
UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 1/3
Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

Exercise: Deploy a Frequency-Hopping Basic Service Set (FH-BSS)

1. Goals
Students must extend the standard DCF firmware and deploy FH-enabled nodes that keep jumping all
together on the same sequence of channel. To this end they need to develop the following points:

1) add a mechanism in all nodes for computing the current channel from the current time;
2) add a simple soft-switch (e.g., a variable in shared memory) so the FH-BSS behavior can be

enabled from the userspace;
3) define a methodology for measuring the impact of the channel hopping over the traffic

transmitted in the BSS;
4) check how to use a third node for capturing the traffic exchanged by a couple of FH-BSS STA

and AP.

Before continue please note that in the following we assume both the FH-AP and all the FH-stations are
not hopping till the BSS setup is complete. For this reason we have to use the soft-switch as in point 2.
Please also note that by embedding the FH-BSS capabilities in the firmware without any signaling
between firmware and kernel, the kernel always consider as “current” channel the one initially set up
with the BSS: we will not add any mechanism for letting the kernel know that the firmware is changing
the channel.

2. Assignment steps

1) Add a mechanism in all nodes for computing the current channel from the current time
Whether or not hopping is active, we need first to define a mechanism so that all nodes in a BSS
(including the AP and all STAs) can compute the same channel from their internal clock value.
In a BSS, in fact, the clock of all stations matches that of the AP, distributed by the beacons. By
creating a function chan = f(clock) we can make all nodes always tuned to the same channel. To
this end students should first add a piece of code after the label state_machine_start that reads
the current time, e.g.,

 mov SPR_TSF_WORD0, r62
 mov SPR_TSF_WORD1, r63

Now the 32 least significant bits of the BSS clock are in registers r62 and r63 and can be
analyzed. The best approach to avoid nodes jumping to different channels, is to drop the N least
significant bits, and use the 32 - N upper significant bits for assigning the channel: this obviously
makes the hopping time a power of two number of microseconds but also makes the algorithm
error proof.

Once the value of the channel (a number between 1 and 13, we avoid channel 14 for this
experiment, why?) has been determined, it’s time to compute the value of the frequency register.
To this end remember the formula

 freq_register_value = 0x8000 + (freq_in_ghz) - 2400

which reads

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 2/3
Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

 freq_register_value = 0x8000 + (2407 + 5 * channel) - 2400

Remember that 1) it is not possible to perform products but only additions/subtractions in the
firmware 2) the formula cannot be embedded in the firmware “as is”, some instructions should
be used to compute the value.

Once the value has been computed it could be simply written in the hardware by executing these
three instructions

 mov 0x0008, REG34
 mov freq_register_value, REG35
 call lr0, write_phy_reg

If the channel is not changed since the last time it was written, the algorithm will simply
overwrite the old value. This should be the snippet of new code:

state_machine_start:
 mov SPR_TSF_WORD0, r62
 mov SPR_TSF_WORD1, r63
 [code for computing the channel from r62, r63]
 [code for writing the value into the hardware]

NOTE: Remember to comment instruction nap at the very beginning of the code.

2) Add a simple soft-swith for enabling/disabling FH functionalities from user-space Before
nodes in the FH-BSS can start hopping, they need to be joined to the FH-AP. To this end the last
part of the code developed in the previous step (writing the channel value inside the hardware)
should be executed only if enabled from user-space. To this end, simply define a variable in
shared memory, so that its value would condition the execution of the channel refresh, e.g.,

#define FH_ENABLED [SHM(0xF00)]
 je FH_ENABLED, 0, skip_fh
 [code for writing the value into the hardware]
skip_fh:

Then use the tool writeshm (execute it without arguments for getting instructions on how to use
it) to set a value different than zero and enable the FH code.

Note: after the initialization, all SHM is set to zero. This means that the FH code will be disabled
by default.

3) Measuring the impact of the channel hopping mechanisms Once everything is tested and
working we have to quantify the amount of time that the system is losing because of the
switching: during a switch, in fact, both the transmitter and the receiver are not usable (actually,
they will try to tx/rx but the RF engine is tuning the main frequency, so they are rx/txing rubbish
☺. As channel switching is not instantaneous, this could lead to some losses. Another

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 3/3
Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

inefficiency is when we switch to a very busy channel, as we keep doing look-around switch.
This is mandatory but the total throughput can drop because of many neighbors.

4) Check how to use a third node for capturing the traffic exchanged by a couple of FH-BSS
STA and AP A third node, external to the BSS is not going to copy the AP clock inside its own.
In this way the same code developed for the AP and the STAs would not work for tuning the
channel. Try to think to a solution to this problem (without explicitly joining the sniffer to the
BSS!). Try discussing with the facilitator.

