
Michele	Segata,	Renato	Lo	Cigno - University	of	Trento

with	special	thanks	to
Falko Dressler,	Christoph	Sommer,	Bastian	Bloessl,	Stefan Joerer,	David	Eckhoff

Wireless	Mesh	and	Vehicular	Networks

Simulation	of	Vehicular	Networks

An	outline

A	(rough)	outline	of	the	Vehicular	Networks	topics
• Application:	why	VN?
• Communication:	technologies,	alternatives,	protocols,	challenges
• Simulation: evaluating	vehicular	networks	without	vehicles	and	

without	networks.	Tools	and	models

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 2

SIMULATION

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 3

Approaches	to	Performance	Evaluation

• Field	Operational	Tests
+	Highest	degree	of	realism
- no	in-depth	investigations	of	network	behavior
- Non-suppressible	side	effects
- Limited	extrapolation	from	field	operational	tests

• Analytical	evaluation
+	Closed-form	description	allows	for	far-reaching	conclusions
- May	need	to	oversimplify	complex	systems

• Simulation
– Can	serve	as	middle	ground

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 4

GM/CMU

100m 200m 300m

1
MBit/

s

11
MBit/s

54
MBit/s

b

a

g

Requirements	for	Simulation

• Models
– Network	protocol	layers
– Radio	propagation
– Node	mobility
– Model	of	approach	to	be	investigated	(e.g.,	flooding)

• Scenarios
– Road	geometry,	traffic	lights,	meta	information
– Normal	traffic	pattern
– Scenario	of	use	case	to	be	investigated	(e.g.,	accident)

• Metrics
– Network	traffic	metrics	(delay,	load,	…)
– Road	traffic	metrics	(travel	time,	stopping	time,	emissions,	…)
– Metric	of	use	case	to	be	investigated	(e.g.,	time	until	jam	resolved)

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 5

Modeling	Network	Protocols

• Dedicated	simulation	tools
– Discrete	Event	Simulation	(DES)	kernel
– Manages	queue	of	events	(e.g.,	“an	IP	fragment	was	received”)
– Delivers	events	to	simulation	models

• Model	libraries
– Simulate	components’	reaction	to	events
– E.g.,	HTTP	server,	TCP	state	machine,	radio	channel,	human,	…
– “when	enough	IP	fragments	received ⇨ tell	TCP:	packet	received”	

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 6

Engine Language Library Language

OMNeT++ C++ MiXiM C++

ns-2	/	ns-3 C++ ns-2	/	ns-3 Objective	Tcl /	Python

JiST Java SWANS Java

ONE

TWO

Modeling	Radio	Channel

• Simple	model:	unit	disk
– Fixed	radio	“range”
– Node	within	range
⬄ packet	received

• Enhanced	models:
– For	each	packet,	consider

• Signal	strength
• Interference	(other	radios)
• Noise	(e.g.,	thermal	noise)

– Calculate	“signal	to	noise	and	
interference	ratio”	(SNIR)

– Derive	packet	error	rate	(PER)

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 7

100%

0%

12.3%

Modeling	Radio	Propagation

• Signal	attenuation
– Received	power	depends	on	transmitted	power,	antenna	gains,	and	path	loss

• Free	space	path	loss

• Empirical	free	space	path	loss

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 8

Modeling	Radio	Propagation

• Two	Ray	Interference	path	loss

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 9

Modeling	Radio	Propagation

• Comparison:	Two	Ray	Interference	vs.	Free	Space

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 10

Modeling	Mobility

• Traditional	approach	in	network	simulation:
Random	Waypoint	(RWP)
– „pick	destination,	move	there,	repeat“

• First	adaptation	to	vehicular	movement
– Add	mass,	inertia
– Add	restriction	to	“roads”
– Add	angular	restrictions

• Problem
– Very	unrealistic	(longitudinal)	mobility	pattern

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 11

[1] J. Yoon, M. Liu, and B. Noble, "Random waypoint considered harmful," Proceedings of 22nd IEEE Conference on Computer Communications (IEEE INFOCOM
2003), vol. 2, San Francisco, CA, March 2003, pp. 1312-1321

Modeling	Mobility

• First	approach:	Replay	recorded	trace	data
– Use	GPS
– Install	in	Taxi,	Bus,	…
– Highest	degree	of	realism

• Problems:
– Invariant	scenario
– No	extrapolation

• To	other	vehicles
(cars,	trucks,	…)

• To	more	vehicles
• To	fewer	vehicles

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 12

[1] V. Naumov, R. Baumann, and T. Gross, "An evaluation of inter-vehicle ad hoc networks based on realistic vehicular traces," Proceedings of 7th ACM
International Symposium on Mobile Ad Hoc Networking and Computing (ACM Mobihoc 2006), Florence, Italy, March 2006, pp. 108-119

[2] M. Fiore, J. Härri, F. Filali, and C. Bonnet, "Vehicular Mobility Simulation for VANETs," Proceedings of 40th Annual Simulation Symposium (ANSS 2007), March
2007, pp. 301-309

[3] H-Y. Huang, P-E. Luo, M. Li, D. Li, X. Li, W. Shu, and M-Y. Wu, "Performance Evaluation of SUVnet With Real-Time Traffic Data," IEEE Transactions on
Vehicular Technology, vol. 56 (6), pp. 3381-3396, November 2007

Network	Simulation

B.	Real-world	
traces

Modeling	Mobility

• Replay	artificial	trace	data
– Microsimulation	of	road	traffic
– Pre-computation	or	live	simulation
– Problem:	how	to	investigate	traffic	information	systems	(TIS)?

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 13

[1] C. Sommer, I. Dietrich, and F. Dressler, "Realistic Simulation of Network Protocols in VANET Scenarios," Proceedings of 26th IEEE Conference on
Computer Communications (INFOCOM 2007): IEEE Workshop on Mobile Networking for Vehicular Environments (MOVE 2007), Poster Session, Anchorage, AK, May
2007, pp. 139-143

[2] B. Raney, A. Voellmy, N. Cetin, M. Vrtic, and K. Nagel, "Towards a Microscopic Traffic Simulation of All of Switzerland," Proceedings of International
Conference on Computational Science (ICCS 2002), Amsterdam, The Netherlands, April 2002, pp. 371-380

[3] M. Treiber, A. Hennecke, and D. Helbing, "Congested Traffic States in Empirical Observations and Microscopic Simulations," Physical Review E, vol. 62,
pp. 1805, 2000

Network	Simulation Road	Traffic	Simulation

C.	Micro-
simulation

Modeling	Mobility

• Bidirectional	coupling
– Network	traffic	can	influence	road	traffic

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 14

[1] C. Sommer, Z. Yao, R. German, and F. Dressler, "On the Need for Bidirectional Coupling of Road Traffic Microsimulation and Network Simulation,"
Proceedings of 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc 2008): 1st ACM International Workshop on Mobility
Models for Networking Research (MobilityModels 2008), Hong Kong, China, May 2008, pp. 41-48

[2] C. Sommer, R. German, and F. Dressler, "Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis," IEEE Transactions
on Mobile Computing, 2010. (to appear)

Network	Simulation Road	Traffic	Simulation

D.	Bidirect.	
coupling

Modeling	Road	Traffic

• Road	traffic	microsimulation
– Ex.:	SUMO	– Simulation	of	Urban	Mobility
– Time	discrete	microsimulation	

– Car	following	models	(Krauss,	IDM)
– Lane	change	models
– Road	topology

• Speed	limits
• Traffic	lights
• Access	restrictions
• Turn	restrictions
• ...

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 15

[1] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, "SUMO (Simulation of Urban MObility); An open-source traffic simulation," Proceedings of 4th
Middle East Symposium on Simulation and Modelling (MESM2002), Sharjah, United Arab Emirates, September 2002, pp. 183-187

Veins

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 16

http://veins.car2x.org

[1] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE Transactions on Mobile
Computing, vol. 10, no. 1.

[2] C. Sommer, Z. Yao, R. German, and F. Dressler, “Simulating the Influence of IVC on Road Traffic using Bidirectionally Coupled Simulators,” in 27th IEEE Conference
on Computer Communications (INFOCOM 2008), Phoenix, AZ: IEEE, April 2008.

Veins

• OMNeT++
– Discrete-Event	Simulation	(DES)	kernel

• Simulate	model’s	reaction	to	queue	of	events
– Main	use	case:	network	simulation

• e.g.,	MANETs,	Sensor	nodes

• (Fork	of)	MiXiM
– Model	library	for	OMNeT++	for	PHY	layer	and	mobility	support
– Event	scheduling
– Signal	propagation
– SINR	/	bit	error	calculation
– Radio	switching
– …

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 17

[1] A. Varga, "The OMNeT++ Discrete Event Simulation System," Proceedings of European Simulation Multiconference (ESM 2001), Prague, Czech Republic,
June 2001

Veins

• Coupling	OMNeT++	and	SUMO
– Synchronize	time	steps
– Exchange	commands	and	status	information

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 18

Veins

• TraCI:	Message	Sequence	Chart

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 19

Simulation	Scenarios

• Freely	available	road	topology	information
– Geodatabase	of	OpenStreetMap	project

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 20

DISCRETE	EVENT	SIMULATION
A	little	bit	of	background

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 21

What	is	a	discrete	simulation?

• Simulation:	reproducing	the	behavior	of	a	real-world	system
– mathematical

• a(t)	=	a0
• v(t)	=	a0	*	t	+	v0
• x(t)	=	a0/2	*	t2 +	v0	*	t	+	x0

– numerical
• a[k]	=	a0
• v[k]	=	v[k-1]	+	a0	*	dT,	with	v[0]	=	v0
• x[k]	=	x[k-1]	+	(v[k]	+	v[k-1])/2	*	dT,	with	x[0]	=	x0

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 22

What	is	a	discrete	simulation?

• Discrete	simulation:	simulation	“exists”	only	in	specific	time	
moments
– time	driven:	sampled	with	a	certain	frequency	(e.g.,	10	Hz)

– event	driven:	evolution	by	the	generation	and	the	consumption	of	events

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 23

Discrete	Event	Simulation:	An	example

• Very	easy	example:	two	nodes	communication

Node	1

Node	2

on init:
scheduleEvent(sendMsg, now + exp(1))
messageCount = 0

on event(event):
if (event == sendMsg) {
send(packet)
scheduleEvent(sendMsg, now + exp(1))

} else {
if (random() > 0.5)
messageCount++

}

on finish:
saveToFile(messageCount)

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 24

DES	– A	generic	view

init simulation

time	>	
max	time?

pick	next	event

process	event

no

finalize	
simulation

yes

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 25

DES	philosophy

• Be	careful:	philosophy	change	needed
– EVERYTHING	is	an	event

• schedule	events
• handle	events

– events	are	atomic
• no	duration

onStartRx:
beginRx = now
wait(endOfTransmission)
rxDuration = now - beginRx

onStartRx:
beginRx = now

onEndRx:
rxDuration = now - beginRx

WRONG! CORRECT!

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 26

DES	philosophy

• Consider	again	a	network	simulation
– managing	collisions:	when	two	packets	overlap,	they	both	can’t	be	received

Packet	1 Packet	2 Packet	3 Packet	4

onInit:
state = IDLE
recvPackets = {}

onEndRx(packet):
if (not packet.isLost())
sendUp(packet)

recvPackets.del(packet)
if (|recvPackets| == 0)
state = IDLE

onStartRx(packet):
recvPackets.add(packet)
if (state == IDLE)
state = RX

else
for p in recvPackets
p.setLost()

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 27

OMNET++
The	core	network	simulator

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 28

What	is	OMNeT++?

• Discrete	Event	Simulator
– mainly	used	for	network	simulations
– free	for	academic	usage
– multi-platform	and	open	source
– provides	IDE	for	programming	(if	needed)
– provides	GUI	for	simulations	(if	needed)

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 29

Programming	OMNeT++

• Programming	OMNeT++	means	creating	modules:
– NED:	textual	files	defining	parameters	and	gates	of	the	module
– C++:	source	file	defining	the	behavior	of	the	module
– example:	Protocol.ned,	Protocol.h,	Protocol.cc
– in	addition:	.msg (message	files)

• Modules	interconnect	through	gates
• You	can	define	compound	modules	that	do	not	require	a	C++	

implementation
• You	can	implement	C++	classes	with	no	NED
• NED	files	support	inheritance

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 30

Using	the	OMNeT++	IDE

• Good	for	coding,	but	NEVER	build	source	code	from	there	or	run	
them,	except	for	debugging

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 31

Module	example

Network	
Protocol

Network	card

Computer

Channel

Network	
Protocol

Network	card

Computer

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 32

NED	syntax	example

package org.car2x.veins.modules.application.platooning;

import org.car2x.veins.modules.application.ieee80211p.BaseWaveApplLayer;

simple UnicastProtocol extends BaseWaveApplLayer
{

parameters:
//maximum queue size. set to 0 for infinite queue
int queueSize = default(0);
//maximum number of attempts
int maxAttempts = default(16);
//ack timeout
double ackTimeout @unit(s) = default(1ms);
//packet loss rate (between 0 and 1)
double packetLossRate = default(0);

@class(UnicastProtocol);
@display("i=msg/mail");

gates:
input upperControlIn;
output upperControlOut;
input upperLayerIn;
output upperLayerOut;

}

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 33

Compound	module	example

import org.car2x.veins.base.modules.IBaseApplLayer;
[…]
import org.car2x.veins.modules.nic.Nic80211p;

module Car {
parameters:

string scenario_type;
string helper_type;
string appl_type;
string protocol_type;

gates:
input radioIn; // gate for sendDirect

submodules:
[…]
appl: <appl_type> like BaseApp {}
prot: <protocol_type> like BaseProtocol {}
unicast: UnicastProtocol {}
nic: Nic80211p {}
mobility: TraCIMobility {}

connections allowunconnected:
unicast.upperControlIn <-- prot.lowerControlOut;
unicast.upperControlOut --> prot.lowerControlIn;
unicast.upperLayerIn <-- prot.lowerLayerOut;
unicast.upperLayerOut --> prot.lowerLayerIn;
nic.upperLayerIn <-- unicast.lowerLayerOut;
nic.upperLayerOut --> unicast.lowerLayerIn;

radioIn --> nic.radioIn;
}

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 34

OMNeT++	messages

• Defined	in	.msg files

message MyMessage {
int sourceId;
string information;

}

• Automatically	transformed	into	C++	code

class MyMessage : public ::cPacket {
protected:
int sourceId_var;
opp_string information_var;

public:
virtual int getSourceId() const;
virtual void setSourceId(int sourceId);

[…]

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 35

Recording	data

• In	OMNeT++	you	can	record	data	for	statistics
– vector:	time	sequence	of	values	recorded	multiple	times

• cOutVector speed;
• speed.setName(“speed”);
• speed.record(<value>);

– scalars:	single	value	usually	recorded	in	the	finish()	method
• recordScalar(“avgSpeed”,	<value>);

• To	extract	data	from	vectors	please	see	the	scripts	at
– https://github.com/michele-segata/plexe-data-extraction

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 36

C/C++	module	implementation

• Defines	the	following	methods:
– initialize(int stage)
– finish()
– handleMessage(cMessage *msg)

• Uses	the	following	methods:
– simTime()
– scheduleAt(SimTime t,	cMessage *msg)
– send(cMessage *msg,	int gateId)
– cancelEvent(cMessage *msg)
– par(const char*	parName)

• Many	more	things…
– refer	to	OMNeT++	documentation

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 37

Runtime	parameters:	omnetpp.ini

.node[].nic.mac1609_4.txPower = 100mW
.node[].nic.mac1609_4.bitrate = 6Mbps

.node[].nic.phy80211p.useThermalNoise = true
.node[].nic.phy80211p.thermalNoise = -95dBm

[Config ConfigName]
extends = OtherConfig

repeat = 10

.node[].module.param1 = ${p1 = 1,2}
.node[].module.param2 = ${p2 = 3,4}
.node[].module.param3 = ${p3 = 7,8 ! p1}

output-vector-file = ${resultdir}/${configname}_${p1}_${p2}_${repetition}.vec
output-scalar-file = ${resultdir}/${configname}_${p1}_${p2}_${repetition}.sca

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 38

Example	tutorial

• Download	source	code	from	course	website
• Building	the	example

• Running	the	examples	(live	demo)

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 39

unzip tictoc.zip
cd tictoc
make –j <number of cores> MODE=<release,debug>

cd simulations
./run [-u Cmdenv] -c TxcSimulation -r 0
./run [-u Cmdenv] -c Txc2Simulation -r 0

Getting	the	code	in	the	IDE

• Open	the	OMNeT++	IDE	(type	omnetpp in	your	terminal)
• Click	on	File	->	Import…	->	General	->	Existing	projects	into	

workspace
• Choose	the	folder	where	the	project	is	located
• Click	Open!

• ./run –a
– Lists	all	the	configurations	with	the	number	of	runs

• ./run –x <CONFIGNAME> -g
– Lists	all	the	runs	for	a	particular	config
– For	each	run,	it	shows	the	parameters	for	that	specific	run

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 40

Example	tutorial

• Content	of	the	tutorial:
– Simple	tic-toc	message	exchange	between	two	nodes

• Version	1:
– Upon	reception	of	a	message,	a	response	is	immediately	sent	back

• Version	2:
– Upon	reception	of	a	message,	a	node	waits	for	some	time	before	replying

• Features	explored:
– C/C++	and	NED	modules,	with	parameters	and	gates
– TicToc.ned network
– Scheduling	events	and	sending	messages	through	gates
– omnetpp.ini configuration	file	with	features

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 41

VEINS	AND	SUMO

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 42

Getting	it	all	together

• OMNeT++:
– a	Discrete	Event	Simulator	mainly	used	for	network	simulations

• SUMO:
– a	time-driven	discrete	simulator	of	vehicular	mobility

• Veins:
– a	vehicular	networking	simulation	framework
– couples	OMNeT++	and	SUMO

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 43

Veins	node	to	vehicle	mapping

1. A	vehicle	is	created	in	SUMO
– via	SUMO	configuration
– via	Veins	manual	injection

2. Veins	is	notified
3. Veins	creates	an	OMNeT++	module

– module	type	and	name	defined	inside	omnetpp.ini or	ned files
• *.manager.moduleType =	"Car”
• *.manager.moduleName =	"node”

– possibility	to	map	SUMO	vehicle	type	to	specific	module
• *.manager.moduleType =	”vtypeauto=Car	vtypeother=OtherCar”
• *.manager.moduleName =	”vtypeauto=node	vtypeother=other”

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 44

Getting	Veins

• Download	Veins	source	code	and	compile	it	(after	OMNeT++)

• Install	SUMO	(version	0.30.0)

• Check	that	SUMO	is	working	by	typing:

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 45

git clone https://github.com/sommer/veins.git
cd veins
./configure
make –j <number of cores> MODE=<release,debug>

sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
apt-get -s install sumo #check that this would install 0.30.0
sudo apt-get install sumo

sumo-gui

The	Veins	Example

• In	one	terminal	start	the	launch	daemon	(we’ll	see	how	to	avoid	
this)

• In	a	second	terminal	launch	the	example	simulation

• The	example	simulates	vehicles	which
– When	stopping	for	more	than	10	s,	send	a	“Traffic	congestion”	message
– Upon	receiving	such	message	a	vehicle

• Re-sends	it	to	other	vehicles
• Chooses	another	route	to	its	destination

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 46

cd veins
./sumo-launchd.py –c sumo-gui

cd veins/examples/veins
./run -u Cmdenv -c WithoutChannelSwitching -r 0

Core	Components/Files

• examples/veins folder:
– Configuration	files:	omnetpp.ini (next	slide),	SUMO	config,	etc.

• src/veins/modules/mobility/traci/TraciScenarioManagerLaunchd.ned

– Default	values	for	moduleType and	moduleName
• string moduleType = default("org.car2x.veins.nodes.Car");
• string moduleName = default("node");

• src/veins/nodes/Car.ned

– Definition	of	a	“car”	node	in	OMNeT++
• Compound	module:	application,	NIC	card,	mobility	module

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 47

omnetpp.ini

[General]
[…]
network = RSUExampleScenario
[…]
*.manager.updateInterval = 1s
*.manager.host = "localhost"
*.manager.port = 9999
*.manager.launchConfig = xmldoc("erlangen.launchd.xml")
[…]
*.rsu[0].mobility.x = 2000
*.rsu[0].mobility.y = 2000
*.rsu[0].mobility.z = 3
.rsu[].applType = "TraCIDemoRSU11p”
[…]

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 48

Definition	of	the	simulation	network,	which	statically	creates	
an	802.11p	base	station.	

Nodes	position	update	interval,	and	launch	daemon	parameters.	
The	“forker”	is	a	more	handy	way	of	launching	the	simulations.	
Change	src/veins/nodes/Scenario.ned:
• import

org.car2x.veins.modules.mobility.traci.TraCIScenarioManagerFor
ker;

• manager: TraCIScenarioManagerForker {

Change	omnetpp.ini configuration:
• *.manager.configFile = "erlangen.sumo.cfg"
• *.manager.commandLine = "sumo-gui --remote-port $port --seed

$seed --configuration-file $configFile"

Sets	the	position	of	the	RSU	and	which	application	it	runs.	You	have	
to	search	for	the	TraCIDemoRSU11p.{ned,h,cc} files

omnetpp.ini

[…]
*.**.nic.mac1609_4.txPower = 20mW
*.**.nic.mac1609_4.bitrate = 6Mbps
*.**.nic.phy80211p.sensitivity = -89dBm
*.**.nic.phy80211p.useThermalNoise = true
*.**.nic.phy80211p.thermalNoise = -110dBm
[…]
.node[].applType = "TraCIDemo11p”
[…]
[Config WithoutChannelSwitching]

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 49

Sets	MAC/PHY	layer	parameters	for	ALL	nodes,	both	RSU	and	
cars.	Tricky	question:	Why?

Sets	the	application	run	by	car	nodes.	You	have	to	search	for	the	
TraCIDemo11p.{ned,h,cc} files

Create	a	configuration	named	WithoutChannelSwitching.	If	
no	extends is	specified,	the	configuration	inherits	from	General

TraCIDemo11p	Source	Code

#include "veins/modules/application/traci/TraCIDemo11p.h"

Define_Module(TraCIDemo11p);

void TraCIDemo11p::initialize(int stage) {
BaseWaveApplLayer::initialize(stage);
if (stage == 0) {

sentMessage = false;
lastDroveAt = simTime();
currentSubscribedServiceId = -1;

}
}

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 50

TraCIDemo11p	Source	Code

void TraCIDemo11p::handlePositionUpdate(cObject* obj) {
BaseWaveApplLayer::handlePositionUpdate(obj);

// stopped for for at least 10s?
if (mobility->getSpeed() < 1) {

if (simTime() - lastDroveAt >= 10 && sentMessage == false) {
sentMessage = true;

WaveShortMessage* wsm = new WaveShortMessage();
populateWSM(wsm);
wsm->setWsmData(mobility->getRoadId().c_str());

//host is standing still due to crash
if (dataOnSch) {

startService(Channels::SCH2, 42, "Traffic Information Service");
//started service and server advertising, schedule message to self to send later
scheduleAt(computeAsynchronousSendingTime(1,type_SCH),wsm);

}
else {

//send right away on CCH, because channel switching is disabled
sendDown(wsm);

}
}

}
else {

lastDroveAt = simTime();
}

}

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 51

TraCIDemo11p	Source	Code

void TraCIDemo11p::onWSA(WaveServiceAdvertisment* wsa) {
if (currentSubscribedServiceId == -1) {

mac->changeServiceChannel(wsa->getTargetChannel());
currentSubscribedServiceId = wsa->getPsid();
if (currentOfferedServiceId != wsa->getPsid()) {

stopService();
startService((Channels::ChannelNumber) wsa->getTargetChannel(), wsa->getPsid(), "Mirrored Traffic

Service");
}

}
}
void TraCIDemo11p::onWSM(WaveShortMessage* wsm) {

findHost()->getDisplayString().updateWith("r=16,green");

if (mobility->getRoadId()[0] != ':') traciVehicle->changeRoute(wsm->getWsmData(), 9999);
if (!sentMessage) {

sentMessage = true;
//repeat the received traffic update once in 2 seconds plus some random delay
wsm->setSenderAddress(myId);
wsm->setSerial(3);
scheduleAt(simTime() + 2 + uniform(0.01,0.2), wsm->dup());

}
}

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 52

TraCIDemo11p	Source	Code

void TraCIDemo11p::handleSelfMsg(cMessage* msg) {
if (WaveShortMessage* wsm = dynamic_cast<WaveShortMessage*>(msg)) {

//send this message on the service channel until the counter is 3 or higher.
//this code only runs when channel switching is enabled
sendDown(wsm->dup());
wsm->setSerial(wsm->getSerial() +1);
if (wsm->getSerial() >= 3) { //stop service advertisements

stopService();
delete(wsm);

}
else {

scheduleAt(simTime()+1, wsm);
}

}
else {

BaseWaveApplLayer::handleSelfMsg(msg);
}

}

Wireless Mesh & Vehicular Networks - Simulation of Vehicular Networks 53

