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An	outline

A	(rough)	outline	of	the	Vehicular	Networks	topics
• Application:	why	VN?
• Communication:	technologies,	alternatives,	protocols,	challenges
• Simulation: evaluating	vehicular	networks	without	vehicles	and	

without	networks.	Tools	and	models
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SIMULATION
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Approaches	to	Performance	Evaluation

• Field	Operational	Tests
+	Highest	degree	of	realism
- no	in-depth	investigations	of	network	behavior
- Non-suppressible	side	effects
- Limited	extrapolation	from	field	operational	tests

• Analytical	evaluation
+	Closed-form	description	allows	for	far-reaching	conclusions
- May	need	to	oversimplify	complex	systems

• Simulation
– Can	serve	as	middle	ground
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Requirements	for	Simulation

• Models
– Network	protocol	layers
– Radio	propagation
– Node	mobility
– Model	of	approach	to	be	investigated	(e.g.,	flooding)

• Scenarios
– Road	geometry,	traffic	lights,	meta	information
– Normal	traffic	pattern
– Scenario	of	use	case	to	be	investigated	(e.g.,	accident)

• Metrics
– Network	traffic	metrics	(delay,	load,	…)
– Road	traffic	metrics	(travel	time,	stopping	time,	emissions,	…)
– Metric	of	use	case	to	be	investigated	(e.g.,	time	until	jam	resolved)

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 5



Modeling	Network	Protocols

• Dedicated	simulation	tools
– Discrete	Event	Simulation	(DES)	kernel
– Manages	queue	of	events	(e.g.,	“an	IP	fragment	was	received”)
– Delivers	events	to	simulation	models

• Model	libraries
– Simulate	components’	reaction	to	events
– E.g.,	HTTP	server,	TCP	state	machine,	radio	channel,	human,	…
– “when	enough	IP	fragments	received ⇨ tell	TCP:	packet	received”	
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Modeling	Radio	Channel

• Simple	model:	unit	disk
– Fixed	radio	“range”
– Node	within	range
⬄ packet	received

• Enhanced	models:
– For	each	packet,	consider

• Signal	strength
• Interference	(other	radios)
• Noise	(e.g.,	thermal	noise)

– Calculate	“signal	to	noise	and	
interference	ratio”	(SNIR)

– Derive	packet	error	rate	(PER)
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Modeling	Radio	Propagation

• Signal	attenuation
– Received	power	depends	on	transmitted	power,	antenna	gains,	and	path	loss

• Free	space	path	loss

• Empirical	free	space	path	loss
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Modeling	Radio	Propagation

• Two	Ray	Interference	path	loss
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Modeling	Radio	Propagation

• Comparison:	Two	Ray	Interference	vs.	Free	Space
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Modeling	Mobility

• Traditional	approach	in	network	simulation:
Random	Waypoint	(RWP)
– „pick	destination,	move	there,	repeat“

• First	adaptation	to	vehicular	movement
– Add	mass,	inertia
– Add	restriction	to	“roads”
– Add	angular	restrictions

• Problem
– Very	unrealistic	(longitudinal)	mobility	pattern
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Modeling	Mobility

• First	approach:	Replay	recorded	trace	data
– Use	GPS
– Install	in	Taxi,	Bus,	…
– Highest	degree	of	realism

• Problems:
– Invariant	scenario
– No	extrapolation

• To	other	vehicles
(cars,	trucks,	…)

• To	more	vehicles
• To	fewer	vehicles
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Modeling	Mobility

• Replay	artificial	trace	data
– Microsimulation	of	road	traffic
– Pre-computation	or	live	simulation
– Problem:	how	to	investigate	traffic	information	systems	(TIS)?
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Modeling	Mobility

• Bidirectional	coupling
– Network	traffic	can	influence	road	traffic
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Modeling	Road	Traffic

• Road	traffic	microsimulation
– Ex.:	SUMO	– Simulation	of	Urban	Mobility
– Time	discrete	microsimulation	

– Car	following	models	(Krauss,	IDM)
– Lane	change	models
– Road	topology

• Speed	limits
• Traffic	lights
• Access	restrictions
• Turn	restrictions
• ...

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 15

[1] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, "SUMO (Simulation of Urban MObility); An open-source traffic simulation," Proceedings of 4th 
Middle East Symposium on Simulation and Modelling (MESM2002), Sharjah, United Arab Emirates, September 2002, pp. 183-187



Veins
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Veins

• OMNeT++
– Discrete-Event	Simulation	(DES)	kernel

• Simulate	model’s	reaction	to	queue	of	events
– Main	use	case:	network	simulation

• e.g.,	MANETs,	Sensor	nodes

• (Fork	of)	MiXiM
– Model	library	for	OMNeT++	for	PHY	layer	and	mobility	support
– Event	scheduling
– Signal	propagation
– SINR	/	bit	error	calculation
– Radio	switching
– …
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Veins

• Coupling	OMNeT++	and	SUMO
– Synchronize	time	steps
– Exchange	commands	and	status	information
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Veins

• TraCI:	Message	Sequence	Chart

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 19



Simulation	Scenarios

• Freely	available	road	topology	information
– Geodatabase	of	OpenStreetMap	project
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DISCRETE	EVENT	SIMULATION
A	little	bit	of	background
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What	is	a	discrete	simulation?

• Simulation:	reproducing	the	behavior	of	a	real-world	system
– mathematical

• a(t)	=	a0
• v(t)	=	a0	*	t	+	v0
• x(t)	=	a0/2	*	t2 +	v0	*	t	+	x0

– numerical
• a[k]	=	a0
• v[k]	=	v[k-1]	+	a0	*	dT,	with	v[0]	=	v0
• x[k]	=	x[k-1]	+	(v[k]	+	v[k-1])/2	*	dT,	with	x[0]	=	x0
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What	is	a	discrete	simulation?

• Discrete	simulation:	simulation	“exists”	only	in	specific	time	
moments
– time	driven:	sampled	with	a	certain	frequency	(e.g.,	10	Hz)

– event	driven:	evolution	by	the	generation	and	the	consumption	of	events
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Discrete	Event	Simulation:	An	example

• Very	easy	example:	two	nodes	communication

Node	1

Node	2

on init:
scheduleEvent(sendMsg, now + exp(1))
messageCount = 0

on event(event):
if (event == sendMsg) {
send(packet)
scheduleEvent(sendMsg, now + exp(1))

} else {
if (random() > 0.5)
messageCount++      

}

on finish:
saveToFile(messageCount)
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DES	– A	generic	view

init simulation

time	>	
max	time?

pick	next	event

process	event

no

finalize	
simulation

yes
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DES	philosophy

• Be	careful:	philosophy	change	needed
– EVERYTHING	is	an	event

• schedule	events
• handle	events

– events	are	atomic
• no	duration

onStartRx:
beginRx = now
wait(endOfTransmission)
rxDuration = now - beginRx

onStartRx:
beginRx = now

onEndRx:
rxDuration = now - beginRx

WRONG! CORRECT!
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DES	philosophy

• Consider	again	a	network	simulation
– managing	collisions:	when	two	packets	overlap,	they	both	can’t	be	received

Packet	1 Packet	2 Packet	3 Packet	4

onInit:
state = IDLE
recvPackets = {}

onEndRx(packet):
if (not packet.isLost())
sendUp(packet)

recvPackets.del(packet)
if (|recvPackets| == 0)
state = IDLE

onStartRx(packet):
recvPackets.add(packet)
if (state == IDLE)
state = RX

else
for p in recvPackets
p.setLost()
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OMNET++
The	core	network	simulator
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What	is	OMNeT++?

• Discrete	Event	Simulator
– mainly	used	for	network	simulations
– free	for	academic	usage
– multi-platform	and	open	source
– provides	IDE	for	programming	(if	needed)
– provides	GUI	for	simulations	(if	needed)
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Programming	OMNeT++

• Programming	OMNeT++	means	creating	modules:
– NED:	textual	files	defining	parameters	and	gates	of	the	module
– C++:	source	file	defining	the	behavior	of	the	module
– example:	Protocol.ned,	Protocol.h,	Protocol.cc
– in	addition:	.msg (message	files)

• Modules	interconnect	through	gates
• You	can	define	compound	modules	that	do	not	require	a	C++	

implementation
• You	can	implement	C++	classes	with	no	NED
• NED	files	support	inheritance
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Using	the	OMNeT++	IDE

• Good	for	coding,	but	NEVER	build	source	code	from	there	or	run	
them,	except	for	debugging
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Module	example

Network	
Protocol

Network	card

Computer

Channel

Network	
Protocol

Network	card

Computer
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NED	syntax	example

package org.car2x.veins.modules.application.platooning;

import org.car2x.veins.modules.application.ieee80211p.BaseWaveApplLayer;

simple UnicastProtocol extends BaseWaveApplLayer
{

parameters:
//maximum queue size. set to 0 for infinite queue
int queueSize = default(0);
//maximum number of attempts
int maxAttempts = default(16);
//ack timeout
double ackTimeout @unit(s) = default(1ms);
//packet loss rate (between 0 and 1)
double packetLossRate = default(0);

@class(UnicastProtocol);
@display("i=msg/mail");

gates:
input upperControlIn;
output upperControlOut;
input upperLayerIn;
output upperLayerOut;

}
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Compound	module	example

import org.car2x.veins.base.modules.IBaseApplLayer;
[…]
import org.car2x.veins.modules.nic.Nic80211p;

module Car {
parameters:

string scenario_type;
string helper_type;
string appl_type;
string protocol_type;

gates:
input radioIn; // gate for sendDirect

submodules:
[…]
appl: <appl_type> like BaseApp {}
prot: <protocol_type> like BaseProtocol {}
unicast: UnicastProtocol {}
nic: Nic80211p {}
mobility: TraCIMobility {}

connections allowunconnected:
unicast.upperControlIn <-- prot.lowerControlOut;
unicast.upperControlOut --> prot.lowerControlIn;
unicast.upperLayerIn <-- prot.lowerLayerOut;
unicast.upperLayerOut --> prot.lowerLayerIn;
nic.upperLayerIn <-- unicast.lowerLayerOut;
nic.upperLayerOut --> unicast.lowerLayerIn;

radioIn --> nic.radioIn;
}
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OMNeT++	messages

• Defined	in	.msg files

message MyMessage {
int sourceId;
string information;

}

• Automatically	transformed	into	C++	code

class MyMessage : public ::cPacket {
protected:
int sourceId_var;
opp_string information_var;

public:
virtual int getSourceId() const;
virtual void setSourceId(int sourceId);

[…]
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Recording	data

• In	OMNeT++	you	can	record	data	for	statistics
– vector:	time	sequence	of	values	recorded	multiple	times

• cOutVector speed;
• speed.setName(“speed”);
• speed.record(<value>);

– scalars:	single	value	usually	recorded	in	the	finish()	method
• recordScalar(“avgSpeed”,	<value>);

• To	extract	data	from	vectors	please	see	the	scripts	at
– https://github.com/michele-segata/plexe-data-extraction
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C/C++	module	implementation

• Defines	the	following	methods:
– initialize(int stage)
– finish()
– handleMessage(cMessage *msg)

• Uses	the	following	methods:
– simTime()
– scheduleAt(SimTime t,	cMessage *msg)
– send(cMessage *msg,	int gateId)
– cancelEvent(cMessage *msg)
– par(const char*	parName)

• Many	more	things…
– refer	to	OMNeT++	documentation
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Runtime	parameters:	omnetpp.ini

*.node[*].nic.mac1609_4.txPower = 100mW
*.node[*].nic.mac1609_4.bitrate = 6Mbps

*.node[*].nic.phy80211p.useThermalNoise = true
*.node[*].nic.phy80211p.thermalNoise = -95dBm

[Config ConfigName]
extends = OtherConfig

repeat = 10

*.node[*].module.param1 = ${p1 = 1,2}
*.node[*].module.param2 = ${p2 = 3,4}
*.node[*].module.param3 = ${p3 = 7,8 ! p1}

output-vector-file = ${resultdir}/${configname}_${p1}_${p2}_${repetition}.vec
output-scalar-file = ${resultdir}/${configname}_${p1}_${p2}_${repetition}.sca
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Example	tutorial

• Download	source	code	from	course	website
• Building	the	example

• Running	the	examples	(live	demo)
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unzip tictoc.zip
cd tictoc
make –j <number of cores> MODE=<release,debug>

cd simulations
./run [-u Cmdenv] -c TxcSimulation -r 0
./run [-u Cmdenv] -c Txc2Simulation -r 0



Getting	the	code	in	the	IDE

• Open	the	OMNeT++	IDE	(type	omnetpp in	your	terminal)
• Click	on	File	->	Import…	->	General	->	Existing	projects	into	

workspace
• Choose	the	folder	where	the	project	is	located
• Click	Open!

• ./run –a
– Lists	all	the	configurations	with	the	number	of	runs

• ./run –x <CONFIGNAME> -g
– Lists	all	the	runs	for	a	particular	config
– For	each	run,	it	shows	the	parameters	for	that	specific	run
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Example	tutorial

• Content	of	the	tutorial:
– Simple	tic-toc	message	exchange	between	two	nodes

• Version	1:
– Upon	reception	of	a	message,	a	response	is	immediately	sent	back

• Version	2:
– Upon	reception	of	a	message,	a	node	waits	for	some	time	before	replying

• Features	explored:
– C/C++	and	NED	modules,	with	parameters	and	gates
– TicToc.ned network
– Scheduling	events	and	sending	messages	through	gates
– omnetpp.ini configuration	file	with	features
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VEINS	AND	SUMO
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Getting	it	all	together

• OMNeT++:
– a	Discrete	Event	Simulator	mainly	used	for	network	simulations

• SUMO:
– a	time-driven	discrete	simulator	of	vehicular	mobility

• Veins:
– a	vehicular	networking	simulation	framework
– couples	OMNeT++	and	SUMO
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Veins	node	to	vehicle	mapping

1. A	vehicle	is	created	in	SUMO
– via	SUMO	configuration
– via	Veins	manual	injection

2. Veins	is	notified
3. Veins	creates	an	OMNeT++	module

– module	type	and	name	defined	inside	omnetpp.ini or	ned files
• *.manager.moduleType =	"Car”
• *.manager.moduleName =	"node”

– possibility	to	map	SUMO	vehicle	type	to	specific	module
• *.manager.moduleType =	”vtypeauto=Car	vtypeother=OtherCar”
• *.manager.moduleName =	”vtypeauto=node	vtypeother=other”
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Getting	Veins

• Download	Veins	source	code	and	compile	it	(after	OMNeT++)

• Install	SUMO	(version	0.30.0)

• Check	that	SUMO	is	working	by	typing:
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git clone https://github.com/sommer/veins.git
cd veins
./configure
make –j <number of cores> MODE=<release,debug>

sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
apt-get -s install sumo #check that this would install 0.30.0
sudo apt-get install sumo

sumo-gui



The	Veins	Example

• In	one	terminal	start	the	launch	daemon	(we’ll	see	how	to	avoid	
this)

• In	a	second	terminal	launch	the	example	simulation

• The	example	simulates	vehicles	which
– When	stopping	for	more	than	10	s,	send	a	“Traffic	congestion”	message
– Upon	receiving	such	message	a	vehicle

• Re-sends	it	to	other	vehicles
• Chooses	another	route	to	its	destination

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 46

cd veins
./sumo-launchd.py –c sumo-gui

cd veins/examples/veins
./run -u Cmdenv -c WithoutChannelSwitching -r 0



Core	Components/Files

• examples/veins folder:
– Configuration	files:	omnetpp.ini (next	slide),	SUMO	config,	etc.

• src/veins/modules/mobility/traci/TraciScenarioManagerLaunchd.ned

– Default	values	for	moduleType and	moduleName
• string moduleType = default("org.car2x.veins.nodes.Car");
• string moduleName = default("node");

• src/veins/nodes/Car.ned

– Definition	of	a	“car”	node	in	OMNeT++
• Compound	module:	application,	NIC	card,	mobility	module

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 47



omnetpp.ini

[General]
[…]
network = RSUExampleScenario
[…]
*.manager.updateInterval = 1s
*.manager.host = "localhost"
*.manager.port = 9999
*.manager.launchConfig = xmldoc("erlangen.launchd.xml")
[…]
*.rsu[0].mobility.x = 2000
*.rsu[0].mobility.y = 2000
*.rsu[0].mobility.z = 3
*.rsu[*].applType = "TraCIDemoRSU11p”
[…]
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Definition	of	the	simulation	network,	which	statically	creates	
an	802.11p	base	station.	

Nodes	position	update	interval,	and	launch	daemon	parameters.	
The	“forker”	is	a	more	handy	way	of	launching	the	simulations.	
Change	src/veins/nodes/Scenario.ned:
• import 

org.car2x.veins.modules.mobility.traci.TraCIScenarioManagerFor
ker;

• manager: TraCIScenarioManagerForker {

Change	omnetpp.ini configuration:
• *.manager.configFile = "erlangen.sumo.cfg"
• *.manager.commandLine = "sumo-gui --remote-port $port --seed 

$seed --configuration-file $configFile"

Sets	the	position	of	the	RSU	and	which	application	it	runs.	You	have	
to	search	for	the	TraCIDemoRSU11p.{ned,h,cc} files



omnetpp.ini

[…]
*.**.nic.mac1609_4.txPower = 20mW
*.**.nic.mac1609_4.bitrate = 6Mbps
*.**.nic.phy80211p.sensitivity = -89dBm
*.**.nic.phy80211p.useThermalNoise = true
*.**.nic.phy80211p.thermalNoise = -110dBm
[…]
*.node[*].applType = "TraCIDemo11p”
[…]
[Config WithoutChannelSwitching]
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Sets	MAC/PHY	layer	parameters	for	ALL	nodes,	both	RSU	and	
cars.	Tricky	question:	Why?

Sets	the	application	run	by	car	nodes.	You	have	to	search	for	the	
TraCIDemo11p.{ned,h,cc} files

Create	a	configuration	named	WithoutChannelSwitching.	If	
no	extends is	specified,	the	configuration	inherits	from	General



TraCIDemo11p	Source	Code

#include "veins/modules/application/traci/TraCIDemo11p.h"

Define_Module(TraCIDemo11p);

void TraCIDemo11p::initialize(int stage) {
BaseWaveApplLayer::initialize(stage);
if (stage == 0) {

sentMessage = false;
lastDroveAt = simTime();
currentSubscribedServiceId = -1;

}
}
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TraCIDemo11p	Source	Code

void TraCIDemo11p::handlePositionUpdate(cObject* obj) {
BaseWaveApplLayer::handlePositionUpdate(obj);

// stopped for for at least 10s?
if (mobility->getSpeed() < 1) {

if (simTime() - lastDroveAt >= 10 && sentMessage == false) {
sentMessage = true;

WaveShortMessage* wsm = new WaveShortMessage();
populateWSM(wsm);
wsm->setWsmData(mobility->getRoadId().c_str());

//host is standing still due to crash
if (dataOnSch) {

startService(Channels::SCH2, 42, "Traffic Information Service");
//started service and server advertising, schedule message to self to send later
scheduleAt(computeAsynchronousSendingTime(1,type_SCH),wsm);

}
else {

//send right away on CCH, because channel switching is disabled
sendDown(wsm);

}
}

}
else {

lastDroveAt = simTime();
}

}
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TraCIDemo11p	Source	Code

void TraCIDemo11p::onWSA(WaveServiceAdvertisment* wsa) {
if (currentSubscribedServiceId == -1) {

mac->changeServiceChannel(wsa->getTargetChannel());
currentSubscribedServiceId = wsa->getPsid();
if (currentOfferedServiceId != wsa->getPsid()) {

stopService();
startService((Channels::ChannelNumber) wsa->getTargetChannel(), wsa->getPsid(), "Mirrored Traffic 

Service");
}

}
}
void TraCIDemo11p::onWSM(WaveShortMessage* wsm) {

findHost()->getDisplayString().updateWith("r=16,green");

if (mobility->getRoadId()[0] != ':') traciVehicle->changeRoute(wsm->getWsmData(), 9999);
if (!sentMessage) {

sentMessage = true;
//repeat the received traffic update once in 2 seconds plus some random delay
wsm->setSenderAddress(myId);
wsm->setSerial(3);
scheduleAt(simTime() + 2 + uniform(0.01,0.2), wsm->dup());

}
}
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TraCIDemo11p	Source	Code

void TraCIDemo11p::handleSelfMsg(cMessage* msg) {
if (WaveShortMessage* wsm = dynamic_cast<WaveShortMessage*>(msg)) {

//send this message on the service channel until the counter is 3 or higher.
//this code only runs when channel switching is enabled
sendDown(wsm->dup());
wsm->setSerial(wsm->getSerial() +1);
if (wsm->getSerial() >= 3) { //stop service advertisements

stopService();
delete(wsm);

}
else {

scheduleAt(simTime()+1, wsm);
}

}
else {

BaseWaveApplLayer::handleSelfMsg(msg);
}

}
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