DISI – UNIVERSITY OF TRENTO

Master in Computer Science AA 2014/2015 Simulation and Performance Evaluation Simulation of a simple queuing network

Configuration for Riccardo Fontanari

Arrival Process

Customers arrive following a triangular distribution between 0 and 1 with negative slope. i.e., the arrival time of customers are i.i.d. RV that follows the law

$$f_T(t) = 2(1-t); \quad 0 \le t \le 1$$

Stations

QS1: -/M/1/5/FIFO; the service time follows a Rayleigh distribution with $\sigma = 0.2$, i.e., the service times of customers are i.i.d. RV that follows the law

$$f_T(t) = \frac{t}{\sigma_2} e^{-\frac{t^2}{2\sigma^2}}; \quad t \ge 0; \quad \sigma = 0.2$$

QS2: -/G/2/20/FIFO; the service time is uniformly distributed between 0 and 10.

QS3: $-/M/\infty$; average service rate (per server) $\mu = 0.1$.

Routing probabilities

 $p_{i,j}$ is the probability that a customer services in queue *i* goes to queue *j*.

		j		
		1	2	3
	1	0.0	1.0	0.0
li	2	0.0	0.0	1.0
	3	0.1	0.0	0.0
		p_{ij}		