. dev. of the question/answer classifier using severakkeon the WEB corpus

however, again, summing BOW to POS+PT produces a decreaseolkr, SK is
beneficial for exploiting POS information as PQS+PT improves on POS+PT, yet
PAS adds further useful information as the best models asROPT+PAS
and POgx+PT+PAS sk
In order to gain better numerical insights on our results,pnevide further
analysis in the following section, where we compare the aguof different mod-
els at a fixed cost-factor parameter.

4.3.2. Pointwise estimation and significance of results

The plots representing F1 versus the cost-factor paransetggest that the
value of such parameter maximizing F1 can be reliably eséichaTl hus, for each
model, we selected the minimum cost-factor associated makimum F1 value
on a held-out séf. This provides a single performance index for each system,
that can be used to compare the five different models obtailaectoss-validation
using the paired—test.

Table 1 reports the average Hlthe standard deviation over 5 folds achieved
by the different kernels on the WEB-QA corpus. When exangjraar results, we

note that:

e BOW achieves very high accuracy on the WEB dataset, comigatalthe
one produced by PT, i.e. 65.3 vs 65.1;

e the BOW+PT combination reaches 66.0 accuracy, improvingath BOW
and PT alone; however, BOW+POS produces a lower F1, i.e., @83an
PT+BOW, indicating that POS does not provide useful infaramafor this
dataset;

e WSK achieves 65.7 accuracy, thus improving on BOW, furtteenWSK
is enhanced by WSK+PT (66.6). This demonstrates that wapgesees and

It turned out that a value of 10 is roughly the best for any &ern
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TREC Question/Answer Classification Corpus

BOW POS POS WSK PT PASssTKi PASpr K

24.245.0| 26.5+-7.9 | 31.6£6.8| 4.0+:4.2 | 33.1£3.8| 21.8t3.7 23.6:4.7
BOW+POS BOW+PT| POS +PT| WSK+PT| PT+PAS sk | PTHPAS k¢

+POS i +POS i

31.9£7.8 | 30.2:5.3| 36.4+9.3 | 23.743.9| 36.2-7.1 39.1+6.9

Table 2: F1+ std. dev. of the question/answer classifier using severaleke on the TREC-QA
corpus

parse trees are very relevant for this task;

o finally, the highest performing combinations of features BASs sk +
WSK + BOW and PASrx + WSK + BOW, which reach 68.2 accuracy,
further improving on the already high performance of BOW ataadalone
(65.3).

Despite the observed improvement on BOW in terms of F1 aeeraiyer five

folds, none of the results achieved on the WEB-QA corpus hegistered a suf-
ficiently smallp value to reach statistical significance in thetest. Indeed, even
the most performing combinations of syntactic and shallemantic information,

exhibiting an improvement up to 3 points in F1 on the BOW featare affected
by the fact that the corpus contains a number of patternsatidg wrong answers
that — as stated earlier — can easily be captured by wordlifEstires only. For this
reason, we now focus on the results obtained on the TREC-@Q&Auspreported in
Table 2. A comparative analysis with respect to Table 1 ssiggbat:

e as observed in the curves, we can immediately register tieafF1 of all
models is much lower than for the WEB-QA dataset, due to thegnce of
fewer positive instances in the training corpus;

e BOW denotes the lowest accuracy (a F1 of 24.2), and also theaxy of its
combination with PT (30.2) is lower than the accuracy of Rinal(33.1);

e Sequence Kernels are beneficial for exploiting POS infaonats POgSx
+ PT reaches 36.4, improving on POS (99% significapce,0.01) and PT.

e Finally, Predicate Argument Structures add further infation, as the best
model is POgx + PT + PAS k. The latter improves on BOW from 24.2
to 39.1, i.e. by 63%; this result is 95% significapt< 0.05).

Our first conclusion is that on this “cleaner” corpus, BOW sloet prove very
relevant to learn re-ranking functions from examples; witiis useful to establish
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the initial ranking by measuring the similarity between sfien and answer, it is
almost irrelevant to capture typical rules that suggesttidrea description is valid
or not. Indeed, since there is no trace of test questionsarirdining set, their
words as well as those of candidate answers are differentst btacially, since
a question with its answer set originates training pair aifarge word overlap,
BOW tends to overfit.

Secondly, the results show that PT is important to detedtaymlescription
patterns, however POS sequences provide additional iattom since they are
less sparse than tree fragments. Such patterns improveedoath of POS-tags
feature by about 4%. This is a relevant result consideriraj it standard text
classification bigrams or trigrams are usually ineffective

Third, although PO&,+PT generates a very rich feature set, consisting of
POS patterns provided by SK and tree fragments generated Ky FASprx is
still capable to improve on the PQ&+PT combination by about 3% in F1. This
suggests that shallow semantics can be very useful to detether an answer is
well formed and related to a question.

Furthermore, error analysis reveals that PAS can provitterpa like:

e AL(X) R-Al(that) rel(result) AL(Y) and
e A1(X) rel(characterize) AO(Y) ,

whereX andY need not necessarily be matched. Finally, the best mod&gRO

+ PT + PAS g, improves on BOW by 63%; as mentioned above, this result is
significant at 95% according to the-test. This is strong evidence showing that
complex natural language tasks require advanced lingugtrmation that should

be exploited by powerful algorithms such as SVMs, and usifectve feature
engineering techniques such as kernel methods.

4.3.3. Precision/Recall Curves

To better study the benefit of the proposed linguistic stmgs, we also re-
port Precision/Recall curves. Figure 9 displays the cuofe®me interesting ker-
nels for one of the five folds of the WEB-QA dataset. As expé&cBOW shows
the lowest curves; moreover, WSK, able to exploit n-gramh(gaps), produces
very high curves when summed to PT. In general, all kernelkéoations tend to
achieve only slightly higher results than BOW. Again, thaseis the high contri-
bution of BOW, which prevents other models from clearly egivey.

The results on TREC-QA, reported in Figure 10 (for one of thie flataset
folds), are more interesting. Here, the contribution of B@mains very low and
thus the difference in accuracy with the other linguisticdels is more evident. In
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Figure 9: Precision/Recall curves of some kernel comlonatover one fold of the WEB dataset.

particular, POgx +PT+PASr K, that encodes the most advanced syntactic and
semantic information, shows a very high curve outperfogah the others.

In summary, the Precision/Recall figures further corroteotair observations
concerning classification accuracy and the role of strattmta representations in
complex Question Answering.

4.4. Answer Re-ranking

The obvious application of an answer classifier consiste-ranking the initial
answers extracted by a baseline Question Answering systaeteed, re-ranking
can be regarded as the real testbed of any QA classifier. \eliean running a
number of re-ranking tests by taking the top classifiersinbthon the WEB-QA
and TREC-QA corpus, respectively, and using their binampwaiLto rearrange the
answers returned by the YourQA system. Our re-ranking #lgorstarts from the
top of the answer list and leaves the corresponding ansverksunchanged if the
answer is classified as correct by the binary classifier;rafilse, the rank is pushed
down, until a lower ranked incorrect answer is found.

In order to compare the above re-ranking strategy to a redéerbaseline,
we first measure the Q/A classification ability of YourQA aisl underlying IR
engine by examining the F1 and MRR of the answers correspgridi the top
five documents returned by the IR engine and the top five assasranked by
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Figure 10: Precision/Recall curves of some kernel comlmnatover one fold of the TREC dataset.

YourQA. In particular, the classification accuracy of thexabsystems is computed
by labeling each of the five retrieved answers as correct.

Our results, reported in tHelassifier F1row of Table 3, show that the accuracy
of YourQA is slightly higher than the IR accuracy. Indeedtha WEB-QA dataset,
the IR engine (Google) is outperformed by YourQA since itskeaare based on
whole documents, not on single passages. Hence, Googleankyardocument
containing several sparsely distributed question worglédri than documents with
several words concentrated in one passage, which are mteredting. This is
reflected by the fact that, as visible in thi&RRrows of Table 3, the ranking deriving
naturally from YourQA's answer extractor improves on thigimal IR ranking by
gaining 7 points in MRR on the WEB-QA corpus (56.2 vs 49.0).rtikermore,
on the TREC-QA corpus, YourQA almost doubles the IR enginecéne) MRR,
taking it from 16.2 to 30.3. This result can be explained by tomplexity of
the answer extraction task, as fewer documents are relavdimé question in the
TREC-QA corpus and for such documents, the emphasis onsknegirovided by
the YourQA answer extractor yields an increase in answevaeice.

By now considering the performance of our best Q/A classif{&Re-ranker
(Best)” column), learned in Section 4, we can observe thatdtier greatly out-
perform the F1 of YourQA, i.e. 68.6 vs 36.8 (on WEB-QA) and®B9s 22.9 (on
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IR engine  YourQA Re-ranker Re-ranker
(BOW) (Best)

WEB-QA Classifier F1| 35.%-4.0 36.8:3.6 65.3:t2.9 68.6:2.3

MRR 49.0£3.8 56.2£3.2 77.4:2.7 81.KH2.1
TREC-QA Classifier F1| 21.3:1.0 22.9:1.5 24.2:3.1 39.16.9
MRR 16.2+-3.4 30.3t8.9 32.87.7 34.2£10.6

Table 3: Classifier F1 and MRR@35:(std. dev.) of the IR engine (Google resp. Lucene), YourQA,
the BOW re-ranker and the best re-ranker on the WEB-QA reREJ-QA datasets

TREC-QA). This suggests that more information is exploibgdthe re-ranking
classifier. Indeed, when the re-ranking algorithm is applMourQA achieves an
MRR of 81.1%, i.e. a 45% improvement, on WEB-QA. On the TRES dataset,
the IR engine is also outperformed by YourQA and the re-rapkeduces a fur-
ther improvement by about 13%. Such a smaller differencepemed to the Web
re-ranker depends on the lower classification accuracyeofetranker, due in turn
to the higher complexity of the TREC dataset.

It may be noted that having proven that re-ranking is effiedt improving QA
systems does not imply that structural features are us@tukhow this, we need
to compare a re-ranker based on BOW against those basedyaistio structures.
The BOW result is reported in Table 3 (“Re-ranker (BOW)” cuh)). It shows
that the F1 Classifier F1row) of the BOW classifier is lower than that of the
“best” classifier in both the WEB-QA and TREC-QA cases: on TiREC-QA
dataset, the F1 of the BOW classifier is 24321 while it is 39.14-6.9 for the
“best” classifier. This translates into a slightly lower MRRRRrows) obtained
with the BOW re-ranker in comparison to the re-ranker usingcsural features.
We can therefore conclude that not only the simple fact afigisin answer re-
ranker is beneficial in terms of answer accuracy, but alsbtiba kernels applied
on structural features are yet more effective than simperdf-word features in
identifying correct answers to complex questions.

4.4.1. Discussion

It should be noted that re-ranking approaches more elabtrah ours can be
applied, such as a “true” re-ranking based on pairs of ics®fil3, 39]. Although
this should in principle produce better results, it alsothaesdrawback of doubling
the number of structures required to represent such pajaitf. Since we have
carried out a study on about twenty-five different kernels preferred to keep our
models simpler.

A second option to improve our methods while keeping the rhoa@plexity
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low would be the use of the classifier score to establish thagive ranking between
different answers classified as correct. One problem witheibproach is that SVM
score, i.e. the margin of the classifying point, is not a phmlity. This means that
the relative distance between two scores is not a good itadio&the reliability of

a classification over the other. For example, for a given tiprgsa difference of
0.5 between the scores of two candidate answers may noatedichigh reliability
for the higher-scored classification, whereas for anothestion a difference of
0.005 may indicate very high reliability for the higher-sed classification.

This problem is very critical in our context since the rarskére. the classi-
fiers) may reach low F1, e.g. about 40% for TREC dataset. Ehisas both a high
variability and a limited reliability of results. Under duconditions, re-ranking
should be carefully carried out. Thsatus quei.e. the initial ranking provided
by the basic QA system, should only be changed when thereoisgsindication
of a misplaced answer (i.e. incorrect answer), as, for el@nopn be an exceeded
classification threshold. Thus, we argue that our heurggifiroach of pushing an-
swers down in the ranking when they are labeled as incorsenbre conservative
and has a higher chance to improve the basic QA.

A possible alternative would be the conversion of SVM scarsactual prob-
abilities, however once again these would not be reliabke tuthe scarcity of
available training data. A more effective solution wouldtbe adoption of meta-
classifiers to decide whether the current scores/prokiabilivithin a given context
suggest a valuable change in the position of the target ansWwee above ap-
proaches are interesting research directions, albeitraetfwe aim of this paper.

5. Related Work

Early work on the use of syntax and semantics in InformatietriBval was
carried out in [40, 41, 42] and in [43, 44]. The results showed the use of ad-
vanced linguistic information was not effective for docurheetrieval. In contrast,
Question Answering work shows that semantics and syntagssential to retrieve
punctual answers, e.g [45, 46, 47]. However, successfubappes in TREC-style
systems were based on several interconnected modulestiexptmmplex heuris-
tics and fine tuning. The effective combination of such medutrongly depended
on manual setting, which was often not disclosed.

In our study, we avoid this problem by focusing on a singlesghaf Question
Answering, namely answer extraction. The latter can be ssea typical text
categorization task, i.e. the classification of pairs of feagments constituted by
guestion and answer. Since some types of questions canvse seith relatively
simple representations, i.e. without the use of syntaciitsmantic structures, we
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focus on the more complex task of processing descriptideriafalled definition)
guestions [48, 2, 6, 28, 9, 49].

In [2], answer ranks were computed based on the probabilitidigram lan-
guage models generating candidate answers; languagelmgaehs also applied
to definitional QA in [34] to learn soft pattern models basedbigrams. Other
related work, such as [7, 8], was also very tied to bag-ofdsdeatures.

Our approach is different from the above in that we attempéafure structural
information, which has proven to be very effective in ouremments, yielding a
very high MRR. In contrast to [11], our approach does not ireqgtine creation of
ad-hoc joint question-answer representations. In paaticwe compare to previ-
ous work [6, 28, 9, 49] using predicate argument structuresefranking candidate
answer lists and reporting significant improvement. To awvkedge, our work
in [9] was the first to use kernel methods for answer re-rapkie used a syn-
tactic tree kernel and a shallow semantic tree kernel baseutexlicate argument
structures for the design of answer re-rankers. Howevearegasnly experimented
with a Question Answering corpus derived from Web documantsthe reported
improvement, although significant, did not justify the atiop of computationally
expensive approaches like SVMs and kernel methods. In #perp developing
with respect to subsequent work [10], we have experimeniddmany more ker-
nel types and with both Web and TREC documents and we could et the
potential improvement reachable by our approach is mudmehi¢about 63% over
BOW). Moreover, we have designed a faster kernel for thegasing of semantic
information.

In summary, the main property of our approach with respeptawious work
adopting syntactic and semantic structures is that we céinedthe latter with-
out requiring a thorough manual linguistic analysis. We db carry out feature
engineering since we simply let kernel functions generdtege feature set (tree
fragments or substrings) that represents semantic/simiaformation effectively.
The feasibility of this approach is due to the SVM theory witicakes the learning
algorithm robust to many irrelevant features (often preadlioy NLP errors).

6. Conclusions

We have approached answer selection, the most complex phas@A sys-
tem. To solve this task, typical approaches use unsupdrmsthods that involve
computing the similarity between query and answer in terfdexical, syntactic,
semantic or logic representations. In contrast, we stugersised discriminative
models that learn to select (rank) answers from examplesi@tipn and answer
pairs, where the representation of the pair is implicitipyided by kernel combina-
tions applied to each of its components. To reduce the buwtieranual annotation
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of such pairs, we use kernel functions applied to syntaeinantic structures as
powerful generalization methods. The combination of theegalization properties
of such structures with the exponential space of substrestgenerated by kernel
functions provides an advanced form of back-off model insatiininative setting,
that we have proved to be effective.

In particular, we use POS-tag sequences, syntactic pass &nd predicate
argument structures (PASs) along with sequence kernelsyamdctic and shallow
semantic tree kernels. Extensive experiments on two diftaorpora that we have
collected and made available show that: (i) on TREC datantbeovement on the
bag-of-words feature (BOW) is very high (about 63% in F1 sfa@onfirming that
our kernels/structures provide the right level of geneedion; (ii) the Partial Tree
Kernel (PTK) for processing PASs is efficient and effectinel aan be practically
used to design answer re-ranking models; and (iii) our besstipn/answer clas-
sifier, used as a re-ranker, significantly improves the QAesgsMRR, confirming
its promising applicability.

Regarding PAS, deeper analysis reveals that PTK can leimtide patterns
such as:A1(X) R-Al(that) rel(result) A1(Y) (e.g. ‘German measles,
that resultin red marks on the skin, are a common disease’) and:

A1(X) rel(characterize) AO(Y) (e.g. ‘Autism ischaracterizedoy the in-
ability to relate to other people”).

We believe that these are strong arguments in favor of thiiion of ad-
vanced linguistic information by using powerful discrirative models such as
SVMs and effective feature engineering techniques suckrekmethods in chal-
lenging natural language tasks.

In the future, we would like to experiment with our model orgker and dif-
ferent datasets and compare with (or better re-rank) moraregd QA systems.
Moreover, an interesting open problem is how to jointly expthe set of PASs
of a sentence/paragraph in a more effective and compaaitsgmantics-driven
approach.
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