DISI - University of Trento

Master in Computer Science AA 2014/2015 Simulation and Performance Evaluation

Simulation of a simple queuing network

Configuration for Martino Ciresa

Arrival Process

Customers arrive in pairs following a Rayleigh distribution with $\sigma = 4$, i.e., the interarrival times of a pair customers are i.i.d. RV that follows the law

$$f_T t = \frac{t}{\sigma_2} e^{-\frac{t^2}{2\sigma^2}}; \quad t \ge 0; \quad \sigma = 4$$

After their arrival customers are completely independent and behave without any relation to each other.

Stations

QS1: -/G/1/10/LIFO; the service time is uniformly distributed between 1 and 3.

QS2: -/G/4/20/FIFO; the service time (for each server) is uniformly distributed between 0 and 40.

QS3: $-/M/1/\infty/FIFO$; average service rate $\mu = 0.25$.

Routing probabilities

 $p_{i,j}$ is the probability that a customer services in queue i goes to queue j.

		j		
		1	2	3
	1	0.0	0.2	0.6
i	2	0.1	0.1	0.8
	3	0.0	0.0	0.0
	p_{ij}			