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Abstract

The first part of this paper gives a short tutorial survey of Internet traffic modeling, focusing on recent advances in Markov models showing

pseudo-LRD (Long Range Dependence) characteristics that match those measured on the Internet. The interest in Markov models of Internet

traffic, in spite of the impossibility to achieve true LRD or Self-Similarity, lies in the possibility of exploiting powerful analytical techniques

to predict the network performance, which is the ultimate goal when adopting models to either study existing networks or design new ones.

Then, the paper describes a new MMPP (Markov Modulated Poisson Process) traffic model that accurately approximates the LRD

characteristics of Internet traffic traces over the relevant time scales. The heart of the model is based on the notion of sessions and flows,

trying to mimic the real hierarchical generation of packets in the Internet. The proposed model is simple and intuitive: its parameters have a

physical meaning, and the model can be tuned with only a few input parameters. Results prove that the queuing behavior of the traffic

generated by the MMPP model is coherent with the one produced by real traces collected at our institution edge router under several different

traffic loads. Due to its characteristics, the proposed MMPP traffic model can be used as a simple and manageable tool for IP network

dimensioning, design and planning: the paper provides examples of its application in both simulative and theoretical analysis.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The fact that packet flows arriving at Internet routers

(both edge and backbone) cannot be accurately modeled by

Poisson processes is widely accepted, and has been

discussed in a vast literature [1–5].

One of the main characteristics of Internet traffic,

probably the one with the most impact on planning and

dimensioning, is the Long Range Dependence (LRD) of the

distribution of several traffic parameters (packet inter-

arrival time, amount of data transferred per time unit, etc.).

LRD means that Internet traffic has some sort of memory;

however, long-term correlation properties, heavy tail

distributions, and all other characteristics of Internet traffic,
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are meaningful only over a limited range of time scales. For

instance, any correlation property on time scales smaller

than the packet transmission time has no physical meaning.

Similarly, heavy-tails of distributions describing file lengths

become meaningless beyond the limitations imposed by

storage media.

A number of traffic models have been derived by fitting

real measured Internet traffic traces (we discuss some of

them in Sections 2 and 3). While these models succeed in

correctly representing the original trace, they seldom allow

the generation of traffic with desired characteristics different

from the original trace. However, a model of Internet traffic,

in order to be effectively used for network dimensioning,

must be simple, easy to understand, and, most important,

must be controlled through a small number of parameters,

whose influence on the generated traffic is predictable, at

least from a qualitative point of view.

This paper is divided into two distinct parts. The first one

(Sections 2 and 3) provides a short tutorial survey of recent

Internet traffic models, focusing mainly on Markovian

approaches, that are more related to the second part of the

paper (Sections 4, 5 and 6) which is devoted to the proposal
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of a new MMPP-based traffic model. Section 7 finally

concludes the paper.

The simple Markovian model of Internet traffic we

propose in the second part of this paper, matches very well

the characteristic of the Internet traffic observed at an edge

router (the result of the aggregation of many individual

packet flows). The model is based on Markov Modulated

Poisson Processes (MMPPs), and aims at providing a

description of the traffic generation process as close as

possible to the typical behavior of real Internet applications.

The model employs the notion of three entities: sessions,

flows and packets; which act at different time scales, and

mimic the real behavior behind the interaction between

users, protocols, and the network.

The model has five parameters which are very simple

to tune, so that two major tasks can be accomplished: first,

fit the characteristics of a real trace, second, generate

traffic with known statistical properties. Three of the

parameters are mapped directly on average traffic

characteristics, such as the average load and flow size;

two parameters are used to shape the correlation proper-

ties of the traffic. This tunability feature, combined with

the simplicity of the model, makes it a very effective

synthetic generator of aggregate Internet traffic, that can

be used in simulation and analytical models to predict the

network behavior as the traffic characteristics change.

Finally, the MMPP traffic model also allows the

derivation of analytical solutions of its queuing behavior

in cases that, despite their simplicity, are of practical

interest. The analytical solutions are very efficient, and

provide a useful alternative to simulations.
2. Modeling internet traffic

In the early 1990s, two seminal papers [1,2] showed that

traffic traces captured on both LANs and WANs exhibit

Long Range Dependence (LRD) properties, and self-similar

characteristics at different time scales. Those discoveries

spurred a significant research effort to understand data traffic

in packet networks in general, and in the Internet in

particular. In addition, the evidence of LRD and of self-

similar properties in packet traffic drove many researchers to

abandon the usual Markovian assumptions in favor of newer

and more complex traffic models. A number of attempts

were made to develop models for LRD data traffic. Here we

briefly summarize some of the main approaches proposed in

the literature.

Looking at packet traffic as a superposition of source–

destination traffic flows, simple ON/OFF models (or packet

trains models) were proposed as a first way to mimic LRD

properties [3,4]. Indeed, if the ON (OFF, or both) periods

are generated according to heavy-tailed distributions, and

the number of multiplexed flows is large, then the resulting

aggregate traffic exhibits asymptotic self-similar properties

with LRD behavior, as proved in [4].
An M/G/N queue with infinite variance service time

exhibits LRD properties in the number of active servers [6].

Since a heavy-tailed distribution of file sizes was measured

on storage devices [5,7,8], it can be mapped onto the service

time of a file transfer.

Other recent studies [9,10] indicate instead that traffic

properties are rooted in the TCP congestion control

mechanism, which induces LRD properties in the aggregate

traffic resulting from the superposition of independent

sources. Other authors underlined that TCP induces

correlation at packet level on a limited range of time

scales [11].

The statistical analysis of real traffic traces, due to the

significant amount of collected data and of research

projects, gave new impulse to traffic modeling. Among

the numerous generic LRD models proposed in the

literature, Fractional Brownian Motion (FBM) received a

lot of attention, since its Gaussian nature helps in the study

of the queuing behavior [12,13]. However, this model

presents a restrictive correlation structure, that fails to

capture the short-term correlation of real traffic and its rich

scaling behavior. Therefore, many research efforts were

devoted to Multifractal models [14], whose attractiveness is

due to their rich scale-invariance properties. Indeed,

previous analytical works, such as [7,8,15–17] suggested

Multifractal models as possibly being the best fit to

measured data. ‘Cascades’, a multifractal subclass [18,19],

are also extensions of self-similar models and capture traffic

behavior at all meaningful time scales. While these models

give good approximations of the LRD properties of Internet

traffic, they are difficult to manage, due to their analytical

complexity.

Wavelet decomposition has been widely used as a natural

approach to study scale invariance, but only recently they

were introduced in the field of data networks. There are

many examples of measurement-based traffic models,

which try to fit the LRD properties of real traffic [20,21].

These models are computationally very efficient, but they

are complex and difficult to tune, due to the lack of a

mapping between the traffic parameters and the model

coefficients.

Chaotic map models [22,23] were proposed as a

deterministic evolution of systems governed by a set of

behavioral rules. The derived models are simple, but it is

often difficult to understand the relationship between the

model and real traffic parameters.

FARIMA models [24] are widely used in video trace

modeling, and can be used to generate LRD sequences.

These models are derived by filtering white Gaussian noise,

and capture both the short and the long period correlations

of traffic. However, the models are quite complex, and their

structure makes it very hard to understand the relationship

among the filter coefficients and the real traffic data.

The use of a-stable processes has been also proposed as

a possible means to model Internet traffic [25] by fitting
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the heavy-tailed distribution of the marginal of the bit-rate

process.

Another approach to model Internet traffic involves the

emulation of the real hierarchical nature of network

dynamics; in [33], each of the model components was fitted

to real objects, such as the distribution of both TCP flows

and web pages size, and the arrival distribution of pages and

flows. In this paper, we follow a similar approach, but

instead of trying to fit all possible distributions to

measurements, we use a much simpler Markovian

definition.

In spite of the many proposed traffic models with LRD

characteristics, very little work appeared in the field of

network design and planning, or network performance

analysis, based on LRD traffic models. This is mainly due to

the difficulty in handling the complex mathematical

structure of the stochastic processes on which those traffic

models are based. Moreover, in [34] it was recently shown

that the long-term correlation of traffic beyond a certain

threshold does not influence the performance of a system, so

that simple models where correlation is limited (such as

MMPP models) can be successfully employed.

The results in [35,36] also provide support to the

possibility of using Markovian traffic models in packet

networks, showing that bandwidth sharing in packet

networks is insensitive both to the flow size, and to the

flow arrival process, under the quite commonly accepted

assumption [2,3] that session arrivals are Poisson. We do not

consider these two papers in Section 3 since they are not

concerned with modeling the packet arrival process within

the network, but with deriving insensitivity results for high

level performance with respect to the arrival process itself.

All of these different approaches reach similar con-

clusions using different techniques. The objective is always

to take into account as accurately as possible the real traffic

behavior, in order to: (i) use more realistic tools for network

planning, and (ii) relate causes and effects of network traffic

phenomena.
3. Markovian models of internet traffic

Parallel to the effort of understanding the deep reasons

for the LRD and self-similarity exhibited by Internet traffic,

the research community started to investigate how the next

generation of networks could be planned taking into account

the traffic characteristics. Unfortunately, none of the

mathematical models that present LRD, self-similarity,

and scale invariance (some of them discussed in Section 2)

allow an analytical solution when they are used as traffic

generators feeding queueing systems, even the simplest

single server queues. Even their use in simulations is often

troublesome, since several properties of the models are

meaningful only when asymptotic condition are considered,

but such conditions are not met in simulations. This is

fundamentally the reason that drives researchers to devise
Markovian models (MMPP, MAP, B-MAP, etc.) that try to

match the characteristics of the measured traffic and yet are

analytically tractable and relatively easy to understand.
3.1. Nearly completely decomposable Markov chains

Among the first attempts to use Markovian modeling, in

[29–31] the authors propose the use of discrete time Markov

chains (DTMC) to modulate the packet arrival process. The

key of the modeling process is the use of nearly

decomposable chains, that have transients behaviors that

are local to the initial state.

A fully decomposable DTMC is non-ergodic and its

transition probability matrix A* is composed of squared sub-

matrices on the diagonal (sticking to the notation in [29])

A� Z

A�
1 0 0 / 0

0 A�
2 0 / «

« 1 1 1 «

0 / / 0 A�
N

0
BBBB@

1
CCCCA

so that sub-parts of the Markov chain defined by A�
i and A�

j

are unreachable.

A nearly completely decomposable DTMC is ergodic,

but the chain tends to evolve locally, since the transition

probability between different set of states are very low. The

class of nearly completely decomposable DTMC proposed

in the paper is defined with only three parameters: a, r!1,

and the number of states n in the DTMC. The DTMC is

defined by the transition probability matrix

AZ

1K1=aK1=a2K/K1=anK1 1=a 1=a2 / 1=anK1

r 1Kr 0 / 0

r2 0 1Kr2 1 0

« 1 1 1 «

rnK1 0 / 0 0

0
BBBBBBBB@

1
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Depending on the value of n, a, and r, the traffic generated

by the model displays pseudo-LRD characteristics (a term

defined by the authors) over finite time scales.

The model is proved to emulate well both the correlation

structure (Hurst parameter) and the queueing behavior of

measured data.

This model is in some sense related to the one we propose

later on in the paper, since the key idea behind both of them

is obtaining a model that has fast transients on a local scale

and evolves with a slower time constant between different

groups of states, in other words a model that has some

implicit form of memory. The difference lies in the structure

of the model: our model is based on an infinite CTMC

whose structure is hierarchically defined by the notions of

sessions and flows, which are completely absent in the

nearly completely decomposable chain model. In addition,
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the parameters n, a and r in this model are not easily related

to traffic characteristics.

3.2. MMPP models

In [32], the authors propose the use of a Batch Markov

Arrival Process (B-MAP) generated by a non-ergodic

CTMC with an absorbing state and N transient states. The

process is initialized in a transient state and as soon as it

reaches the absorbing state, it is re-initialized in a transient

state, restarting the cycle. Packets are generated when the

process reaches the absorbing state and their dimension (the

batch) is determined as a reward depending on the last state i

visited before absorption.

The re-initialization state j is dependent on the last state i

visited before absorption, thus introducing memory and

correlation in the generation process. Transitions between

transient states do not correspond to packet generation, but

allow the inter-arrival process to be described as an

arbitrarily complex superposition of exponential distri-

butions, mimicking again LRD characteristics. In order to

determine the B-MAP coefficients, the authors employ a

sophisticated (albeit efficient) technique named Expec-

tation-Maximization (EM), which is a Maximum-Like-

lihood (ML) estimation technique that works also when the

observed data is only a subset of the complete experiment

that would allow standard ML estimation. The observable

data in a traffic trace are only the packet size distribution and

the inter-arrival time distribution, so that all transitions

between transient states cannot be fitted directly and must be

inferred with the EM algorithm.

The authors fit a 1,500,000 packet trace measured on a

dial-up multiplexing point with a three-state B-MAP

allowing for three different packet sizes. The results show

a better agreement with the generated traffic with respect to

simple Poisson and MMPP generators (although the

structure of the MMPP is not defined). However, the

queueing behavior of the generated traffic tends to diverge

from the measured one as soon as the queue traffic intensity

r exceeds 0.5.

This model does not allow ‘what-if’ studies, since the

B-MAP parameters are not directly coupled to traffic

characteristics and a new fit of the B-MAP must be

performed to match the characteristics of every data set.

The MMPP model proposed in [26] aims at generating

traffic with multifractal scaling behavior. Thanks to the

special structure of the continuous time Markov chain

modulating the process, which is symmetric and

n-dimensional, the authors impose a correspondence

between the parameters of the wavelet transform at

different levels of aggregation and the traffic generated

by the MMPP process at different time scales. The

MMPP is composed of 2n states and it is described by

nC2 parameters. Moreover, the authors propose an

heuristic approach to derive the values of the MMPP

parameters such that the generated synthetic traffic fits a
measured data set. The well-known Bellcore traces are

fitted with the proposed model for nZ5, and a number of

tests are performed to evaluate the accuracy of the

fitting. Moreover, comparisons are derived also for the

queueing behavior and prove that the model is accurate,

especially for high values of the load.

The MMPP models in [27,28] are shown to provide good

matches of LRD properties under large time scales. In

particular, the authors of [27] suggest the superposition of

two-state Markovian sources as a very versatile tool for

modeling variable packet traffic with LRD. A fitting

procedure is proposed to match the covariance function of

the Markovian model to that of second order self-similar

processes over several time scales.

In [28], the authors propose an MMPP model and a fitting

procedure similar to the one used in [27], but extend the

model to include a variable number of states. A novel

feature of this approach is that the number of time scales is

part of the fitting procedure, and therefore the approxi-

mation interval can be made accurate or coarse. The MMPP

is constructed as a superposition of L 2-MMPPs and one M-

MMPP. The 2-MMPPs are designed to match the auto-

covariance and the M-MMPP to match the marginal

distribution. Each 2-MMPP models a specific time-scale

of the data. The procedure starts by approximating the auto-

covariance by a weighted sum of exponential functions that

model the auto-covariance of the 2-MMPPs. The auto-

covariance tail can be adjusted to capture the long-range

dependence characteristics of the traffic, up to the time-

scales of interest. The procedure then fits the M-MMPP

parameters in order to match the marginal distribution,

within the constraints imposed by the auto-covariance

matching. The number of states is also determined as part of

this step. The final MMPP with M2L states is obtained by

superposing the L 2-MMPPs and the M-MMPP. Very good

results are obtained, both in terms of queuing behavior and

number of states, for examined the traces, which include the

Bellcore traces.

In both the approaches above, the individual parameters

obtained in the models have a real physical interpretation.

In the rest of the paper we describe a new, structured

MMPP model which instead has a structure that stems from

the layered architecture of the Internet. This allows an easy

mapping of the model parameters to the physical par-

ameters, and therefore permits predictions of the model

output when some parameters change.

We start with traffic measurements and analysis per-

formed on the access router of Politecnico di Torino for over

2 years, also precisely defining concepts, notation and limits

of Markovian models (e.g. only a local Hurst parameter can

be defined and LRD can be defined only on limited time

scales). Then, we move on to define the model structure, its

performance and its analytical solution. Preliminary results

on its queuing behavior and characteristics were presented

in [37].
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4. Traffic measurement and analysis

In order to collect traffic traces, we observed the data

flow on the Internet access link1 of our institution, i.e. we

focus on the data flow between the edge router of

Politecnico di Torino and the access router of GARR/

B-TEN [38], the Italian and European Research network.

For traces collection and processing we used tcp-dump
[39] and Tstat [40,41]. Tstat is a new software tool

developed at Politecnico di Torino, which analyzes traces,

and derives traffic characteristics at both the IP and TCP

levels. For the analysis at the TCP level, Tstat rebuilds

each TCP connection status by looking at the TCP header in

the forward and backward packet streams. In order to do so,

Tstat requires as input a trace collected on an edge node,

such that both data segments on the forward stream and

ACKs on the backward stream can be analyzed. Additional

information about Tstat and statistical analysis performed

on collected traces can be found in [40,41].

The Politecnico LAN comprises approximately 7000

hosts; most of them act as clients, but several servers are

also regularly accessed from outside hosts. Data were

collected on files storing 6 or 3 h long traces (to avoid

exceeding the File System limitation on the file size), for a

total of more than 100 GB of compressed data. Traces were

collected during different periods, which correspond to

different phases of the network topology evolution. In this

paper, we present results considering two periods which are

characterized by a significant upgrade in network capacity:
†

1

3 li
April 2000, from 4/11/2000 to 4/14/2000: the bandwidth

of the access link was 4 Mbit/s, and the link between the

GARR network and the corresponding US peering was

45 Mbit/s;
†
 February 2001, from 2/1/2001 to 2/19/2001: the

bandwidth of the access link was 16 Mbit/s, and of the

link between the GARR network and the corresponding

US peering was 622 Mbit/s.

The campus access link was a bottleneck during April

2000, while it was not during February 2001. The same

consideration applies to the GARR-US peering capacity,

which plays a key role, since most of the traffic comes from

US research sites. Among all the traces we collected, we

report here results from four traces, which we consider

representative of different network scenarios. Table 1

summarizes the key parameters of the selected traces; the

last two columns report the number of samples in a trace, i.e.

the number of IP packets and of TCP flows. Since our

campus network can be mainly considered as a ‘client’

network, i.e. hosts in the network are mainly destinations of

information, in the remaining of this paper we will present
The data-link level exploits an AAL-5 ATM virtual circuit over an OC-

nk.
results considering incoming streams of data only, both at

the TCP flow level and at the IP packet level.

4.1. Definitions

Several different definitions of LRD exist (which in

general are not equivalent [42]). We recall in this section the

definition we use in this paper, which is the one proposed

in [43].

4.1.1. Definition (long range dependence)

Let fXkgk2Z be a wide sense stationary random sequence,

with mean m, auto-covariance function g(n), and spectral

density f(n) n2[Kp, p]

E½Xk� Z m (1)

E½ðXk KmÞðXkCn KmÞ� Z gðnÞ; n2Z (2)

f ðnÞ Z
1

2p

XCN

nZKN

eKinngðnÞ (3)

gðnÞ Z

ð
p

Kp

f ðnÞeKinn dn (4)

fXkgk2Z is Long-Range Dependent if

gðnÞwanaK1; n/N; a2ð0; 1Þ (5)

or if

f ðnÞwcjnjKa; n/0; a2ð0; 1Þ (6)

where f(x)wg(x) as x/x0 means limx/x0
f ðxÞ=gðxÞZ1.

Eqs. (5) and (6) are equivalent if g(n) is monotone. In the

following we use the definition in (6), that is based on two

parameters: (a, c). The parameter a2[0,1] is the dimen-

sionless scaling exponent, and describes the ‘intensity’ of

LRD; for a non-LRD stationary process, aZ0 at large

scales. The parameter c2R
C has the same dimension of the

variance of the process and describes the quantitative aspect

of LRD often referred to as the LRD size. LRD implies that

the sum of correlations over all lags is infinite; however,

individually, their sizes at large lags are proportional to c,

and can be arbitrarily small. LRD is usually associated with

self-similar processes with stationary increments (H-sssi)

defined as follows.

4.1.2. Definition (self-similarity)

Let fYðtÞ; t 2Rg be a random process; {Y(t)} is said to be

H-self-similar (H-ss) if

fYðtÞ; t 2RgZ
d
frKHYðrtÞ; t 2Rg; c r 2R

C; HO0

The above equality holds for any finite dimensional

distribution. If Y(t) has stationary increments fXkgk2Z; Xk

ZYðkKhÞKYðkÞ is LRD with

a Z 2H K1 if H 2ð0:5; 1Þ (7)



Table 1

Summary of the analyzed traces

Name Date Start time Stop time No. of IP packets

(millions)

No. of TCP flows

(thousands)

Peak’01 2 Feb’01 10:52 13:52 11.0 540

Night’01 2 Feb’01 04:52 07:52 0.43 30

Peak’00 13 Apr’00 08:10 14:10 12.0 564

Night’00 13 Apr’00 02:10 08:10 0.92 79
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The parameter H is known as the Hurst parameter.

When considering the process of the increments of a

self-similar process with stationary increments, relation-

ship (7) holds; hence, it is common practice (though not

completely proper) to use the parameter H when

discussing LRD, and we stick to this practice. Clearly,

a non-LRD process has HZ0.5, while Hurst parameters

larger than 0.6–0.8 are normally assumed as an

indication of strong LRD.
4.2. Trace analysis

In order to estimate the LRD properties of the stochastic

process of interest, we use the wavelet-based approach

developed in [43,44] and the tools presented there, that are

usually referred to as the AV estimator. We also employ the

code made available from the authors in [45]. Other

approaches can be pursued to analyze traffic traces, but

the wavelet framework has emerged as one of the best

estimators, as it offers a very versatile environment, as well

as fast and efficient algorithms.

Since traffic traces are finite, and their asymptotic

behavior cannot be derived, we always limit the analysis

between two scales (jinf, jsup). In order to evaluate LRD

parameters, we use the Log-Scale Diagram, which is

essentially a log–log plot of the mean square value

estimates of the wavelet coefficients x
j
n versus the scale j.

Since 2Kj has the dimension of a frequency, j is generally

called octave. Through the Log-Scale Diagram, it is

possible to identify the presence of LRD and determine

the cutoff scales (jinf, jsup) at which LRD ‘begins’ and

‘ends.’ Within these scales, an LRD process Log-Scale

Diagram is linear with coefficient a. Indeed, for all

processes in our measures, jsup is limited by the trace

length, and jinf corresponds to a scale of a few hundred

milliseconds.
Table 2

Flow level analysis of traces

Trace Peak’01 Night’01

Ĥf ĉf 1=L̂f Ĥf ĉf 1=L̂f

I (ms) 0.74 82.4 20.01 0.86 8491.0 358.9

N1 s 0.76 59.4 49.9 0.76 1.66 2.79

N 100 ms 0.75 2.01 4.99 0.73 0.07 0.28

N10 ms 0.74 0.07 0.49 0.80 0.001 0.028
Among all the possible metrics that can be derived from

the traces, we selected as most representative of the traffic

characteristics:
†
 the (packet and flow) inter-arrival time processes I(k)
†
 the (packet and flow) counting processes NT(n), obtained

by counting the number of arrivals in a time interval

[nT,(nC1)T); we use three values of T: 1, 0.1, 0.01 s

Combining the three tools (Tstat, tcpdump, and AV)

we analyzed the metrics defined above at both the TCP flow

and IP packet levels.
4.3. Flow and packet level analysis

Given a trace and a process under analysis, the AV

estimator produces estimates of three main parameters:

the Hurst parameter, the c factor and the mean value.

Estimates are denoted by Ĥf , ĉf , and 1=L̂f when traces

are analyzed at the flow level; and by Ĥp, ĉp, and 1=L̂p

for the packet level analysis. Results for the four traces

we consider are reported in Tables 2 and 3 for the flow

level analysis and for the packet level analysis,

respectively. In the tables, I denotes the inter-arrival

time process, NT the counting process in time intervals

whose duration is equal to T.

Apart from the obvious consideration that during peak

hours arrival rates are much higher than during nights, a

few observations are in order. First of all, notice that all

processes show similar values of the Hurst parameter,

ranging from 0.71 to 0.88. Indeed, Ĥf is almost

independent from the considered trace or process; while

Ĥp is slightly higher during peak hours (around 0.88)

than during nights. These results hint to the fact that

LRD in packet networks is probably not due to high

load. Moreover, since the network characteristics of
Peak’00 Night’00

Ĥf ĉf 1=L̂f Ĥf ĉf 1=L̂f

0.76 275.1 39.6 0.74 2414.0 271.6

0.75 28.4 25.9 0.78 1.54 3.68

0.74 0.79 2.53 0.76 0.06 0.37

0.75 0.015 0.25 0.78 0.001 0.04



Table 3

Packet level analysis of traces

Trace Peak’01 Night’01 Peak’00 Night’00

Ĥp ĉp 1=L̂p Ĥp ĉp 1=L̂p Ĥp ĉp 1=L̂p Ĥp ĉp 1=L̂p

I (ms) 0.87 0.01 0.89 0.71 5!10K4 0.025 0.84 0.17 2.25 0.84 40.54 15.74

N1 s 0.88 5232.0 1113.0 0.73 457.8 40.06 0.86 504.19 444.75 00.83 133.93 63.51

N 100 ms 0.88 91.4 111.3 0.72 16.6 4.00 0.87 14.50 44.49 0.83 3.61 6.35

N10 ms 0.88 1.50 11.1 0.76 0.30 0.4 0.88 0.23 4.45 0.87 0.04 0.63
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the four selected traces are very different (different link

speeds, different loads, different patterns between peak

and night hours), this can be taken as a strong indication

that LRD is an intrinsic characteristic of the

Internet traffic and is not induced by network conditions;

this is coherent with the ‘Pareto effect’ due to file size

distributions, assumed as a good explanation of LRD at

packet level. A second consideration concerns c, whose

value is extremely variable, and clearly connected to the

absolute magnitude of the analyzed process (indeed, it is

connected to the mean square value of the process itself).

The last consideration is that the characteristics of

the measured traces do not change significantly

from 2000 to 2001; thus, in the sequel we will only

present results for these latter traces, that are more

recent.

For the model development, besides the estimates

mentioned above, we also derived from the traces:
N̂p
 the average number of packets per flow,
l̂p
 the packet generation rate of active flows (obtained

as the ratio between N̂p and the average flow

duration).
2 In case no packets are observed for more than 30 min, the flow is

declared closed as well.
5. A new MMPP traffic model

Today, Internet traffic is mainly generated by data

transfers that use the TCP protocol at the transport layer.

We derive our model by keeping in mind that, in layered

architectures, the human actions on a terminal interface

cause a sequence of events and behaviors of the protocols at

the various layers of the protocol stack. For example, a

‘click’ on a web link causes the generation of a request at the

application level (i.e. an HTTP request), which is translated

into many transport level connections (TCP flows); each

connection generates a sequence of data segments that are

transported by the network through IP packets.

According to this view, we, as other authors, propose a

model whose behavior is driven by entities which act at three

different time scales. At the application level, sessions

correspond to bunches of information transfers. Sessions

generate flows which correspond to TCP connections. Each

flow generates a sequence of packets injected into the

network. Fig. 1 sketches a realization of the model; three
sessions arrive, each one generates a given number of flows,

and each flow, generates a given number of packets, that will

be multiplexed on links along the source–destination paths.

In order to derive a model which emulates the behavior

of a given real trace, we need to map the three model entities

(sessions, flows and packets) into entities which can be

observed in real traces. Packets and flows can be easily

identified on the real trace; in particular, a flow is a single

TCP connection, which starts with the three-way-handshake

procedure and ends with the closing procedure.2 On the

contrary, it is more difficult to provide a specific and unique

definition of a session. Indeed, many different definitions of

a session could be proposed on the basis of traces. All the

web pages downloaded by a user from the same web server

in a limited period of time can form a session; an ftp

connection from a user that requests many files from a

server can form a session; all the e-mail messages generated

by a user that replies to all the previously downloaded

e-mails, or even the user activating its connection to the

Internet (for example by switching on its computer), are all

possible definitions of a session. Thus, we have the

following problem. On the one hand, sessions are difficult

to define, and to recognize in real traces. On the other hand,

we need a notion of session in order to account for

correlation over long time scales, which a model based on

flows and packets alone cannot catch. We resort to define a

session as a generic set of correlated flows that are submitted

to a network interface; then, we use the flow and packet

levels of the model to fit the metrics which are easy to

measure on real traces, and we specify the model session

level so that the LRD of the real traces is accurately

approximated.

We assume the following concerning the behavior of

sessions, flows and packets:
†
 Sessions are generated according to a Poisson process

with rate ls; each session starts by generating a new flow

and ends when it generates the last flow belonging to the

session.
†
 The number of flows generated by a session is a

geometrically distributed random variable with mean

value equal to Nf.



Fig. 2. Fitting procedure to derive the MMPP model parameters from a

measured trace.

Fig. 1. Sessions, flows, and packets as seen by the model.
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†
 Flows belonging to the same session are generated

according to a Poisson process with rate lf; each flow

starts by generating a packet and ends after generating

the last packet of the flow.
†
 The number of packets generated by a flow is a

geometrically distributed random variable with mean

value equal to Np.
†
 Packets belonging to the same flow are generated

according to a Poisson process with rate lp.

Due to the above assumptions, both the packet arrival

process and the flow arrival process are MMPP, whose

memory is given by two variables: the number of active

flows, which accounts for short-term correlation, and the

number of active sessions, which determines correlation

over long time lags. Observe that the model analysis can

also use the same formalism used in [46].
5.1. Setting the model parameters

The MMPP model above is completely described by five

parameters:
ls
 the arrival rate of new sessions,
lf
 the flow arrival rate per active session,
lp
 the packet arrival rate per active flow,
Nf
 the average number of flows per session,
Np
 the average number of packets per flow.
Fig. 3. Selection of new parameters in the iteration.
The parameters Np and lp are set to match the packet and

flow behaviors of a given trace; i.e. they are set equal to the

measured average number of packets per flow and average

packet arrival rate per flow. For what concerns Nf and ls,

since they are related to the session behavior, they are harder

to measure from traces. Thus, we set Nf and ls to match the

Hurst parameters Ĥf and Ĥp; this is done by means of an

iterative procedure described below. Finally, given the

session behavior, the parameter lf (the flow arrival rate per

session) is simply set to match the average flow arrival

rate observed from the traces. The fitting procedure is
summarized in Fig. 2 (notice that, for the sake of

convenience, in the fitting procedure we normalize the

session arrival rate ls to the flow arrival rate per session lf,

and denote the normalized arrival rate by C).

The selection of Nf and C by means of the fitting

procedure at steps 4–7 can be performed according to

different definitions of accuracy of the fit and to different

criteria for the assignment of new values to the parameters.

The detailed procedure which we followed is reported in

Fig. 3.

The criteria to assign new values to Nf and C were chosen

after having studied the sensitivity of the Hurst parameters Hf

and Hp to changes of Nf and C by means of the graphs shown

in Fig. 4. The Hurst parameter at both the flow and packet

levels increases as Nf increases, consistently with the

intuition that a larger value of Nf introduces a higher degree

of memory in the system. Moreover, at the packet level, there

is a higher degree of memory and correlation since packets

are generated by flows which are generated by sessions. Let

us now focus on C. The larger C is, the more bursty the

generation of flows per session is. The influence of C on the

Hurst parameter is quite complex. At the flow level, a higher

degree of burstiness tends to induce a larger value of the

Hurst parameter, while the opposite is true at the packet level.

The fitting procedure requires only a few iterations

(approximately 10 in our tests). In order to verify that the

synthetic traffic accurately emulates the real traces, we
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Fig. 4. Impact of Nf on the Hurst parameters of the flow arrival process, for

different values of the normalized session arrival rate CZls/lf.
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report in Table 4 the characteristics of the synthetic traces

measured by the AV tool when the model parameters are

fitted to the 2001 traces; the values must be compared with

those of Tables 2 and 3. Observe that, thanks to the fitting

procedure, the Hurst parameters are well matched, while the

values for the c parameters are less accurate, though the

qualitative behavior is the same.

5.2. The modulating Markov chain

The Continuous-Time Markov Chain (CTMC) which

modulates the packet and flow arrival processes is defined

by the state variable �sZ ðnf ; nsÞ, where nf and ns denote the

number of active flows and the number of active sessions,
Table 4

Model: flow and packet level results fitting the ’01 traces

Trace Peak’01 Night’01

AV est. Hf cf 1=Lf Hp cp 1=Lp

I (ms) 0.74 19.2 20.1 0.84 7799.0 356.8

N1 s 0.71 76.7 49.8 0.82 0.51 2.81

N 100 ms 0.71 2.27 4.98 0.83 0.0076 0.28

N10 ms 0.78 0.013 0.50 0.79 0.0001 0.03
respectively. A state-transition diagram of the CTMC model

of the modulating process is reported in Fig. 5.

The transition from state (nf, ns) to state (nfK1, ns)

corresponds to the termination of a flow; its rate is nfmf,

where mfZlp/(NpK1). The generation of a new flow makes

the chain move from state (nf, ns) to state (nfC1, ns) with

rate bnslf if the flow is not the last one of the session, and

to state (nfC1, nsK1) with rate (1Kb)nslf if the flow is the

last one. The probability b that a generated flow is not the

last one of a session is given by bZ1K1/Nf. In state (nf,

ns) a session starts with rate ls and generates a new flow. If

the session is composed of one flow only, the chain moves

from (nf, ns) to (nfC1, ns) with rate (1Kb)ls; otherwise,

the chain moves from (nf, ns) to (nfC1, nsC1) with

rate bls.

The infinitesimal generator of the CTMC is infinite due

to the unbounded values that ns and nf can take. Thus, in

order to analyze the property of the MMPP or to evaluate the

performance of a queue fed by the synthetic traffic generated

by the MMPP we have two alternatives: (i) we resort to

simulation, (ii) we truncate the CTMC so that the

infinitesimal generator matrix becomes finite. In what

follows we consider both cases. The criterion used for

truncating the CTMC is described in Section 5.3. For the

moment, assume that the CTMC has been truncated so that

the number of active flows varies in the range [fm, fM] and

the number of active sessions varies in [sm, sM].

We denote by fJðtÞ; t 2R
Cg the finite CTMC obtained by

truncating the MMPP according to the above ranges. The

state space is given by SZ fðnf ; nsÞ2N
2jfm %nf % fM ;

sm %ns%sMg. The infinitesimal generator Q2R
n!n with

nZ ðfM K fm C1Þ!ðsM Ksm C1Þ is given by
QZ

Qfm
QC 0 / / 0

ðfm C1ÞQK QfmC1 QC 1 / «

0 ðfm C2ÞQK 1 1 1 «

« 1 1 1 1 0

« / 1 ðfM K1ÞQK QfMK1 QC

0 / / 0 fMQK QfM

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

QKZmf Is;Q
CZð1KbÞlf N

K
s Cblf NsCð1KbÞlsIsCblsI

C
s

Peak’01 Night’01

Hp cp 1=Lp Hp cp 1=Lp

0.84 0.038 0.90 0.82 0.0001 0.025

0.87 5943.0 1113.0 0.87 35.2 40.06

0.82 178.2 111.4 0.79 2.05 4.01

0.84 3.13 11.14 0.86 0.005 0.41
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Fig. 5. State-transition diagram of the Continuous-Time Markov Chain that modulates arrivals.
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IC
s Z

0 1 / 0
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0 / / 0

0
BBBB@

1
CCCCA; NK

s Z

0 0 / 0

sm C1 0 / «

« 1 1 0

0 / sM 0

0
BBBB@

1
CCCCA

Is; ICs ; Ns; NK
s 2R

ðsMKsmC1Þ!ðsMKsmC1Þ, Is is the identity

matrix. IKs Z IC
T

s NsZdiagsfsm; sm C1;.; sMg,
3 QiZdiags

fKðsmblf ClsC imf Þ;K½ðsm C1Þlf ClsC imf �;.;K½ðsM K
1Þlf ClsC imf �;K½sMlf C ð1KbÞlsC imf �g; for fm ! i! fM

Qfm
ZdiagsfKðsmblf ClsÞ;K½ðsm C1Þlf Cls�;.;K½ðsM K

1Þlf Cls�;KðsMlf ClsÞg QfM
ZdiagsfKfMmf ;KfMmf ;.;

KfMmf g.

Q is a homogeneous irreducible infinitesimal generator if

bs0,1. The steady-state probability vector p is given by

pQ Z 0; pe Z 1

where eZ(1,1,.,1).

The rate matrix is L2R
n!n, with LZlpdiags

ffmIs; ðfm C1ÞIs; ðfm C2ÞIs;.; fMIsg.
5.3. Truncating the modulating CTMC

Truncating the modulating CTMC, we have to trade-off

between the opposite needs of reducing the dimension of

the CTMC as much as possible in order to make the

solution efficient and fast, and keeping the CTMC

dimension large enough so that the truncated chain
3 The operator diags {x1, x2,.,xn} defines a diagonal matrix in R
n!n

whose elements along the diagonal are given by x1, x2,.,xn.
accurately approximates the original infinite one. In order

to find a proper truncation criterion, we first discuss the

marginal distributions of ns and nf.

Let us focus on the number of active sessions, ns.

Sessions are generated according to a Poisson process with

rate ls. The lifetime of a session, i.e. the time a session

spends in the system, is given by the sum of the inter-arrival

times of the flows generated by the session. Inter-arrival

times between flows of a session are i.i.d. negative

exponential random variables Xi with rate lf. The lifetime

Y of a session is thus given by the sum of a geometric

number of i.i.d. exponential random variables. It can be

easily shown that Y is negative exponential with mean value

E½Y�ZE½X�b=ð1KbÞZb=½lf ð1KbÞ�. Since sessions are

independent from each other, the evolution of the number of

sessions in the system can be modeled by an M/M/N queue,

whose arrival rate is ls and whose mean service time is E[Y].

It follows that the distribution of ns is Poisson with

parameter dZlsE½Y�Zlsb=½lf ð1KbÞ�.

We now consider the number of active flows, nf. In order

to model the flow arrival process, we number flows

according to the order in which they are generated by the

session they belong to: A flow of type i is the ith flow

generated by a session. We model the flow arrival process

by the infinite queuing network reported in Fig. 6a, where

arrivals at queue i represent the arrivals of type i flows. The

service time of a customer in queue i represents the inter-

arrival time between the ith flow and the (iC1)th flow of a

session and is distributed according to a negative exponen-

tial distribution with rate lf. Since type 1 flows are generated

at the arrival of sessions, type 1 flows arrive at queue 1

according to a Poisson process with rate ls. A customer



Fig. 6. Queuing network model of flow arrivals: (a) as an infinite number of queues; (b) as a single queue with feedback.
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leaving queue 1 enters queue 2 with probability (1Kb),

which is the probability that the flow was not the last one of

the session. Since the departure process from an infinite

queue with Poisson arrivals is Poisson too, the arrival

process at queue 2 is Poisson with rate (1Kb)ls. Thus, the

arrival process at queue i is Poisson with rate biK1ls. This

queuing network is equivalent to the queue with feedback

shown in Fig. 6b. Notice that, as it is well known, despite the

arrival processes at all queues in Fig. 6a are Poisson, the

infinite sum of the arrival processes which is the process

entering the queue with feedback in Fig. 6b is not Poisson.

Since the lifetime of flows in the system is negative

exponential distributed with rate mf, the behavior of flows

can be described by a set of infinite M/M/N queues, where

the arrival rate at queue i is equal to (1Kb)iK1ls and the

average service time is given by 1/mf; or equivalently by a

queue with feedback as the one in Fig. 6b with mf instead of

lf. It results that the distribution of nf, the number of flows in

the system, is Poisson distributed with rate ls/(bmf). Given

that the marginal distributions of ns and nf is Poisson

distributed, we can truncate the infinitesimal generator

choosing (sm, sM) and (fm, fM) such thatX
k2fsm;.;sM g

pns
ðkÞ Z 0:9 (8)

X
k2ffm;.;fM g

pnf
ðkÞ Z 0:9 (9)

where pns
ðkÞ and pnf

ðkÞ are the probability density functions

of ns and nf. We also tried values larger than 0.9 when

truncating the marginal distribution but no major differences

could be observed.

5.4. The buffer model (MMPP/M/1/m Queue)

For network planning and dimensioning, we are typically

interested in the performance of a queue which represents
the bottleneck of a network. Besides the advantages of being

simple to implement and efficient, a synthetic Markovian

source as the one we propose has the additional advantage of

allowing a Markovian model of a queue.

In general, the buffer model can be described by a

MMPP/GI/1/m queue, where the service time represents the

transmission time of a packet, and can be easily derived

from the capacity of the link and the distribution of the

packet length. The general service time distribution can be

approximated by a phase type distribution. However, for

simplicity, we consider the case of exponentially distributed

service time; we validate the exponential assumption in

Section 6 and we discuss the extension to phase type service

times at the end of this section. By adopting an exponential

service time distribution, we obtain an MMPP/M/1/m

queuing system. The stochastic process which describes

the dynamics of the system is a vector process

fZðtÞ; t 2R
Cg, Z(t)Z{R(t), J(t)}, where R(t) denotes the

number of packets in the queue, J(t)Z(nf(t), ns(t)) denotes

the phase of the modulating chain and it is a vector Markov

process too.

The state space of the considered Markov process is

S Z fz Z ðr; nf ; nsÞ2N
3j0%r%m; fm %nf % fM ;

sm %ns%sMg:

The infinitesimal generator of such a CTMC is A

A Z

A00 A0 0 / / 0

A10 A1 A0 1 / «

0 A2 1 1 1 «

« 1 1 1 1 0

« / 1 A2 A1 A0

0 / / 0 A2 Amm

0
BBBBBBBBBB@

1
CCCCCCCCCCA



20

25

30

35

%

L. Muscariello et al. / Computer Communications 28 (2005) 1835–18511846
where A00ZQKL, A0ZL, A1ZQKmInKL, AmmZQK
mIn, A2ZmIn. A00, A10, A0, A1, A2, Amm, In 2R

n!n, and In is

the identity matrix.

Z(t) is a finite QBD (Quasi Birth Death) process whose

solution has been studied in many papers [47–50]. We adopt

the solution proposed by Krieger et al. [49], the Improved

Logarithmic Reduction Algorithm (ILRA).
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Fig. 7. Packet length distribution used in simulations.
6. Performance evaluation

The comparison of Table 4 with Tables 2 and 3 indicates

that the proposed MMPP model captures the LRD

characteristics of the traffic we measured at the edge router

interconnecting the Politecnico di Torino network to

GARR/B-TEN. This is hardly a surprise, since we tuned

the model to obtain this result. However, it indicates that the

proposed MMPP model is capable of exhibiting LRD

behaviors over the time scales of interest. In this section we

further evaluate the performance of the proposed MMPP

model in two ways: (i) we study the behavior of the

synthetic traffic produced by the MMPP model when

feeding a buffer in front of a transmission link, and compare

the results against those produced by measured traffic traces,

(ii) we investigate the predictability and tunability of the

model when used as a synthetic source of aggregate Internet

traffic, i.e. we discuss the model effectiveness in represent-

ing different traffic scenarios.

The analysis in this section considers the 2001 traces, for

which the values of the measured parameters are reported in

Table 5.

6.1. Queuing analysis

In order to evaluate the accuracy of the model as a

synthetic traffic source, we consider a queuing system and

we compare the performance obtained by feeding the queue

with the synthetic traffic generated by the MMPP model

with the results obtained from the real trace. For comparison

purposes only, and in order to show the importance of

introducing some memory in the input traffic model, we also

plot the queue performance obtained when Poisson traffic

feeds the queue.

We first consider the case of infinite buffer. The service

time distribution reflects the packet length distribution

measured from the real traces, which is reported in Fig. 7,

and exhibits the well-known multi-mode behavior, with
Table 5

Measured values from real traces used in setting the model parameters

Peak’01 Night’01

N̂p 22.03 14.35

l̂p
29.57 352.9

L̂f
49.95 2.78

L̂p
1113.0 40.06
peaks for very short packets and for the different MTUs

(Maximum Transfer Units) in the network, with a

dominating peak at 1500 bytes, due to the size of Ethernet

frame. To evaluate the performance of the queue under

different values of the load, we change the service rate

(in bit per seconds) while keeping the packet length

distribution unchanged. Notice that the load of the queue

has no relation with the actual load of the link where the

traces were collected. The results for the synthetic traffic

are obtained by simulating the corresponding MMPP/GI/1

queue.

Fig. 8 reports the queue length distribution for the

Peak’01 trace. The thin dashed line is obtained by using as

input the measured trace, the solid line is obtained with the

MMPP model and the thick dashed line with a simple

Poisson process whose rate matches the average packet

arrival rate measured on the trace. Plots refer to four

different loads: 0.9, 0.8, 0.7, and 0.6. For the real trace, the

tail of the distributions below 10K4 becomes noisy due to

lack of samples. The buffering behavior of the model

matches quite well that of the measured traces, while, as

expected, the Poisson model underestimates the buffer level

of orders of magnitude. Notice that the accuracy of the

MMPP model predictions tends to increase for large values

of the load, which correspond to the most interesting cases

for the system designer.

Similar results are shown in Fig. 9 for the Night’01 trace.

In this case, the accuracy of the model is less satisfactory,

especially when the load is light. It must be noted, however,

that this scenario is both less interesting and somewhat more

‘artificial’ than the previous one. First of all, the number of

points in the measured trace is about 50 times smaller than

during peak hours (see Table 1) and this explains why trace-

driven curves are noisier. Second, the real link load at night

is extremely low, thus artificially forcing the load to values

higher than 0.6 significantly modifies the overall scenario.

Yet, despite of this, the MMPP model matches quite well the

tail of the distribution, which is typically the most crucial

part of the curve.
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Fig. 8. Buffer occupancy distribution for the model, the Peak’01 trace and Poisson arrivals; load rZ0.9, 0.8, 0.7 and 0.6.
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We now look at the case of finite buffers. The results for

the MMPP model are derived analytically, by assuming that

service times are exponentially distributed. Fig. 10 reports

the queue length distribution for a finite buffer queue driven

by the same arrival process as in the previous scenarios for

the Peak’01 trace, with rZ0.9. The considered buffer sizes

are BZ32, 64, 128, 256, 512 packets. Notice again the

accuracy of the model in evaluating the queue performance.

The curves for the Poisson traffic with different values of the

buffer size cannot be distinguished from one another.

We now consider the typical dimensioning problem: the

evaluation of the impact of the buffer size on the packet loss

probability. Results are shown in Fig. 11. Two curves refer

to the MMPP model. The solid line reports analytical results

obtained with the assumption that service times are

exponentially distributed; the markers are derived from

the model by simulation using the same distribution of the

service time as for the real trace. The figure proves that the

impact of the exponential assumption for service times is

marginal. Again, notice that analytical predictions are very

accurate.

In terms of complexity, the numerical approach depends

mainly on the size of the matrices which describe the

Markov process. The computation of the steady-state

distribution of the MMPP is efficient because the matrix Q
is sparse, and finding the matrix geometric terms is also

efficient thank to the ILRA solution method, even for very

large matrices. On the contrary, the computation of the

boundaries can be a difficult task because it requires solving

a dense linear system.

6.2. Sensitivity analysis

We now discuss the impact of the MMPP model

parameters on both the Hurst parameters and the queuing

behavior. In particular, we focus on the effect of the average

number of flows per session, Nf, which represents the long-

term memory of the model. We proceed as follows. We first

derive the model parameters as described in Section 5.1.

Then, we set a new value of Nf and, accordingly, we change

ls so that the average number of flows generated in the time

unit does not change. All the other model parameters are

kept unchanged. Observe that the load is kept equal to the

desired value (0.9) even if Nf is changed, as shown by the

following equations:

E½Lf � Z ls Clf E½ns� Z ls Clf

ls

lf

ðNf K1Þ Z L̂f (10)

E½Lp� Z E½Lf �Np Z L̂f Np Z L̂p (11)
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Fig. 9. Buffer occupancy distribution for the model, the Night’01 trace and Poisson arrivals; load rZ0.9, 0.8, 0.7 and 0.6.
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This result is obvious, if we recall that Nf and C do not

change the first order statistic but they act only on the

second order statistics. Results are shown in Fig. 12 for

different values of Nf. Again, for comparison purposes only,

we report the curve derived with Poisson packet arrivals.

The case NfZ1 corresponds to one flow only per session,
10-4

10-3

10-2

10-1

100

100 101 102

pd
f

ρ=0.9

Model
Data

Poisson

Fig. 10. Buffer occupancy distribution for the model, the Peak’01 trace and

Poisson arrivals; finite buffer with capacity equal to 32, 64, 128, 256, 512

packets and load rZ0.9.
which implies that the flow arrival process is Poisson.

Increasing the number of flows per session makes the queue

tail heavier: as Nf increases, the range where the queue

decay follows roughly a power law becomes longer.

Clearly, there is always a value beyond which the queue

decay is exponential and this value increases with Nf.
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Fig. 11. Buffer loss probability for the model, the Peak’01 trace and Poisson

arrivals; finite buffer with capacity equal to 32, 64, 128, 256, 512 packets

and load rZ0.9.
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Indeed, the behavior of our model confirms the results

obtained in [51], where the Hurst parameter of measured

traffic, as well as the queuing behavior of the same traffic,

are fitted through the use of phase type distributions.

Thanks to its simplicity and to the intuitive meaning of

the parameters, the model can be effectively used as a

manageable tool for IP network dimensioning and design.

Indeed, having proved that the model accurately represents

real traffic behavior, the model can be used to assess the

performance of a system under variable traffic conditions,

by simply changing the value of the parameters. Consider

for example that for the network design we are interested in

evaluating the impact of different traffic mixes on a finite

buffer. We fix a value of Nf and modify accordingly Np so

that the average offered load to the buffer is constant. This

corresponds to traffic mixes composed by either a small

number of long flows or a large number of short flows.

Fig. 13 plots the loss probability for a finite buffer of 512

packets, and for average load equal to 0.7, 0.8, 0.9. The

figure shows that the loss probability initially increases for

increasing values of Nf, but for values of Nf larger than about
10-5

10-4

10-3

10-2

10-1

10 20 30 40 50

lo
ss

 p
ro

ba
bi

lit
y

Nf

ρ=0.9
ρ=0.8
ρ=0.7

Fig. 13. Loss probability with different values of Nf; buffer size equal to

512.
5, the loss probability decreases. Indeed, the loss probability

is strictly related to the correlation in the packet arrival

process: for Nf close to one (and therefore for large values of

Np), we expect less correlation in the traffic mix, having just

one long flow per session, i.e. flows and sessions tend to

coincide. Similarly, large values of Nf force small values of

Np, which leads to many one-packet long flows, i.e. flows

and packets tend to coincide, thus reducing correlation.
7. Conclusions

In this paper, we proposed a simple MMPP Internet

traffic model that is capable of approximating well the traffic

characteristics measured at the edge router of our institution.

The model is based on a layered structure of sessions, that

generate flows, that finally generate packets.

The characteristics of the synthetic traffic generated with

the model match the LRD characteristics observed in the

measured traces over the time scales of interest. One of the

interesting features of the MMPP model is that it requires as

inputs five parameters only. Three of these parameters can

be directly mapped onto average traffic parameters, such as

the average flow arrival rate, the average number of packets

per flow, and the average arrival rate of packets within

flows. The other two parameters define the notion of session,

and are used to control the Hurst parameter of the synthetic

traffic on the considered scaling range.

Most interesting is that the behavior of the synthetic

traffic in a queue with either finite or infinite buffer matches

very well the behavior of the measured traces. Thus, the

proposed MMPP model can be considered an accurate

descriptor of aggregate Internet traffic, and can be

effectively used to dimension buffer sizes and link

capacities.

The key features of the proposed MMPP model are its

simplicity and its intuitive structure. While, on the one hand,

these features allow an accurate match of the characteristics

of measured traffic, on the other hand, they allow the model

to be used by traffic engineers with only limited knowledge

of the sophisticated theoretical aspects of LRD processes.
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