
UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 1/1
Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

Exercise: Setting up a Time Division Multiple Access (TDMA) Mac

1. Goals
Students must implement a perfectly working TDMA MAC that is able to transmit data with a periodic
schedule. To this end they have to:

1) change the way packets are scheduled from the FIFO so that when one is available it is not
scheduled for transmission according to DCF rules but its availability is notified to the MAC
program;

2) add transmission and reception indicators;

3) change the transmission default behavior;

4) intercept the transmission time is approaching and create a sub-loop in the main loop that wait
for exact time;

5) start the transmission of the packet when the time comes;

6) adopt a strategy for keeping the transmission times synchronized over the stations belonging to
the same BSS;

7) deploy a testbed infrastructure where many nodes join to a common Access Point and they
transmit at regular times;

2. Assignment steps

1) Change the way packets are scheduled from the FIFO The official code verifies a packet is
available in the FIFO by executing handler check_tx_data_with_disabled_engine. If conditions
for the schedule are verified then the code continues by jumping to set_ifs where the packet
transmission is finally scheduled. It is hence necessary to avoid jumping to set_ifs and
remember into a specific variable PACKET_READY that a packet is available and that everything has
been correctly set up. There is however an exception: if the node receives a packet and the
firmware prepares an acknowledgment then it is mandatory to clear this variable PACKET_READY
since send_response overrides the settings prepared by check_tx_data_with_disabled_engine.
With no further changes the system is not able to transmit any packet ☺!

2) Add transmission and reception indicators To avoid to schedule in the middle of a reception
or transmission we need to keep the rx/tx status into a couple of variables (e.g., rx = 1 when we
are receiving, and tx = 1 when we are transmitting). E.g., for reception it is enough to assign rx
to 1 at the beginning of rx_plcp, and clean it in rx_complete (clean means resetting it to zero).
For transmission we can set tx to 1 in tx_frame_now and clean it in tx_end_wait_10us and in
rx_plcp.

3) Change the transmission default behavior To avoid unhandled exceptions (given the deep
change we are doing) we should change the final part of the code following label

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 2/2
Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

tx_frame_no_cca_in_progress. If we take a look to the code we see that it handles some
operations and then it may branch to state_machine_idle in a couple of ways. We should instead
change these branches so that they all jump into a loop that wait for condition COND_TX_DONE to
evaluate true: e.g.,

tx_frame_no_cca_in_progress:
 jnzxh SPR_IFS_STAT & 2048, wait_for_tx_done
 jge SPR_NAV_0x04, 0x0A0, wait_for_tx_done

 [cut]
 wait_for_tx_done:
 jext COND_TX_DONE, tx_really_done
 jext COND_TRUE, wait_for_tx_done
 tx_really_done:
 mov 0, tx
 jext COND_TRUE, state_machine_idle

where the last assignment cleans the variable tx that keeps the status of the transmission
introduced in the previous step.

4) Intercept the approaching of the transmission time To allow an accurate schedule it is
necessary to keep the transmission time in a couple of variables (remember that clock has 1us
granularity and that a single register of 16 bit allows a maximum schedule of approximately
65ms) as well as the schedule interval, so that we define

i) TX_TIME_LO and TX_TIME_HI;
ii) TX_INTERVAL_LO and TX_INTERVAL_HI.

We then have to check if the schedule time is approaching in the main loop, immediately after
the state_machine_start label: as firmware can put the device to sleep it is also necessary to
comment the nap instruction right above that label. A good practice is to compare the value of
the real time clock SPR_TSF_WORD0 and SPR_TSF_WORD1 respectively with the LSW and the MSW
of the schedule time TX_TIME_{LO/HI}. Try using the signed comparison introduced in the
previous labs and reported again at the end of this tutorial (appendix). If we want to intercept the
schedule within 20us (that is a good compromise) we can have the following cases:

a. clock < schedule - 20us: in this case we do not do anything, it’s too early! We simply
jump out of the section, e.g., jump to do_not_tx;

b. clock > schedule: in this case it means that we missed the schedule so we have to
compute a new schedule time in the future TX_TIME_{LO/HI} by adding the schedule
interval TX_INTERVAL_{LO/HI} and exit. Please refer to appendix 2 to check how to sum
32-bit quantities. Also in this case we simply jump out of the section to do_not_tx;

c. no packet is ready for transmission (PACKET_READY = 0): in this case we should simply
exit to do_not_tx;

d. in the other cases we can try to transmit the packet when the schedule time comes but
only if other conditions are verified, that are:

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 3/3
Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

i. no response (ack) was prepared in the recent past (check COND_NEED_RESPONSEFR);
ii. no transmission was scheduled before (e.g., an ack by rx_complete) by checking

jnand SPR_TXE0_CTL, TXE0_SCHEDULE_WORKING, do_not_tx

iii. no reception or transmission is going on, check rx/tx variables;
iv. no transmission already started (check COND_TX_NOW);

If some of these conditions are not verified we jump to do_not_tx, otherwise we execute the
code here below.

5) Start the transmission of the packet If all the previous conditions are verified then it is
possible to start spinning till the clock is finally equal to the schedule time:

 keep_spinning:

je SPR_TSF_WORD0, TX_TIME_LO, tx_immediately
jext COND_TRUE, keep_spinning

When done, the following code will start an immediate transmission:

 tx_immediately:

mov 0, SPR_BRC // clean the machine state
orx 7, 8, 0x000, 0x004, SPR_RXE_FIFOCTL1 // stop reception (if any)
or SPR_RXE_FIFOCTL1, 0x000, REG34
mov 0x4007, SPR_TXE0_CTL // try start a tx
mov 0, PACKET_READY
mov 1, tx

It is better to clear variable PACKET_READY and setting to 1 the tx variable defined in the previous
steps (done by the last two instructions).

At the end of the code pay attention to reschedule the next transmission by adding the schedule
interval to the schedule time like at step b. above.

6) Adopt a strategy for synchronizing transmission times of different nodes Here there are two
different phases:

i) the node is not yet associated to the AP, no beacon is being received and parsed so the
node cannot be synchronized with others. For this reason and given that the clock starts
from zero when the firmware begins working, we can simply initialize the first schedule
time to zero. The code will automatically keep rescheduling till schedule time gets
greater than the clock.

ii) the node is associated to the AP. In this case when a beacon is received the internal clock
is set to the clock information provided by the beacon by handler rx_beacon_probe_resp.
We can use this to set the first schedule time at N microseconds after the beacon time,
where N depends on the node. This can be really useful to establish a transmission order.
Make this configurable from the userspace so that the schedule time is periodically

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 4/4
Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

computed from the beacon time by taking into account a value written into shared
memory with tool writeshm.

7) Deploy a testbed infrastructure The testbed will be composed of an AP with a legacy firmware

and two stations. The first test to do is to verify that a single node associated to the AP is
transmitting at expected times. To this end use the third node to capture the traffic and check that
the transmission time follows a periodic evolution. Try to evaluate the precision of the
scheduling but remember to associate also the sniffer to the same AP so that it will keep
refreshing its internal clock with that of the AP.

Add then other nodes and verify they still transmit where expected and they do not collide. Good
practice for these tests is to set the MCS of nodes involved in the experiment to a fixed and
common value. Check now that iperf sessions from different nodes to the AP fairly share the
available bandwidth. Check how many packets are lost. Try to compute a schedule interval for
having the highest throughput, then compare the throughputs with that you can obtain using a
standard DCF

i) Is the TDMA more fair (with respect to fast time changes) than DCF?

APPENDIX Comparison between two 32-bit quantities As 32-bit values musb be split into
couples of 16-bit registers, the comparison between two 32-bit quantities is tricky: it involves, in
fact, two subtractions and a test over the carry register. Use the following snippet of code at your
convenience.

// compare VAL1 and VAL2; use r63 as convenience register;
// store difference VAL1 - VAL2 in RES
// 32-bit value in VAL1 is split in VAL1LSW and VAL1MSW
// 32-bit value in VAL2 is split in VAL2LSW and VAL2MSW
 mov VAL2LSW, r63
 sub. VAL1LSW, r63, RESLSW
 mov VAL2MSW, r63
 subc. VAL1MSW, r63, RESMSW
 addc 0, 0, r63
// output: r63 = 1, if VAL1 >= VAL2
// r63 = 0, if VAL1 < VAL2
// RES = VAL1 - VAL2

After the code snippet one can test the value in r63 to jump in one of the two cases.

APPENDIX2 Sum of 32-bit quantities As 32-bit values must be split into couples of 16-bit
registers, summing two 32-bit quantities requires to sum the 16-bit parts and use the carry
register. Use the following snippet of code at your convenience.

// sum VAL1 and VAL2 and put result in VAL3
 add. VAL1LSW, VAL2LSW, VAL3LSW
 addc VAL1MSW, VAL2MSW, VAL3MSW
// output: VAL3 = VAL1 + VAL2

The first add. instruction (ending with the dot) sum the two 16-bit quantities and set the carry bit
accordingly. The second addc instruction sum the two 16-bit quantities and the value set in the
carry.

