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Motivation

• Taxonomy	of	Use	Cases
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Technology

• Communication	paradigms	and	media
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An	outline

A	(rough)	outline	of	the	Vehicular	Networks	topics
• Application:	why	VN?
• Communication:	technologies,	alternatives,	protocols,	challenges
• Simulation: evaluating	vehicular	networks	without	vehicles	and	

without	networks.	Tools	and	models
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COMMUNICATION	TECHNOLOGIES
(Some	of	them)
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Cellular	networks

• Concept
– Divide	world	into	cells,	each	served	by	base	station
– Allows,	e.g.,	frequency	reuse	in	FDMA
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Cellular	networks

• Strict	hierarchy	of	network	components
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Cellular	networks

• Can	UMTS	support	Car-to-X	communication?
– Ex:	UTRA	FDD	Release	99	(W-CDMA)
– Speed	of	vehicles	not	a	limiting	factor

• Field	operational	tests	at	290	km/h	show	signal	drops	only	after	sudden	braking	
(⇨ handover	prediction	failures)

– Open	questions
• Delay
• Capacity

• Channels	in	UMTS
– Shared	channels

• E.g.,	Random	Access	Channel	(RACH),	uplink
and	Forward	Access	Channel	(FACH),	downlink

– Dedicated	channels
• E.g.,	Dedicated	Transport	Channel	(DCH),	up-/downlink
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Cellular	networks

• FACH
– Time	slots	managed	by	base	station
– Delay	on	the	order	of	10	ms per	40	Byte	and	UE
– Capacity	severely	limited	(in	non-multicast	networks)
– Need	to	know	current	cell	of	UE

• RACH
– Slotted	ALOHA	– random	access	by	UEs

• Power	ramping	with	Acquisition	Indication
– Delay	approx.	50	ms

per	60	Byte	and	UE
– Massive	interference	

with	other	UEs
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Cellular	networks

• DCH
– Delay:	approx.		250	ms /	2	s	/	10	s	for	channel	establishment

• Depends	on	how	fine-grained	UE	position	is	known
– Maintaining	a	DCH	is	expensive

• Closed-Loop	Power	Control	(no	interference	of	other	UEs)
• Handover	between	cells

– Upper	limit	of	approx.	100	UEs
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Cellular	networks

• So:	can	UMTS	support	Car-to-X	communication?
– At	low	market	penetration:	yes
– Eventually:

• Need	to	invest	in	much	smaller	cells	(e.g.,	along	freeways)
• Need	to	implement	multicast	functionality	(MBMS)

– Main	use	case	for	UMTS:	centralized	services
• Ex.:	Google	Maps	Traffic

– Collect	information	from	UMTS	devices
– Storage	of	data	on	central	server
– Dissemination	via	Internet	(⇨ ideal	for	cellular	networks)
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IEEE	802.11p

• IEEE	802.11{a,b,g,n,ac}	for	Car-to-X	communication?
– Can’t	be	in	infrastructure	mode	and

ad	hoc	mode	at	the	same	time
– Switching	time	consuming
– Association	time	consuming
– No	integral	within-network	security
– (Massively)	shared

spectrum	(⇨ ISM)
– No	integral	QoS
– Multi-path	effects

reduce	range
and	speed
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IEEE	802.11p

• New	lower	layers	for	
“Wireless	Access	in	Vehicular	Environments”	(WAVE)
– PHY	layer	mostly	identical	to	IEEE	802.11a

• Variant	with	OFDM	and	16	QAM
• Higher	demands	on	tolerances
• Reduction	of	inter	symbol	interference

because	of	multi-path	effects
– Double	timing	parameters
– Channel	bandwidth	down	to	10	MHz	(from	20	MHz)
– Throughput	down	to	3	...	27	Mbit/s	(from	6	...	54	Mbit/s)
– Range	up	to	1000	m,	speed	up	to	200	km/h

– MAC	layer	of	IEEE	802.11a	plus	extensions
• Random	MAC	Address
• QoS (EDCA	priority	access,	cf.	IEEE	802.11e,	...)
• Multi-Frequency	and	Multi-Radio	capabilities
• New	Ad	Hoc	mode
• ...
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IEEE	802.11p	- OFDM	Signal

• How	does	it	look	like?
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IEEE	802.11p

• Classic	IEEE	802.11	Basic	Service	Set	(BSS)
– Divides	networks	into	logical	units

• Nodes	belong	to	(exactly	one)	BSS
• Packets	contain	BSSID
• Nodes	ignore	packets	from	“foreign”	BSSs
• Exception:	Wildcard-BSSID	(-1)	for	probes
• Ad	hoc	networks	emulate	infrastructure	mode

– Joining	a	BSS
• Access	Point	sends	beacon
• Authentication	dialogue
• Association	dialogue
• Node	has	joined	BSS

Wireless Mesh & Vehicular Networks - Technologies, Beaconing, and Routing in Vehicular Networks
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IEEE	802.11p

• New:	802.11	OCB	Mode	(Outside	of	the	Context	of	a	BSS)
– Default	mode	of	nodes	in	WAVE
– Nodes	may	always	use	Wildcard	BSS	in	packets
– Nodes	will	always	receive	Wildcard	BSS	packets
– May	join	BSS	and	still	use	Wildcard	BSS
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IEEE	802.11p	- MAC

• IEEE	802.11	Hybrid	Coordination	Function	(HCF)
– cf.	IEEE	802.11e	EDCA
– DIFS	⇨ AIFS	(Arbitration	Inter-Frame	Space)

• DCF	⇨ EDCA	(Enhanced	Distributed	Channel	Access)

– Classify	user	data	into	4	ACs	(Access	Categories)
• AC0	(lowest	priority)	
• …
• AC3	(highest	priority)

– Each	ACs	has	different...
• CWmin,	CWmax,	AIFS,	TXOP	limit	(max.	continuous	transmissions)

– Management	data	uses	DIFS	(not	AIFS)
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• Map	8	user	priorities	⇨ 4	access	categories	⇨ 4	queues
• Queues	compete	independently	for	medium	access

IEEE	802.11p
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• Parameterization

• Sample	queue	configuration

IEEE	802.11p

Parameter Value

SlotTime 13µs

SIFS 32µs

CWmin 15

CWmax 1023

Bandwidth 3	..	27	mbit/s

Parameter AC_BK AC_BE AC_VI AC_VO

CWmin CWmin CWmin (CWmin+1)/2-1 (CWmin+1)/4-1

CWmax CWmax CWmax CWmin (CWmin+1)/2-1

AIFSn 9 6 3 2



AC_VO AC_VI AC_BE AC_BK

Channel	Access

Backoff:				0 0 0 0

IEEE	802.11p
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AC_VO AC_VI AC_BE AC_BK

Backoff:				0 0 0 0

Channel	busy?

Start	Contention

Wait	for	Idle

IEEE	802.11p
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Channel	Access



AC_VO AC_VI AC_BE AC_BK

0 0 0

Backoff	0?

Wait	AIFS	(SIFS	+	AIFSn *	Slot	len)

Wait	for	backoff	=	0

Backoff:				0

IEEE	802.11p
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Backoff:				0

AC_VO AC_VI AC_BE AC_BK

Backoff:				2 0 0 0

Transmission	
Over

Post	Transmit
Backoff

IEEE	802.11p
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2

AC_VO AC_VI AC_BE AC_BK

Backoff:				2 0 0 0

AC_VI	Queue	ready	to	
send…	wait	AIFS Backoff

Ch becomes
busy

IEEE	802.11p
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Backoff:				2 21

AC_VO AC_VI AC_BE AC_BK

Backoff:				1 0 0Channel
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Channel	busy

[Slot	time	passed]
/Decrement	Backoff

Channel	state
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Backoff:				0 0

IEEE	802.11p
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• QoS	in	WAVE
– mean	waiting	time	for	channel	access,	given	sample	configuration	(and	

TXOP	Limit=0	⇨ single	packet)

IEEE	802.11p

[1]		Eichler,	S.,	"Performance	evaluation	of	the	IEEE	802.11p	WAVE	communication	standard,"	Proceedings	of	66th	IEEE	Vehicular	Technology Conference	
(VTC2007-Fall),	Baltimore,	USA,	October	2007,	pp.	2199-2203

AC CWmin CWmax AIFS TXOP tw (in	
μs)

0 15 1023 9 0 264

1 7 15 6 0 152

2 3 7 3 0 72

3 3 7 2 0 56

n Single Node: n Multiple Nodes:
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• Pros	of	UMTS/LTE
– Easy	provision	of	centralized	services
– Quick	dissemination	of	information	in	whole	network
– Pre-deployed	infrastructure
– Easy	migration	to	(and	integration	into)	smartphones

• Cons	of	UMTS/LTE
– High	short	range	latencies	(might	be	too	high	for	safety)
– Network	needs	further	upgrades	(smaller	cells,	multicast	service)
– High	dependence	on	network	operator
– High	load	in	core	network,	even	for	local	communication

UMTS/LTE	vs.	IEEE	802.11p



UMTS/LTE	vs.	IEEE	802.11p

• Pros	of	802.11p/Ad	hoc
– Smallest	possible	latency
– Can	sustain	operation	without	network	operator	/	provider
– Network	load	highly	localized
– Better	privacy	(⇨ later	slides)

• Cons	of	802.11p/Ad	hoc
– Needs	gateway	for	provision	of	central	services	(e.g.,	RSU)
– No	pre-deployed	hardware,	and	hardware	is	still	expensive

• The	solution?
– hybrid	systems:

deploy	both	technologies	to	vehicles	and	road,
decide	depending	on	application	and	infrastructure	availability
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HIGHER	LAYER	PROTOCOLS

Wireless Mesh & Vehicular Networks - Technologies, Beaconing, and Routing in Vehicular Networks 30



Higher	Layer	Standards	for	IEEE	802.11p

• Channel	management
– Dedicated	frequency	band	at	5.9	GHz	allocated	to	WAVE

• Exclusive	for	V2V	und	V2I	communication
• No	license	cost,	but	strict	rules
• 1999:	FCC	reserves	7	channels	of	10	MHz	(“U.S.	DSRC”)

– 2	reserved	channels,	1+4	channels	for	applications
• ETSI	Europe	reserves	5	channels	of	10	MHz
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[1]	ETSI	ES	202	663	V1.1.0	(2010-01)	:	Intelligent	Transport	Systems	(ITS);	European	profile	standard	for	the	physical	and	medium	access	control	layer	of	Intelligent		
Transport	Systems	operating	in	the	5	GHz	frequency	band
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Higher	Layer	Standards	for	IEEE	802.11p

• Need	for	higher	layer	standards
– Unified	message	format
– Unified	interfaces	to	application	layer

• U.S.
– IEEE	1609.*
– WAVE	(“Wireless	Access	in	Vehicular	Environments“)

• Europe
– ETSI	
– ITS	G5	(“Intelligent	Transportation	Systems”)
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IEEE	1609

• IEEE	1609.*	upper	layers	(building	on	IEEE	802.11p)
– IEEE	1609.1:	“Operating	system”
– IEEE	1609.2:	Security
– IEEE 1609.3:	Network	services
– IEEE	1609.4:	Channel	mgmt.
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IEEE	1609

• Channel	management
– WAVE	allows	for	both	single	radio	devices	&	multi	radio	devices
– Dedicated	Control	Channel	(CCH)	for	mgmt	and	safety	messages
⇨ single	radio	devices	need	to	periodically	listen	to	CCH

– Time	slots
• Synchronization	envisioned	via	GPS	receiver	clock
• Standard	value:	100ms	sync	interval	(with	50ms	on	CCH)
• Short	guard	interval	at	start	of	time	slot

– During	guard,	medium	is	considered	busy	(⇨ backoff)
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[1]	IEEE	Vehicular	Technology	Society,	"IEEE	1609.4	(Multi-channel	Operation),"	IEEE	Std,	November,	2006
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IEEE	1609

• Packet	transmission
– Sort	into	AC	queue,	based	on	WSMP	(or	IPv6)	EtherType	field,	destination	

channel,	and	user	priority
– Switch	to	desired	channel,	setup	PHY	power	and	data	rate
– Start	medium	access
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IEEE	1609

• Channel	management
– Control	Channel	(CCH):

• Default	channel	upon	initialization
• WAVE	service	advertisements	(WSA),
WAVE	short	messages	(WSM)

• Channel	parameters	take	fixed	values

– Service	Channel	(SCH):
• Only	after	joining	WAVE	BSS
• WAVE	short	messages	(WSM),
IP	data	traffic	(IPv6)

• Channel	parameters	can	be	changed	as	needed
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IEEE	1609

• WAVE	service	advertisement	(WSA)
– Broadcast	on	Control	Channel	(CCH)
– Identifies	WAVE	BSSs	on	Service	Channels	(SCHs)
– Can	be	sent	at	arbitrary	times,	by	arbitrary	nodes
– Only	possibility	to	make	others	aware	of	data	being	sent	on	SCHs,	as	well	as	

the	required	channel	parameters	to	decode	them
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ETSI	ITS	G5

• Motivation
– European	standardization	effort	based	on	IEEE	802.11p
– Standardization	to	include	lessons	learned	from	WAVE
– Different	instrumentation	of	lower	layers
– Different	upper	layer	protocols
– Different	channel	assignment

• ITS-G5A	(safety)	
• IST-G5B	(non	safety)
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ETSI	ITS	G5

• Protocol	stack
– PHY	and	MAC	based	on	IEEE	802.11p
– Most	prominent	change:

cross	layer	Decentralized	Congestion	Control	(DCC)
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ETSI	ITS	G5

• Channel	management
– Multi	radio,	multi	antenna	system

• No	alternating	access
⇨ Circumvents	problems	with	synchronization
⇨ No	reduction	in	goodput

• Direct	result	of	experiences	with	WAVE

– One	radio	tuned	to	CCH
• Service	Announcement	Message	(SAM)
• Periodic:	Cooperative	Awareness	Messages	(CAM)
• Event	based:	Decentralized	Environment	Notification	Message	(DENM)

– Addl.	radio	tuned	to	SCH
• User	data
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ETSI	ITS	G5

• Cooperative	Awareness	Message
– Periodic	(up	to	10Hz)	safety	message
– Information	on	state	of	surrounding	vehicles:

• Speed,	location,	…
– Message	age	highly	relevant	for	safety

• Need	mechanisms	to	discard	old	messages
– Safety	applications	rely	on	CAMs:

• Tail	end	of	jam
• Rear	end	collision
• Intersection	assistance…

– Sent	on	CCH
– Generated	every	100ms	..	1s,	but	only	if

∆angle	(>4°),	∆position	(>5m),	∆speed	(>1m/s)
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ETSI	ITS	G5

• Decentralized	Environmental	Notification	Message	(DENM)
– Event	triggered	(e.g.,	by	vehicle	sensors)

• Hard	braking
• Accident
• Tail	end	of	jam
• Construction	work
• Collision	imminent
• Low	visibility,	high	wind,	icy	road,	…

– Messages	have	(tight)	local	scope,	relay	based	on
• Area	(defined	by	circle/ellipse/rectangle)
• Road	topology
• Driving	direction
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BEACONING:	1-HOP	BROADCAST
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Beaconing:	1-hop	Broadcast

• ETSI	ITS	CAMs	(Cooperative	Awareness	Messages)
– Periodic	(up	to	10Hz)	safety	message
– Information	on	state	of	surrounding	vehicles:

• Speed,	location,	…
– Message	age	highly	relevant	for	safety

• Need	mechanisms	to	discard	old	messages

• IEEE	1609	BSMs	(Basic	Safety	Messages)

• …	but
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Beaconing:	1-hop	Broadcast

• Open	issues
– Infrastructure-less	operation:	needs	high	marked	penetration
– Required/tolerable	beacon	interval	highly	dependent	on	scenario
– Design	needs	dedicated	channel	capacity

• Real	networks	are	heterogeneous
– Roadside	infrastructure	present	vs.	absent
– Freeway	scenario	vs.	inner	city
– Own	protocol	⇔ other,	future,	and	legacy	protocols

• How	to	do	better?
– Dynamically	adapt	beacon	interval
– Dynamically	use	all	free(!)	channel	capacity
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Decentralized	Congestion	Control	(DCC)

• Core	feature	of	ETSI	ITS	G5
• Adaptive	parameterization	to	avoid	overload
• Configurable	parameters	per	AC:

– TX	power	(Transmit	Power	Control,	TPC)
– Minimum	packet	interval	(Transmit	Rate	Control,	TRC)
– Data	rate	(Transmit	Datarate	Control,	TDC)
– Sensitivity	of	Clear	Channel	Assessment	(DCC	Sensitivity	Control,	DSC)

• State	machine	determines	which	parameter	set	is	selected;
available	states:
– Relaxed
– Active	(multiple	sub	states)
– Restrictive
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Decentralized	Congestion	Control	(DCC)

• Measure	min/maxChannelLoad(x)
– Min/max	channel	load	in [tnow-x	..	tnow]
– Channel	load:	fraction	of	time	that	channel	was	sensed	busy	during	

measuring	interval	(ex:	𝑇m ≈ 1s)
– Channel	busy:	Average	received	power	(signal	or	noise)	during	probing	

interval	(ex:	𝑇p ≈ 10μs)	above	carrier	sense	threshold

• State	machine	for	Control	Channel:
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Decentralized	Congestion	Control	(DCC)

• Example:	Control	Channel
– TX	power:	relaxed:	33	dBm ⇨ active:	ref	⇨ restrictive:	-10	dBm
– “ref”:	Value	remains	unchanged
– Remember:

• 33	dBm ⇨ 10%.% mW	⇨ 2000	mW
• -10	dBm ⇨ 10'( mW ⇨ 0.1	mW
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State
Relaxed Active Restrictive

AC_VI AC_VO AC_BE AC_BK

TX	power 33	dBm ref 25dBm 20dBm 15dBm -10	dBm

Min	pkt interval 0.04	s ref ref ref ref 1	s

Data	rate 3	Mbit/s ref ref ref ref 12	Mbit/s

CCA	threshold -95 dBm ref ref ref ref -65 dBm



Decentralized	Congestion	Control	(DCC)

• Oscillating	channel	load	(both	local	and	global!)
– …caused	by	channel	access	being	too	restrictive	(standard	parameters)
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DynB	– Dynamic	Beaconing

• Consider	all	the	radio	shadowing	effects	to	adapt	very	quickly	to	
the	current	channel	quality

• Main	idea:	continuously	observe	the	load	of	the	wireless	channel	
to	calculate	the	current	beacon	interval	𝐼

• Base	calculation	of	𝐼 on:
– Channel	busy	time	fraction	𝑏+
– Number	of	neighbors	𝑁
– Desired	interval	𝐼-./
– Desired	channel	busy	time	fraction	𝑏-./

• 𝐼 = 𝐼-./ + 𝑟× 𝐼456 − 𝐼-./
– With	𝐼456 = 𝑁 + 1 ×𝐼-./

and	r	=	(bt /	bdes)	- 1	clipped	in	[0,	1]
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DynB	– Dynamic	Beaconing

• wrt.	handling	dynamics	in	the	environment
– Assuming	two	larger	clusters	of	vehicles	meeting	spontaneously	(e.g.,	at	

intersections	in	suburban	or	when	two	big	trucks	leave	the	freeway)
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Application-based:	Jerk	Beaconing

• Jerk:
– physical	quantity	measuring	variation	of	acceleration	over	time

– using	an	estimation	of	jerk	we	compute	the	beacon	interval

– tunable	parameters:
• minimum	beacon	interval
• maximum	beacon	interval
• sensitivity

• Main	idea:
– the	more	constant	the	system,	the	lower	the	requirement
– send	updates	only	when	needed,	use	prediction	otherwise
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Jerk	Beaconing
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Evaluation:	Strong	shock	waves
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Evaluation:	Moderate	shock	waves
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MULTI-HOP	FORWARDING
Routing	techniques	in	Vehicular	Networks
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Classical	routing

• Might	not	be	suited	for	Vehicular	Networks…
– Distance	vector

• Each	node	stores	a	vector	of	(dst,	cost,	next-hop)
– Link	state

• Known	topology	+	Dijkstra
• Fast	convergence	vs.	overhead

– Reactive	(on	demand)
• Establish	routes	only	when	needed

– Proactive	(table	driven)
• Continuously	maintain	routes	up	to	date

– Hop	by	hop
• Intermediate	nodes	chose	the	next	hop	for	a	packet

– Source	routing
• Packets	include	the	full	route
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Georouting

• Primary	metrics:	position	/	distance	to	destination
• Requires	node	positions	to	be	known	(at	least	for	the	destination)
• Two	operation	modes	(typ.):

– Greedy	mode:	choose	next	hop	according	to	max	progress
– Recovery	mode:	escape	dead	ends	(local	maxima)

• Must	ensure	that	message	never	gets	lost
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Routing

• Q:	Can	(classical)	routing		work	in	VANETs?
• A:	Only	in	some	cases.
• Commonly	need	multicast	communication,	low	load,	low	delay
• Additional	challenges	and	opportunities:

network	partitioning,	dynamic	topology,	complex	mobility,	…	
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“Smart”	Flooding

• Flooding:	Multi-Hop	Broadcast
• Simplest	protocol:	“Smart	Flooding“:

– Problem:	Broadcast	Storm
• Superfluous	re-broadcasts	overload	channel
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Flooding:	Broadcast	suppression

• Motivation
– Needs	no	neighbor	information
– Needs	no	control	messages
– Maximizes	distance	per	hop
– Minimizes	packet	loss

• Approach
– Node	receives	message,	estimates	distance	to	sender
– Selectively	suppresses	re-broadcast	of	message
– Alternatives

• weighted	p-persistence
• slotted	1-persistence
• slotted	p-persistence
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Flooding:	Broadcast	suppression

• Estimate	distance	to	sender	as	0	≤	ρij ≤	1

• GPS	based

• RSS	based
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Flooding:	Broadcast	suppression

• Weighted	p-persistence
– Probabilistic	flooding	with	variable	pij for	re-broadcast
– Thus,	higher	probability	for	larger	distance	per	hop
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Flooding:	Broadcast	suppression

• Weighted	p-persistence
– Wait	WAIT_TIME	(e.g.,	2	ms)
– choose	p	=	min(ρij)	of	all	received	packets

(probability	for	re-broadcast	of	packet)
– Ensure	that	at	least	one	neighbor	has	re-broadcast	packet
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Flooding:	Broadcast	Suppression

• Slotted	1-persistence
– Suppression	based	on	waiting	and	overhearing
– Divide	length	of	road	into	slots
– More	distant	slots	send	sooner
– Closer	slots	send	later	(or	if	more	distant	slots	did	not	re-broadcast)
– Thus,	higher	probability	to	transmit	over	longer	distance
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Flooding:	Broadcast	Suppression

• Slotted	1-persistence
– Divide	“communication	range“	into	Ns	slots	of	length	τ
– Nodes	wait	before	re-broadcast,	waiting	time	depending	on	slot
– Duplicate	elimination	takes	care	of	suppression	of	broadcasts
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Flooding:	Broadcast	Suppression

• Slotted	p-persistence
– Cf.	slotted	1-persistence
– Fixed	forwarding	probability	p	(instead	of	1)
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Flooding:	Broadcast	Suppression

• Slotted	p-persistence
– Wait	for	Tij (instead	of	fixed	WAIT_TIME)
– Use	probability	p	(instead	of	1)
– Ensure	that	at	least	one	neighbor	has	re-broadcast	the	packet

by	waiting	for	δ’	>	max(Tij)
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Flooding:	Remaining	problems

• Temporary	network	fragmentation

• Undirected	message	dissemination
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Flooding	+	X:	DV-CAST

• Idea:	detect	current	scenario,	switch	between	protocols
• Check	for	fragmented	network

– Network	connected	à perform	broadcast	suppression

– Network	fragmented	à perform	Store-Carry-Forward
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Flooding:	Remaining	problems

• Temporary	network	fragmentation

• Undirected	message	dissemination
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Geocast:	TO-GO

• Step	1:	Find	best	next	hop	(Target	Node,	T)
– Find	N:	Furthest	neighbor	towards	destination
– Find	J:	Furthest	neighbor	towards	destination,	currently	on	junction
– Find	NJ:	Furthest	neighbor	towards	destination,	as	seen	by	J
– if	N,	NJ are	on	the	same	road,

pick	N
else,	pick	J
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Geocast:	TO-GO

• Step	2:	Find	Forwarding	Set	(FS)
– Nodes	in	the	FS	will	compete	for	relaying	of	the	message
– Only	one	node	in	FS	should	relay

thus,	all	nodes	in	FS	must	hear	each	other
– Finding	optimal	solution	is	NP	complete
– TO-GO	uses	approximation
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Geocast:	TO-GO

• Step	3:	Multicast	message	to	all	nodes	in	FS
– Nodes	in	the	FS	compete	for	relaying	of	the	message
– Ensure	maximum	progress	within	FS
– Delay	re-broadcast	by	𝑡
– Suppress	re-broadcast	if	another	nodes	forwards	within	𝑡
– 𝑡 = 𝜏×𝑑;/𝑑456

with:
• 𝜏	:	Maximum	delay	per	hop
• 𝑑;:	Distance	to	Target	Node
• 𝑑456:	Distance	from	last	hop	to	Target	Node
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Flooding:	Remaining	problems

• Temporary	network	fragmentation

• Undirected	message	dissemination
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