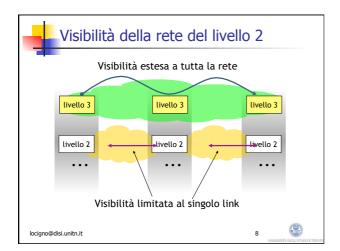
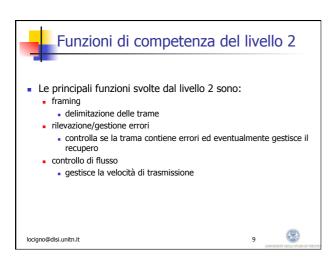
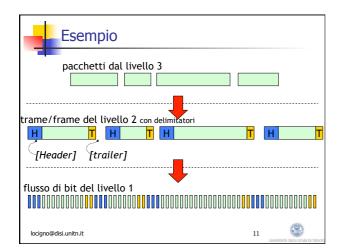
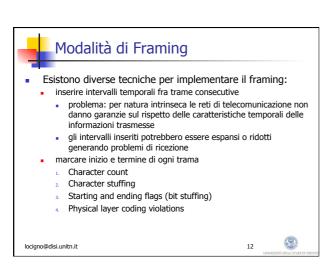

Reti di Calcolatori AA 2010/2011 UNIVERSITÀ DEGLI STUDI DI TRENTO http://disi.unitn.it/locigno/index.php/teaching-duties/computer-networks Livello 2 OSI: Data Link e MAC. Standard per LAN, Ethernet, LAN Estese e cenni ad altre reti di livello 2

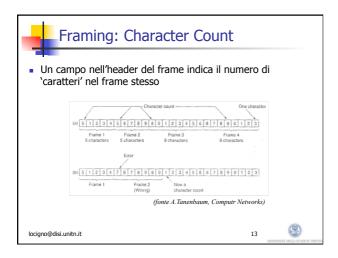
Renato Lo Cigno

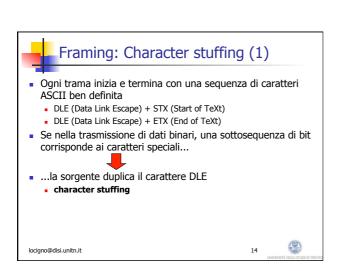


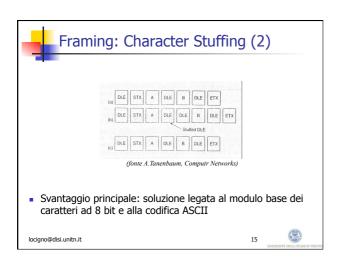


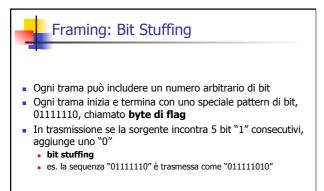


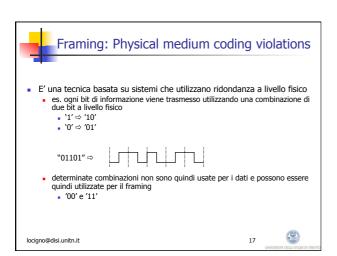


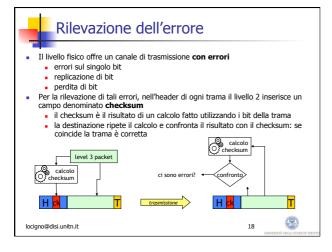












lociano@disi.unitn.it

(4)

Controllo di flusso (v. Prot. a Finestra)

- Problema: la sorgente trasmette le trame ad una velocità superiore di quella che la destinazione utilizza per accettare l'informazione
 - conseguenza: congestione del nodo destinazione
- Soluzione: implementare il controllo di flusso
- Il controllo della velocità di trasmissione della sorgente è basato su feedback inviati alla sorgente dalla destinazione indicando
 - di bloccare la trasmissione fino a comando successivo
 - la quantità di informazione che la destinazione è ancora in grado di gestire
- I feedback possono essere
 - nei servizi con riscontro, gli ack stessi
 - nei servizi senza riscontro, dei pacchetti appositi

locigno@disi.unitn.it

19

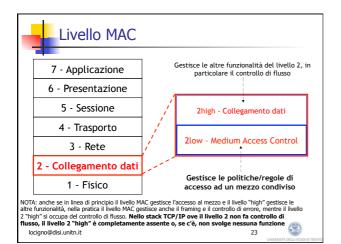
Controllo errori

- Spesso assente nelle reti locali (ma presente invece nelle reti wireless LAN)
- Presente nelle reti tradizionali di tipo geografico
- Come a livello trasporto basato su protocolli a finestra
 - normalmente stop&wait
 - sul singolo canale non ho problemi di ritardo variabile
- Ritrasmissione dell'intera trama, controllo basato su CRC

locigno@disi.unitn.it

20

Il sotto-livello MAC


Introduzione di un nuovo sotto-livello

- Abbiamo visto che il livello 2 gestisce un insieme di problematiche svolgendo le funzioni di framing, rivelazione degli errori, controllo di flusso
- Bisogna considerare però che il livello 2 ha a che fare con il livello 1, ovvero il livello fisico (direttamente collegato al mezzo fisico)
- Il mezzo fisico può essere:
 - dedicato (reti punto-punto)
 - condiviso (reti broadcast)
- Se il mezzo fisico è condiviso, nascono una serie di problematiche relative all'accesso a tale mezzo
 - selezione dell'host che ha il diritto di trasmettere sul mezzo condiviso
- situazione di competizione per la risorsa trasmissiva
- Viene introdotto un sotto-livello al livello 2 che gestisce queste problematiche
 - MAC (Medium Access Control)

lociano@disi.unitn.it

22

Definizione del problema

- Per mezzo condiviso si intende che un unico canale trasmissivo può essere usato da più sorgenti
 - esempio: stanza piena di persone che vogliono parlare tra di loro
 - se tutti parlano contemporaneamente, non potrà esserci scambio di informazione
 - l'opposto è avere un mezzo dedicato per ogni coppia di persone che vuole parlare (ad esempio un tubo o una coppia di walkietalkie)
- E' necessario definire una serie di regole per poter utilizzare il mezzo (tecniche di allocazione del canale)
 - se due sorgenti parlano contemporaneamente vi sarà collisione è l'informazione andrà persa

Tecniche di allocazione del canale

- Esistono due categorie in cui rientrano le tecniche di allocazione del canale trasmissivo
 - allocazione statica
 - il mezzo trasmissivo viene "partizionato" e ogni porzione viene data alle diverse sorgenti
 - il partizionamento può avvenire in base:
 - al tempo: ogni sorgente ha a disposizione il mezzo per un determinato periodo
 - alla frequenza: ogni sorgente ha a disposizione una determinata frequenza (si pensi alle stazioni radiofoniche ove il canale trasmissivo è l'aria...)
 - allocazione dinamica
 - il canale viene assegnato di volta in volta a chi ne fa richiesta e può essere utilizzato una volta che questi ha finito di usarlo e lo

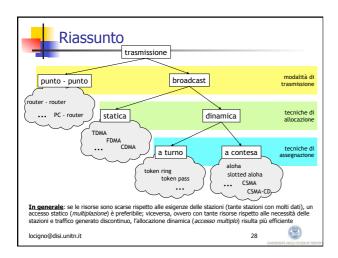
libera locigno@disi.unitn.it

Allocazione statica

- Soluzioni "tradizionali"
 - Frequency Division Multiple Access (FDMA)
 - Time Division Multiple Access (TDMA)
 - Code Division Multiple Access (CDMA)
- Buona efficienza in situazioni di pochi utenti con molto carico costante nel tempo
- Meccanismi di semplice implementazione (FDM)
- Tuttavia...
 - molti utenti
 - traffico discontinuo
- ...generano una scarsa efficienza di utilizzo delle risorse trasmissive
 - le risorse dedicate agli utenti "momentaneamente silenziosi" sono perse

locigno@disi.unitn.it

2



Allocazione dinamica

- Il canale trasmissivo può essere assegnato:
 - a turno
 - viene distribuito il "permesso" di trasmettere; la durata viene decisa dalla sorgente
 - a contesa
 - ciascuna sorgente prova a trasmettere indipendentemente dalle altre
- Nel primo caso si presuppone la presenza di meccanismi per l'assegnazione del permesso di trasmettere
 - overhead di gestione
- Nel secondo caso non sono previsti meccanismi particolari
 - sorgente e destinazione sono il più semplici possibile
- I protocolli che gestiscono la trasmissione a contesa sono generalmente i più utilizzati

locigno@disi.unitn.it

Allocazione dinamica con contesa: ipotesi

☐ Analizziamo in dettaglio le prestazioni ottenibili da protocolli (protocollo: insieme di regole...) progettati per gestire l'allocazione dinamica del canale con contesa della risorsa. Seguono una serie di ipotesi per semplificare il problema

Single channel assumption

- unico canale per tutte le comunicazioni
- Station model
- N stazioni indipendenti ognuna delle quali è sorgente di trame di livello 2
- le trame sono generate secondo la distribuzione di Poisson con media **S** la lunghezza delle trame è fissa, ovvero il tempo di trasmissione è costante e
- pari a **T** (tempo di trama) una volta generata una trama, la stazione è bloccata fino al momento di

locigno@disi.unitn.it

Collision assumption

- due trame contemporaneamente presenti sul canale generano collisione non sono presenti altre forme di errore
- continuo: la trasmissione della trama può iniziare in qualunque istante
- slotted: la trasmissione della trama può iniziare solo in istanti discreti

Ascolto del canale...

orto del Canale: carrier sense: le stazioni sono in grado di verificare se il canale è in uso prima di iniziare la trasmissione di una trama (questo equivale a dire che il tempo di propagazione t è =< T)

29

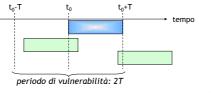
Protocolli di accesso multiplo

- In letteratura sono disponibili molti algoritmi di accesso multiplo al mezzo condiviso con contesa
- Principali algoritmi (utilizzati dai protocolli):
 - ALOHA
 - Pure ALOHA
 - Slotted ALOHA
 - Carrier Sense Multiple Access Protocols
 - CSMA
 - CSMA-CD (Collision Detection: con rilevazione della collisione)
 - CSMA-CA (Collision Avoidance: con tecniche per ridurre la probabilità di collisione)

Pure ALOHA

- Definito nel 1970 da N. Abramson all'università delle Hawaii
- Algoritmo:
 - una sorgente può trasmettere una trama ogniqualvolta vi sono dati da inviare (continuous time)
 - se il canale è cablato la sorgente ascolta il canale per rilevare **collisioni**, se wireless il ricevitore invia esplicitamene un ACK di
 - **collisione** ⇒ la sorgente aspetta un tempo **casuale** e ritrasmette la
 - un tempo deterministico porterebbe ad una situazione di collisione all'infinito

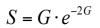
lociano@disi.unitn.it


31

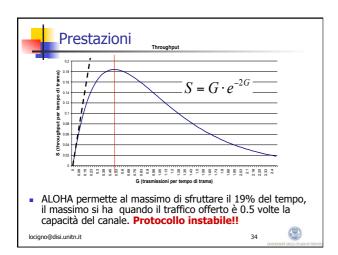
Periodo di vulnerabilità

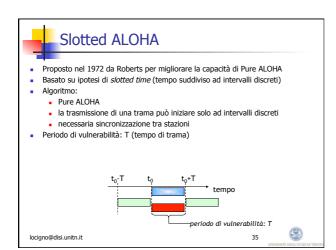
- Si definisce "periodo di vulnerabilità" l'intervallo di tempo in cui può avvenire una collisione che invalida una trasmissione Detto T il tempo di trama e t_0 l'inizio della trasmissione da parte di una sorgente, il periodo di vulnerabilità è pari al doppio del tempo di trama nel momento in cui inizia a trasmiettere (t_0), nessuna altra sorgente deve aver iniziato la trasmissione dopo l'istante di tempo t_0 T e nessuna altra sorgente deve iniziare la trasmissione fino a t_0 +T

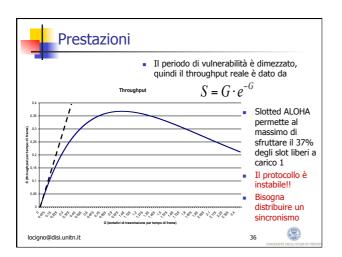
locigno@disi.unitn.it


32

Prestazioni


- Ipotesi
 - trame di lunghezza fissa
 - tempo di trama: tempo necessario per trasmettere una trama
 - popolazione ∞ che accede ad un mezzo condiviso
- Traffico generato (numero di trame per tempo di trama) segue la distribuzione di Poisson con media ${\sf G}$
 - G ingloba anche il numero di ri-trasmissioni dovuto a collisioni
- Il throughput reale è dato da
 - numero medio di trasmissioni * probabilità che non ci siano trasmissioni per tutto il periodo di vulnerabilità (2 tempi di trama consecutivi) \Rightarrow S = G*P[0 trasmissioni per 2T], ovvero




G = numero medio di trame trasmesse nel tempo di trama S = numero medio di trame trasmesse

con successo (throughput)

Carrier Sense Multiple Access (CSMA)

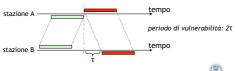
- Ambito LAN: le stazioni possono monitorare lo stato del canale di trasmissione (ritardi bassi)
- Le stazioni sono in grado di "ascoltare" il canale <u>prima di iniziare a</u> <u>trasmettere</u> per verificare se c'è una trasmissione in corso
- Algoritmo
 - se il canale è libero, si trasmette
 - se è occupato, sono possibili diverse varianti
 - non-persistent (0-persistent)
 - rimanda la trasmissione ad un nuovo istante >> tempo di trasmissione, scelto in modo casuale
 - persistent (1-persistent)
 - nel momento in cui si libera il canale, la stazione inizia a trasmettere
 - se c'è collisione, come in ALOHA, si attende un tempo casuale e poi si cerca di ritrasmettere

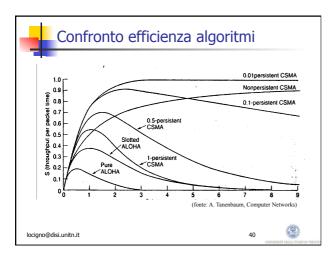
lociano@disi.unitn.it

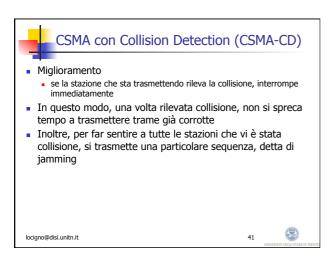
37

CSMA: modalità p-persistent

- Il tempo viene suddiviso in intervalli
 - la lunghezza degli intervalli è uguale al periodo di vulnerabilità
 - round trip propagation delay 2 τ
- Algoritmo
 - 1. ascolta il canale
 - se il canale è libero si trasmette;
 - se è occupato, si attende che il canale diventi libero
 - quando il canale è libero si trasmette con probabilità p;
 - se si è deciso di trasmettere, si passa al punto 2
 - se non si è deciso di trasmettere, si attende un intervallo di tempo >> del tempo di trasmissione T e si torna al punto 1
 - se c'è collisione
 - si attende un tempo casuale (>>T) e poi si torna al punto 1

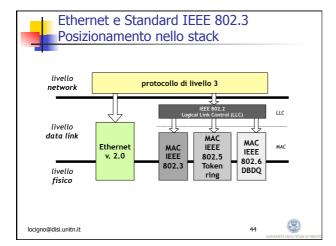

locigno@disi.unitn.it





Periodo di vulnerabilità

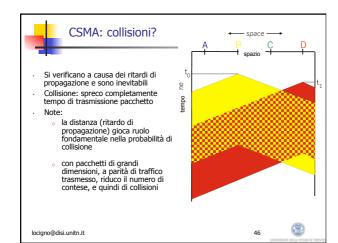
- In questo caso il periodo di vulnerabilità è legato al ritardo di propagazione del segnale ($\it r$)
 - se una stazione ha iniziato a trasmettere, ma il suo segnale non è ancora arrivato a tutte le stazioni, qualcun altro potrebbe iniziare la trasmissione
 periodo di vulnerabilità → 2 τ
- A seconda del ritardo di propagazione, se questi risulta paragonabile al tempo si trama o meno, si hanno prestazioni differenti In generale, il CSMA viene usato in reti in cui il ritardo di propagazione τ è << di T (tempo di trama)


Ethernet e Standard IEEE 802.3 Caratteristiche e prestazioni

- Ambito di utilizzo
 - reti locali (LAN)
 - uffici, campus universitari, ...
- Tecnologia economica
 - facilità di installazione e manutenzione
- Si interfaccia direttamente e gestisce il livello fisico
- Sopporta un carico medio del 30% (3 Mb/s) con picchi del 60% (6 Mb/s)
- Sotto carico medio
 - Il 2-3% dei pacchetti ha una sola collisione
 - Qualche pacchetto su 10,000 ha più di una collisione
- Principale differenza tra Ethernet e 802.3
 - 802.3 definisce un'intera famiglia di sistemi CSMA/CD con velocità 1-10Mbps
 - Ethernet è solamente a 10Mbps

locigno@disi.unitn.it

43



Ethernet e Standard IEEE 802.3 Algoritmi implementati

- Gli standard Ethernet e 802.3 implementano un livello MAC di tipo CSMA/CD 1-persistent
- In caso di collisione, l'istante in cui ritrasmettere viene calcolato utilizzando un algoritmo di binary exponential backoff
 - dopo i collisioni, l'host attende prima di ri-iniziare la procedura di trasmissione un tempo casuale nell'intervallo [0, 1, ..., 2l-1]
 - vincoli
 - dopo 10 collisioni il tempo di attesa è limitato all'intervallo [0, 1, ..., 1023]
 - dopo 16 collisioni viene riportata una failure al sistema operativo

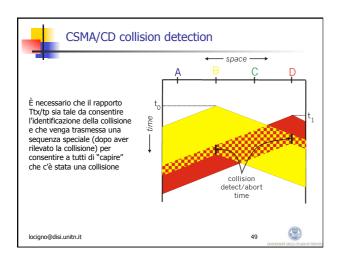
ociano@disi.unitn.i

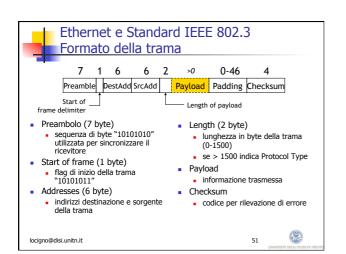
Prestazione CSMA

- Dipendenti da rapporto tra dimensione della rete e dimensione del pacchetto
- Lo 'spreco' di risorse è legato al rapporto tra il tempo di propagazione tp e il tempo di trasmissione del pacchetto Ttx

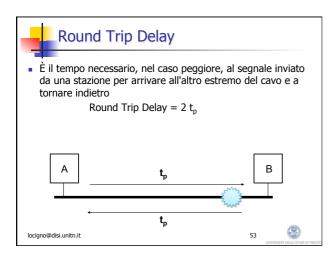
$$a = \frac{t_p}{T_{TX}}$$

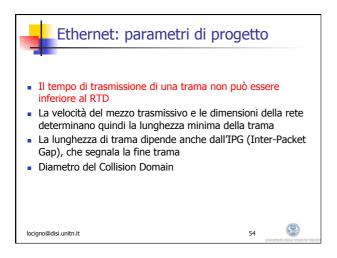
locigno@disi.unitn.it




CSMA/CD (Collision Detection)

- · Vantaggi di CSMA/CD su CSMA:
 - se mi accorgo (in fretta) delle collisioni sospendo la trasmissione del pacchetto
 - $_{\circ}\,$ riduco lo spreco dovuto ad una trasmissione inutile
- · Collision detection:
 - facile nelle LAN cablate: misuro potenza segnale, confronto segnale ricevuto e trasmesso
 - difficile in LAN wireless: half duplex (quando trasmetto ricevitore disattivo)





Collision Domain

- Il collision domain è quella porzione di rete Ethernet in cui, se due stazioni trasmettono simultaneamente, le due trame collidano
 - spezzoni di rete connessi da repeater sono nello stesso collision domain
 - spezzoni di rete connessi da dispositivi di tipo store and forward (bridge, switch o router) sono in collision domain diversi

lociano@disi.unitn.it

55

Diametro di un Collision Domain

- Con il termine diametro di un collision domain si indica la distanza massima tra ogni possibile coppia di stazioni
- Il diametro massimo di un collision domain a 10Mbit/s è di 2800m e dipende da:
 - lunghezza massima dei cavi (attenuazione del segnale che induce uso di repeater, con ritardo aggiuntivo)
 - ritardo di propagazione (round trip delay)

locigno@disi.unitn.it

56

Caratteristiche MAC Ethernet

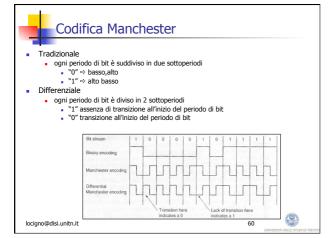
- Per garantire buone prestazioni (collisioni ridotte) non bisogna caricare troppo la rete
- Protocollo semplice e totalmente distribuito
- Non avendo un ritardo massimo non è adatto ad applicazioni real-time
- Ritardi di accesso piccoli a basso carico
- Standard per LAN più diffuso quindi ampia disponibilità di componenti di basso costo
- Non esistono conferme di avvenuta ricezione
- Non gestisce priorità

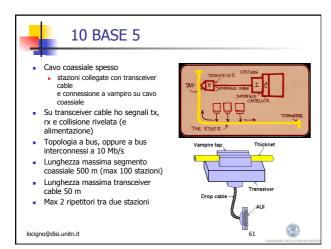
Ethernet: livello fisico

- Velocità trasmissione: 10 Mb/s (bit time = 0.1μs)
- Codifica Manchester (20Mbit/s di clock per facilitare recupero sincronismo in rete asincrona)
- Stazioni: max 1024 (2¹⁰)
- Mezzi trasmissivi:
 - 10 BASE 5: cavo coassiale spesso RG213
 - 10 BASE 2: cavo coassiale sottile RG58
 - 10 BASE T: doppino UTP da 100 Ohm
 - 10 BASE FL, 10 BASE FB, 10 BASE FP: fibra ottica multimodale

lociano@disi.unitn.it

58




Ethernet: livello fisico

- Topologie:
 - bus o albero di bus: 10 BASE 5, 10 BASE 2
 - stella: 10 BASE T, 10 BASE FB, 10 BASE FP
- Possono essere utilizzati repeater
 - decodificano e ricodificano Manchester
 - rilevano collisione e la inoltrano su tutte le porte
 - rigenerano preambolo (802.3)
 - isolano segmenti di rete se si verificano 30 collisioni consecutive
 - possono ridurre preambolo e non modificare inter-packet gap o

locigno@disi.unitn.it

10 BASE 2

- Cavo coassiale sottile
- stazioni connesse direttamente al cavo con connettore a T
- Transceiver incorporato nella scheda
- Lungh max segmento coassiale 185 m (max 30 stazioni)
- Stesse configurazioni di 10BASE 5 fino a 2800 m max
- Max 4 ripetitori tra due stazioni

locigno@disi.unitn.it

62

10 BASE T

- Doppino UTP (Unshielded

 Trained Bails)
- Twisted Pair)

 Collegamento punto punto tra stazioni e repeater (hub)
- Adatto a cablaggi strutturati
- Lunghezza massima del cavo 100 m
- Connettori RJ45 ad 8 fili (simile al telefono)

locigno@disi.unitn.it

(4)

Ethernet: ritrasmissioni

- Slot time = 512 bit time (51.2 μs)
 - unità base di attesa prima di una ritrasmissione (pari ad un pacchetto di dimensione minima)
- In caso di n-esima collisione di un pacchetto, si ritrasmette dopo ritardo casuale estratto tra 0 e 2k-1slot time, con k=min(n, 10)
- Backoff limit = 10
 - Numero di tentativi oltre al quale non aumenta più il valor medio del back-off
- Attempt limit n=16
 - Massimo numero di tentativi di ritrasmissione

lociano@disi.unitn.it

Ethernet: parametri e temporizzazioni

- Inter Packet Gap = 9.6 μs
- Distanza minima tra due pacchetti
 Jam size = da 32 a 48 bit
- - Lunghezza della sequenza di jamming
- Max frame size = 1518 ottetti
- Lunghezza massima del pacchetto (esclude preambolo e interpacket gap)

 Min frame size = 64 ottetti (512 bit)

 Lunghezza minima del pacchetto

 Addresssize = 48 bit

 Lunghezza indirizzi MAC

locigno@disi.unitn.it

65

Ethernet: parametri e temporizzazioni

- Pacchetto minimo 512 bit, ovvero 51.2 μs
- Round trip delay massimo ammesso dallo standard: 45 μs
- Si rispetta la condizione che il ritardo di propagazione non eccede la minima durata del pacchetto per garantire il rilevamento delle collisioni

Evoluzione di Ethernet

- Fast Ethernet
 - Ethernet a velocità di 100Mbps
- Gigabit Ethernet
 - formato e dimensione dei pacchetti uguale a Ethernet/802.3
 - velocità di 1 Gbps (in corso di standardizzazione anche 10 Gbps)
 - Offre i vantaggio tipici di Ethernet:
 - Semplicità di accesso al mezzo CSMA/CD
 - Alta scalabilità tra le diverse velocità di trasmissione
 - Permette di velocizzare le moltissime LAN Ethernet e FastEthernet già presenti con costi contenuti tramite sostituzione apparati di rete (Hub, Switch, interfacce)

lociano@disi.unitn.it

6

Fast Ethernet

- Mantiene inalterato l'algoritmo CSMA-CD realizzato con 10Base-T e la dimensione dei pacchetti
- Tre standard per mezzi fisici (doppino su 4 coppie, doppino su 2 coppie, fibra)
- Trasmissione codifica 4B5B (di fatto si trasmettono 5 bit sul canale ogni 4 bit di informazione: la velocità effettiva sul canale è 125 Mbit/s)
- Riduce le dimensioni della rete
- La massima distanza tra due stazioni (collision domain) scende a 210m
- Interoperabilità con Ethernet 10Base-T

locigno@disi.unitn.it

68

Gigabit Ethernet

- Uso formato di trama 802.3
- Operazioni half duplex e full duplex, ma usato in pratica solo in full duplex
 - si perdono vincoli legati a collision domain
 - CSMA/CD non utilizzato
- Controllo di flusso (definizione di master/slave)
- Backwardc ompatibility con mezzi fisici già installati
- Aumenta di un fattore 10 dimensione minima di pacchetto con padding di caratteri speciali per consentire l'uso di CSMA/CD se necessario
- Definizione di Jumbo Frames per aumentare throughput massimp
- Codifica 8B10B

locigno@disi.unitn.it

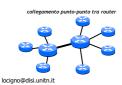
Modifiche al protocollo

- Slot portato da 64 a 512 bytes (se ho pacchetti piccoli le prestazioni sono basse)
- Collision domain di 200 m
- Solo topologie a stella
- Consente la tecnica "frame bursting" (o Jumbo Frames) per mantenere il controllo del canale fino ad un massimo di 8192 bytes (l'estensione della lunghezza minima del pacchetto è necessaria solo per il primo pacchetto)

lociano@disi.unitn.it

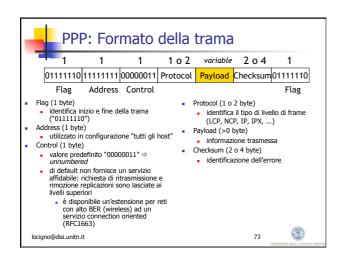
10 Gigabit Ethernet

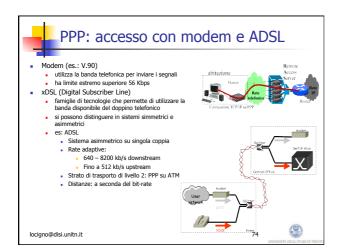
- Il comitato IEEE 802.3ae ha standardizzato 10 Gbit/s Ethernet (luglio 2002)
- Solo la modalità full duplex, senza CSMA-CD
- Soluzioni proposte:
 - Seriale, con framing Ethernet, su distanze da LAN fino a 40 Km
 - 65 m su fibra multimodo (MMF)
 - 300 m su MMF installata
 - 2 km su fibra monomodo (SMF)
 - 10 km su SMF
 - 40 km su SMF
- Seriale, su SONET, per distanze maggiori di 40 Km
- Per maggiori informazioni:
 - www.10gea.org
- www.ieee802.org

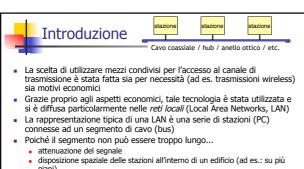

PPP: caratteristiche

- Point-to-Point Protocol: $\,\,$ E' un protocollo di livello 2 utilizzato sia nell'accesso e che nel backbone
- Caratteristiche principali:

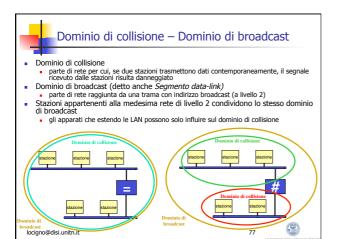
 character oriented

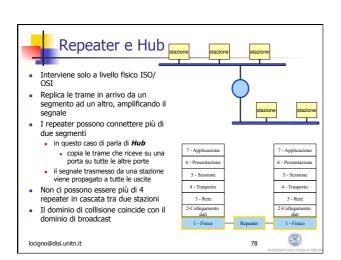

 - character stuffing per il framing

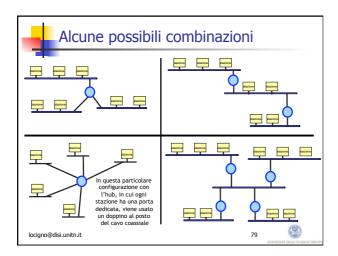

 - identificazione degli errori supporta vari protocolli di livello superiore (rete)
 - negoziazione dinamica degli indirizzi IP
 - autenticazione del "chiamante"

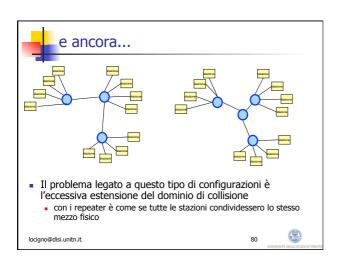


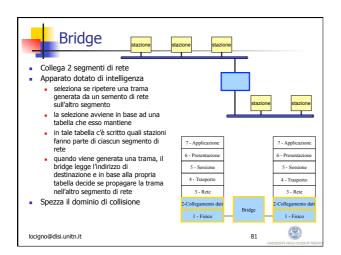
ANIX.				
ACCIDENTAL DA ABRAGA				
ACCUSTON IN THE NICE				

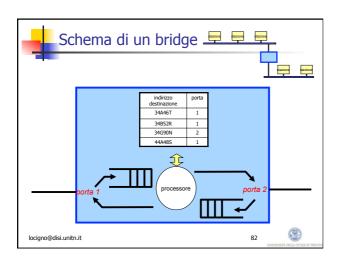


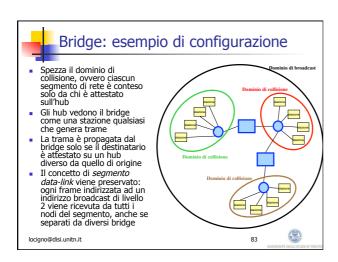


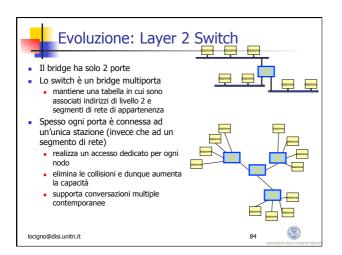

- ... nasce il problema di come estendere le LAN
- Esistono 3 tipi di apparati, in ordine crescente di complessità:
- Repeater o Hub

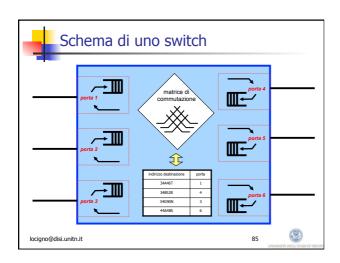

 - Switch

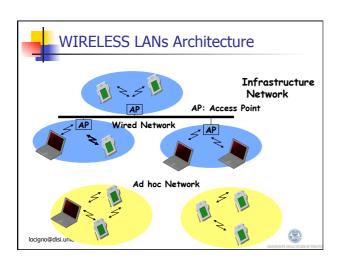


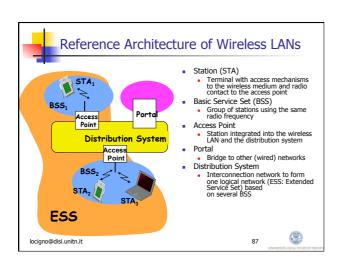










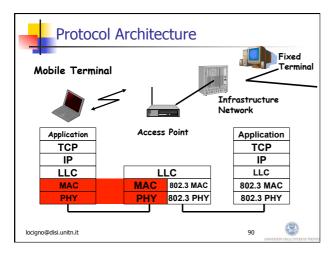


Reference Architecture

- Basic Service Set (BSS) consists of some number of stations with the same MAC protocol and competing for access to the same shared medium.
- A BSS may be isolated or it may connect to a backbone distribution system through an access point
- AP functions as a bridge.
- The MAC protocol may be fully distributed or controlled by a central coordination function housed in the AP.

lociano@disi.unitn.it

88



Reference Architecture

- Basic Service Set (BSS) <-> CELL
- Extended Service Set (ESS) consists of two or more BSSs interconnected by a distribution system.
- $\, \blacksquare \,$ Distribution System \rightarrow a wired backbone LAN.
- ESS appears as a single logical LAN to the logical link control (LLC) level.

locigno@disi.unitn.it

Family of Wireless LAN (WLAN) Standards 802.11

- 802.11a 5GHz- Ratified in 1999
- 802.11b 11Mb 2.4GHz- ratified in 1999
- 802.11d Additional Regulatory Domains
- 802.11e Quality of Service
- 802.11f Inter-Access Point Protocol (IAPP)
- 802.11g Higher Data rate (>20mBps) 2.4GHz
- 802.11h Dynamic Frequency Selection and Transmit Power Control Mechanisms
- 802.11i Authentication and Security
- 802.11n Very High Bandwidth (10-20 times more)
- It is a live and evolving standard

locigno@disi.unitn.it

91

802.11 Technologies Comparison

	802.11b	802.11g	802.11a
Max rate (Mbps)	11	54	54
Modulation Type	ССК	CCK, OFDM	OFDM
Data Rates	1, 2, 5.5, 11	1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54	6, 9, 12, 18, 24, 36, 48, 54
Frequency	2.4-2.4976Hz	2.4-2.497GHz	~5GHz

locigno@disi.unitn.it

(4)