
Michele Segata, Renato Lo Cigno - University of Trento

with special thanks to
Falko Dressler, Christoph Sommer, Bastian Bloessl, Stefan Joerer, David Eckhoff

Wireless Mesh and Vehicular Networks

Technologies, Beaconing, and Routing in
Vehicular Networks



Motivation

• Taxonomy of Use Cases
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Technology

• Communication paradigms and media
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An outline

A (rough) outline of the Vehicular Networks topics
• Application: why VN?
• Communication: technologies, alternatives, protocols, challenges
• Simulation: evaluating vehicular networks without vehicles and 

without networks. Tools and models
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COMMUNICATION TECHNOLOGIES
(Some of them)
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Cellular networks

• Concept
– Divide world into cells, each served by base station
– Allows, e.g., frequency reuse in FDMA
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Cellular networks

• Strict hierarchy of network components
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Cellular networks

• Can UMTS support Car-to-X communication?
– Ex: UTRA FDD Release 99 (W-CDMA)

– Speed of vehicles not a limiting factor
• Field operational tests at 290 km/h show signal drops only after sudden braking 

(⇨ handover prediction failures)

– Open questions
• Delay

• Capacity

• Channels in UMTS
– Shared channels

• E.g., Random Access Channel (RACH), uplink
and Forward Access Channel (FACH), downlink

– Dedicated channels
• E.g., Dedicated Transport Channel (DCH), up-/downlink
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Cellular networks

• FACH
– Time slots managed by base station
– Delay on the order of 10 ms per 40 Byte and UE
– Capacity severely limited (in non-multicast networks)
– Need to know current cell of UE

• RACH
– Slotted ALOHA – random access by UEs

• Power ramping with Acquisition Indication
– Delay approx. 50 ms

per 60 Byte and UE
– Massive interference 

with other UEs
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CDMA
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• Encoding
– cartesian product

• Decoding
– dot product

Station Spread seq. Data Trans. seq.
A +1 +1 +1 +1 +1 -1 +1 +1 +1 +1 -1 -1 -1 -1

B +1 +1 -1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 -1

C +1 -1 -1 +1 0  0 (no tx) 0  0  0  0  0  0  0  0



Cellular networks

• DCH
– Delay: approx.  250 ms / 2 s / 10 s for channel establishment

• Depends on how fine-grained UE position is known
– Maintaining a DCH is expensive

• Closed-Loop Power Control (no interference of other UEs)
• Handover between cells

– Upper limit of approx. 100 UEs
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Cellular networks

• So: can UMTS support Car-to-X communication?
– At low market penetration: yes

– Eventually:
• Need to invest in much smaller cells (e.g., along freeways)

• Need to implement multicast functionality (MBMS)

– Main use case for UMTS: centralized services
• Ex.: Google Maps Traffic

– Collect information from UMTS devices

– Storage of data on central server

– Dissemination via Internet (⇨ ideal for cellular networks)
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IEEE 802.11p

• IEEE 802.11{a,b,g,n,ac} for Car-to-X communication?
– Can’t be in infrastructure mode and

ad hoc mode at the same time
– Switching time consuming
– Association time consuming
– No integral within-network security
– (Massively) shared

spectrum (⇨ ISM)
– No integral QoS
– Multi-path effects

reduce range
and speed
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IEEE 802.11p

• New lower layers for 
“Wireless Access in Vehicular Environments” (WAVE)

– PHY layer mostly identical to IEEE 802.11a

• Variant with OFDM and 16 QAM

• Higher demands on tolerances

• Reduction of inter symbol interference
because of multi-path effects

– Double timing parameters

– Channel bandwidth down to 10 MHz (from 20 MHz)

– Throughput down to 3 ... 27 Mbit/s (from 6 ... 54 Mbit/s)

– Range up to 1000 m, speed up to 200 km/h

– MAC layer of IEEE 802.11a plus extensions

• Random MAC Address

• QoS (EDCA priority access, cf. IEEE 802.11e, ...)

• Multi-Frequency and Multi-Radio capabilities

• New Ad Hoc mode

• ...
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IEEE 802.11p - OFDM Signal

• How does it look like?
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IEEE 802.11p

• Classic IEEE 802.11 Basic Service Set (BSS)
– Divides networks into logical units

• Nodes belong to (exactly one) BSS
• Packets contain BSSID
• Nodes ignore packets from “foreign” BSSs
• Exception: Wildcard-BSSID (-1) for probes
• Ad hoc networks emulate infrastructure mode

– Joining a BSS
• Access Point sends beacon
• Authentication dialogue
• Association dialogue
• Node has joined BSS

Wireless Mesh & Vehicular Networks - Technologies, Beaconing, and Routing in Vehicular Networks
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IEEE 802.11p

• New: 802.11 OCB Mode (Outside of the Context of a BSS)
– Default mode of nodes in WAVE
– Nodes may always use Wildcard BSS in packets
– Nodes will always receive Wildcard BSS packets
– May join BSS and still use Wildcard BSS
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IEEE 802.11p - MAC

• IEEE 802.11 Hybrid Coordination Function (HCF)
– cf. IEEE 802.11e EDCA
– DIFS ⇨ AIFS (Arbitration Inter-Frame Space)

• DCF ⇨ EDCA (Enhanced Distributed Channel Access)

– Classify user data into 4 ACs (Access Categories)
• AC0 (lowest priority) 
• …
• AC3 (highest priority)

– Each ACs has different...
• CWmin, CWmax, AIFS, TXOP limit (max. continuous transmissions)

– Management data uses DIFS (not AIFS)
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• Map 8 user priorities ⇨ 4 access categories ⇨ 4 queues
• Queues compete independently for medium access
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• Parameterization

• Sample queue configuration

IEEE 802.11p

Parameter Value

SlotTime 13µs

SIFS 32µs

CWmin 15

CWmax 1023

Bandwidth 3 .. 27 mbit/s

Parameter AC_BK AC_BE AC_VI AC_VO

CWmin CWmin CWmin (CWmin+1)/2-1 (CWmin+1)/4-1

CWmax CWmax CWmax CWmin (CWmin+1)/2-1

AIFSn 9 6 3 2



AC_VO AC_VI AC_BE AC_BK

Channel Access

Backoff:    0 0 0 0

IEEE 802.11p
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AC_VO AC_VI AC_BE AC_BK

Backoff:    0 0 0 0

Channel busy?

Start Contention

Wait for Idle

IEEE 802.11p
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AC_VO AC_VI AC_BE AC_BK

0 0 0

Backoff 0?

Wait AIFS (SIFS + AIFSn * Slot len)

Wait for backoff = 0

Backoff:    0

IEEE 802.11p
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Backoff:    0

AC_VO AC_VI AC_BE AC_BK

Backoff:    2 0 0 0

Transmission 
Over

Post Transmit
Backoff

IEEE 802.11p
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2

AC_VO AC_VI AC_BE AC_BK

Backoff:    2 0 0 0

AC_VI Queue ready to 
send… wait AIFS Backoff

Ch becomes
busy

IEEE 802.11p
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Backoff:    2 21

AC_VO AC_VI AC_BE AC_BK

Backoff:    1 0 0Channel
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Channel busy
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Channel state
changes
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IEEE 802.11p
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• QoS in WAVE
– mean waiting time for channel access, given sample configuration (and 

TXOP Limit=0 ⇨ single packet)

IEEE 802.11p

[1]  Eichler, S., "Performance evaluation of the IEEE 802.11p WAVE communication standard," Proceedings of 66th IEEE Vehicular Technology Conference 
(VTC2007-Fall), Baltimore, USA, October 2007, pp. 2199-2203

AC CWmin CWmax AIFS TXOP tw (in 
μs)

0 15 1023 9 0 264

1 7 15 6 0 152

2 3 7 3 0 72

3 3 7 2 0 56

n Single Node: n Multiple Nodes:
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• Pros of UMTS/LTE

– Easy provision of centralized services

– Quick dissemination of information in whole network

– Pre-deployed infrastructure

– Easy migration to (and integration into) smartphones

• Cons of UMTS/LTE

– High short range latencies (might be too high for safety)

– Network needs further upgrades (smaller cells, multicast service)

– High dependence on network operator

– High load in core network, even for local communication

UMTS/LTE vs. IEEE 802.11p



UMTS/LTE vs. IEEE 802.11p

• Pros of 802.11p/Ad hoc
– Smallest possible latency
– Can sustain operation without network operator / provider
– Network load highly localized
– Better privacy (⇨ later slides)

• Cons of 802.11p/Ad hoc
– Needs gateway for provision of central services (e.g., RSU)
– No pre-deployed hardware, and hardware is still expensive

• The solution?
– hybrid systems:

deploy both technologies to vehicles and road,
decide depending on application and infrastructure availability
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HIGHER LAYER PROTOCOLS
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Higher Layer Standards for IEEE 802.11p

• Channel management
– Dedicated frequency band at 5.9 GHz allocated to WAVE

• Exclusive for V2V und V2I communication

• No license cost, but strict rules

• 1999: FCC reserves 7 channels of 10 MHz (“U.S. DSRC”)

– 2 reserved channels, 1+4 channels for applications

• ETSI Europe reserves 5 channels of 10 MHz
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Higher Layer Standards for IEEE 802.11p

• Need for higher layer standards
– Unified message format
– Unified interfaces to application layer

• U.S.
– IEEE 1609.*
– WAVE (“Wireless Access in Vehicular Environments“)

• Europe
– ETSI 
– ITS G5 (“Intelligent Transportation Systems”)
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IEEE 1609

• IEEE 1609.* upper layers (building on IEEE 802.11p)

– IEEE 1609.1: “Operating system”

– IEEE 1609.2: Security

– IEEE 1609.3: Network services

– IEEE 1609.4: Channel mgmt.
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IEEE 1609

• Channel management
– WAVE allows for both single radio devices & multi radio devices
– Dedicated Control Channel (CCH) for mgmt and safety messages

⇨ single radio devices need to periodically listen to CCH
– Time slots

• Synchronization envisioned via GPS receiver clock
• Standard value: 100ms sync interval (with 50ms on CCH)
• Short guard interval at start of time slot

– During guard, medium is considered busy (⇨ backoff)
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[1] IEEE Vehicular Technology Society, "IEEE 1609.4 (Multi-channel Operation)," IEEE Std, November, 2006
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IEEE 1609

• Packet transmission
– Sort into AC queue, based on WSMP (or IPv6) EtherType field, destination 

channel, and user priority
– Switch to desired channel, setup PHY power and data rate
– Start medium access
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IEEE 1609

• Channel management
– Control Channel (CCH):

• Default channel upon initialization
• WAVE service advertisements (WSA),

WAVE short messages (WSM)
• Channel parameters take fixed values

– Service Channel (SCH):
• Only after joining WAVE BSS
• WAVE short messages (WSM),

IP data traffic (IPv6)
• Channel parameters can be changed as needed
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IEEE 1609

• WAVE service advertisement (WSA)
– Broadcast on Control Channel (CCH)
– Identifies WAVE BSSs on Service Channels (SCHs)
– Can be sent at arbitrary times, by arbitrary nodes
– Only possibility to make others aware of data being sent on SCHs, as well as 

the required channel parameters to decode them
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ETSI ITS G5

• Motivation
– European standardization effort based on IEEE 802.11p
– Standardization to include lessons learned from WAVE
– Different instrumentation of lower layers
– Different upper layer protocols
– Different channel assignment

• ITS-G5A (safety) 
• IST-G5B (non safety)
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ETSI ITS G5

• Protocol stack
– PHY and MAC based on IEEE 802.11p
– Most prominent change:

cross layer Decentralized Congestion Control (DCC)
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ETSI ITS G5

• Channel management
– Multi radio, multi antenna system

• No alternating access
⇨ Circumvents problems with synchronization
⇨ No reduction in goodput

• Direct result of experiences with WAVE

– One radio tuned to CCH

• Service Announcement Message (SAM)

• Periodic: Cooperative Awareness Messages (CAM)

• Event based: Decentralized Environment Notification Message (DENM)

– Addl. radio tuned to SCH
• User data
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ETSI ITS G5

• Cooperative Awareness Message
– Periodic (up to 10Hz) safety message
– Information on state of surrounding vehicles:

• Speed, location, …
– Message age highly relevant for safety

• Need mechanisms to discard old messages
– Safety applications rely on CAMs:

• Tail end of jam
• Rear end collision
• Intersection assistance…

– Sent on CCH
– Generated every 100ms .. 1s, but only if

∆angle (>4°), ∆position (>5m), ∆speed (>1m/s)
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ETSI ITS G5

• Decentralized Environmental Notification Message (DENM)
– Event triggered (e.g., by vehicle sensors)

• Hard braking
• Accident
• Tail end of jam
• Construction work
• Collision imminent
• Low visibility, high wind, icy road, …

– Messages have (tight) local scope, relay based on
• Area (defined by circle/ellipse/rectangle)
• Road topology
• Driving direction
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BEACONING: 1-HOP BROADCAST
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Beaconing: 1-hop Broadcast

• ETSI ITS CAMs (Cooperative Awareness Messages)
– Periodic (up to 10Hz) safety message
– Information on state of surrounding vehicles:

• Speed, location, …
– Message age highly relevant for safety

• Need mechanisms to discard old messages

• IEEE 1609 BSMs (Basic Safety Messages)

• … but
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Beaconing: 1-hop Broadcast

• Open issues
– Infrastructure-less operation: needs high marked penetration
– Required/tolerable beacon interval highly dependent on scenario
– Design needs dedicated channel capacity

• Real networks are heterogeneous
– Roadside infrastructure present vs. absent
– Freeway scenario vs. inner city
– Own protocol ⇔ other, future, and legacy protocols

• How to do better?
– Dynamically adapt beacon interval
– Dynamically use all free(!) channel capacity
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Decentralized Congestion Control (DCC)

• Core feature of ETSI ITS G5

• Adaptive parameterization to avoid overload

• Configurable parameters per AC:
– TX power (Transmit Power Control, TPC)

– Minimum packet interval (Transmit Rate Control, TRC)

– Data rate (Transmit Datarate Control, TDC)

– Sensitivity of Clear Channel Assessment (DCC Sensitivity Control, DSC)

• State machine determines which parameter set is selected;
available states:
– Relaxed

– Active (multiple sub states)

– Restrictive
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Decentralized Congestion Control (DCC)

• Measure min/maxChannelLoad(x)
– Min/max channel load in [tnow-x .. tnow]
– Channel load: fraction of time that channel was sensed busy during 

measuring interval (ex: !m ≈ 1s)
– Channel busy: Average received power (signal or noise) during probing 

interval (ex: !p ≈ 10μs) above carrier sense threshold

• State machine for Control Channel:
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Decentralized Congestion Control (DCC)

• Example: Control Channel
– TX power: relaxed: 33 dBm ⇨ active: ref ⇨ restrictive: -10 dBm
– “ref”: Value remains unchanged
– Remember:

• 33 dBm ⇨ 10$.$ mW ⇨ 2000 mW
• -10 dBm ⇨ 10&' mW ⇨ 0.1 mW

Wireless Mesh & Vehicular Networks - Technologies, Beaconing, and Routing in Vehicular Networks 49

State
Relaxed Active Restrictive

AC_VI AC_VO AC_BE AC_BK

TX power 33 dBm ref 25dBm 20dBm 15dBm -10 dBm

Min pkt interval 0.04 s ref ref ref ref 1 s

Data rate 3 Mbit/s ref ref ref ref 12 Mbit/s

CCA threshold -95 dBm ref ref ref ref -65 dBm



Decentralized Congestion Control (DCC)

• Oscillating channel load (both local and global!)
– …caused by channel access being too restrictive (standard parameters)
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DynB – Dynamic Beaconing

• Consider all the radio shadowing effects to adapt very quickly to 

the current channel quality

• Main idea: continuously observe the load of the wireless channel 

to calculate the current beacon interval !
• Base calculation of ! on:

– Channel busy time fraction "#
– Number of neighbors $
– Desired interval !%&'
– Desired channel busy time fraction "%&'

• ! = !%&' + *× !,-. − !%&'
– With !,-. = $ + 1 ×!%&'

and r = (b
t

/ b
des

) - 1 clipped in [0, 1]
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DynB – Dynamic Beaconing

• wrt. handling dynamics in the environment
– Assuming two larger clusters of vehicles meeting spontaneously (e.g., at 

intersections in suburban or when two big trucks leave the freeway)
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Application-based: Jerk Beaconing

• Jerk:
– physical quantity measuring variation of acceleration over time

– using an estimation of jerk we compute the beacon interval

– tunable parameters:
• minimum beacon interval
• maximum beacon interval
• sensitivity

• Main idea:
– the more constant the system, the lower the requirement
– send updates only when needed, use prediction otherwise
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Jerk Beaconing
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Evaluation: Strong shock waves
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Evaluation: Moderate shock waves
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MULTI-HOP FORWARDING
Routing techniques in Vehicular Networks
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Classical routing

• Might not be suited for Vehicular Networks…
– Distance vector

• Each node stores a vector of (dst, cost, next-hop)
– Link state

• Known topology + Dijkstra
• Fast convergence vs. overhead

– Reactive (on demand)
• Establish routes only when needed

– Proactive (table driven)
• Continuously maintain routes up to date

– Hop by hop
• Intermediate nodes chose the next hop for a packet

– Source routing
• Packets include the full route
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Georouting

• Primary metrics: position / distance to destination
• Requires node positions to be known (at least for the destination)
• Two operation modes (typ.):

– Greedy mode: choose next hop according to max progress
– Recovery mode: escape dead ends (local maxima)

• Must ensure that message never gets lost
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Routing

• Q: Can (classical) routing  work in VANETs?
• A: Only in some cases.
• Commonly need multicast communication, low load, low delay
• Additional challenges and opportunities:

network partitioning, dynamic topology, complex mobility, … 
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“Smart” Flooding

• Flooding: Multi-Hop Broadcast
• Simplest protocol: “Smart Flooding“:

– Problem: Broadcast Storm
• Superfluous re-broadcasts overload channel
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Flooding: Broadcast suppression

• Motivation
– Needs no neighbor information
– Needs no control messages
– Maximizes distance per hop
– Minimizes packet loss

• Approach
– Node receives message, estimates distance to sender
– Selectively suppresses re-broadcast of message
– Alternatives

• weighted p-persistence
• slotted 1-persistence
• slotted p-persistence
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Flooding: Broadcast suppression

• Estimate distance to sender as 0 ≤ ρij ≤ 1

• GPS based

• RSS based
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Flooding: Broadcast suppression

• Weighted p-persistence
– Probabilistic flooding with variable pij for re-broadcast
– Thus, higher probability for larger distance per hop
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Flooding: Broadcast suppression

• Weighted p-persistence
– Wait WAIT_TIME (e.g., 2 ms)
– choose p = min(ρij) of all received packets

(probability for re-broadcast of packet)
– Ensure that at least one neighbor has re-broadcast packet
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Flooding: Broadcast Suppression

• Slotted 1-persistence
– Suppression based on waiting and overhearing
– Divide length of road into slots
– More distant slots send sooner
– Closer slots send later (or if more distant slots did not re-broadcast)
– Thus, higher probability to transmit over longer distance
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Flooding: Broadcast Suppression

• Slotted 1-persistence
– Divide “communication range“ into Ns slots of length τ
– Nodes wait before re-broadcast, waiting time depending on slot
– Duplicate elimination takes care of suppression of broadcasts
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Flooding: Broadcast Suppression

• Slotted p-persistence
– Cf. slotted 1-persistence
– Fixed forwarding probability p (instead of 1)
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Flooding: Broadcast Suppression

• Slotted p-persistence
– Wait for Tij (instead of fixed WAIT_TIME)

– Use probability p (instead of 1)

– Ensure that at least one neighbor has re-broadcast the packet
by waiting for δ’ > max(Tij)
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Flooding: Remaining problems

• Temporary network fragmentation

• Undirected message dissemination

Wireless Mesh & Vehicular Networks - Technologies, Beaconing, and Routing in Vehicular Networks 70



Flooding + X: DV-CAST

• Idea: detect current scenario, switch between protocols
• Check for fragmented network

– Network connected à perform broadcast suppression

– Network fragmented à perform Store-Carry-Forward
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Flooding: Remaining problems

• Temporary network fragmentation

• Undirected message dissemination
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Geocast: TO-GO

• Step 1: Find best next hop (Target Node, T)
– Find N: Furthest neighbor towards destination
– Find J: Furthest neighbor towards destination, currently on junction
– Find NJ: Furthest neighbor towards destination, as seen by J
– if N, NJ are on the same road,

pick N
else, pick J
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Geocast: TO-GO

• Step 2: Find Forwarding Set (FS)
– Nodes in the FS will compete for relaying of the message
– Only one node in FS should relay

thus, all nodes in FS must hear each other
– Finding optimal solution is NP complete
– TO-GO uses approximation
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Geocast: TO-GO

• Step 3: Multicast message to all nodes in FS
– Nodes in the FS compete for relaying of the message
– Ensure maximum progress within FS
– Delay re-broadcast by !
– Suppress re-broadcast if another nodes forwards within !
– ! = #×%&/%()*

with:
• # : Maximum delay per hop
• %&: Distance to Target Node
• %()*: Distance from last hop to Target Node
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Flooding: Remaining problems

• Temporary network fragmentation

• Undirected message dissemination
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