
UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 1/5
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

Exercise: playing with transmission engine, Contention Windows (CW) and Transmit & Modify
Engine
1. Exercise goals
After this exercise students should understand the role of the Contention Window parameters in channel
access and should be able to forge specific packets.

2. Tutorial steps

1) Contention Window Parameters In the open firmware only one queue can be used at the same
time, there is not yet support for Quality of Service. For this reason it is really easy to change the
firmware behavior in a few steps. First of all there are two boundaries (min-max) for the CW,
namely

a. MIN_CONTENTION_WIN: value assigned to CW on the first transmission attempt;
b. MAX_CONTENTION_WIN: the maximum after which CW is kept constant.

As the kernel keeps resetting these parameters when the interface is working, it is mandatory to
reload them in the main loop to override the kernel assignments, e.g., by adding the following
two instructions right after the state_machine_start label for fixing CW boundaries to specific
values that we store in the shared memory:

state_machine_start:
 mov [SHM(0xFF0)], MIN_CONTENTION_WIN
 mov [SHM(0xFF2)], MAX_CONTENTION_WIN

Pay attention however that free locations in shared memory (like those used here above) are
initially set to zero, this could lead to problems if the two lines are used as is: it is better to check
if the two locations are different than zero before loading the values, e.g.:

state_machine_start:
 je [SHM(0xFF0)], 0, skip_min_win
 mov [SHM(0xFF0)], MIN_CONTENTION_WIN
skip_min_win:
 je [SHM(0xFF2)], 0, skip_max_win
 mov [SHM(0xFF2)], MAX_CONTENTION_WIN
skip_max_win:

It is now possible to play with the tool writeshm to change the two locations but remember that
the values written in shared memory must be nibble-swapped. Try writing a new value to

[SHM(0xFF0)] and verify that it is correctly loaded in register MIN_CONTENTION_WIN(=r3) using

readshm. Remember also that the window parameters must be power-of-two minus 1, so 0x1F is
ok, while 0x23 is not. Try now the following:

$: writeshm /sys/kernel/debug/b43/phyN 0xFF0 0x7f00

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 2/5
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

and verify it worked with readshm.

2) Playing with contention windows parameters To test how these parameters affect the behavior
of the transmission try running two iperf sessions from two stations to the AP. Fix the same data
rate so that the rate controller could not affect the experiment: to this end use iwconfig tool:

$: iwconfig wlan0 rate 6M

After verifying that the two sessions almost share the same throughput, try lowering the
minimum contention window of only one station: what happens? And what if instead only the
maximum value is lowered, keeping the same minimums?

Finally, reset the contention window parameters to the initial values (0x1F and 0x3FF) and fix
with iwconfig two different data-rate (e.g., 6M and 12M). Run two iperf sessions again: what
happens? Is it possible to play with the contention window parameter to force the same
throughput share?

3) Transmission & Modify Engine (TME) There are two main ways for transmitting a frame: i)
from one of the FIFO queues, in this case the kernel code provides all the necessary information
to the firmware for preparing the transmission (this is managed by handler
check_tx_data_with_disabled_engine); or ii) the firmware can transmit frames whose content is
drawn from a special memory called TEMPLATE RAM like in the case of the acknowledgments and
beacons. We will see now the basic steps for scheduling a packet:

a. Choose the encoding, output antenna(s), power level (does not work on all devices) by
writing the specific values into SPR_TXE0_PHY_CTL (meaning of all bits at http://bcm-
v4.sipsolutions.net/802.11/TX). For this tutorial it is enough to write 0xFC00 for
DSSS/CCK, 0xFC01 for OFDM;

b. Load the value of the backoff counter in register SPR_IFS_BKOFFDELAY;

c. Modify on the fly the first 64 bytes if needed using the Transmission & Modify Engine
(see below);

d. Scheduling the packet for transmission after a given delay by writing a proper value in
register SPR_TXE0_CTL; there are many combinations for this register (details at
http://bcm-v4.sipsolutions.net/802.11/Registers) but for the rest of the tutorial we will
consider the scheduling of an ack frame so that we can easily understand how to compose
packet payload by taking a look to the send_response handler;

e. Once the packet is scheduled we have to wait for the transmission to start, that is signaled
by the activation of the condition COND_TX_NOW, that makes the firmware jump to handler
tx_frame_now where the transmission is finalized: in case we want to transmit a packet
from the TEMPLATE RAM we have to use the same syntax used for the transmission of an
acknowledgment that is right below the label dont_update_preamble.

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 3/5
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

We will now use what we learnt from the previous tutorial for implementing a system that
transmits an arbitrary frame with chosen payload and MCS when we receive a specific packet
(e.g., UDP to port 0xbeef). Add the filtering instruction in rx_data_plus and when the content is
detected instead of jumping to send_response jump to our own send_fake_response where we
will compose the frame. In the following we imagine that the packet is SIG_LENGTH bytes long.
Then to define this new handler we have to:

a. choose the encoding, e.g., OFDM, then write 0xFC01 to SPR_TXE0_PHY_CTL

b. remember in the state machine that we are going to transmit a (fake) response at the end
of the current reception:

orxh NEED_RESPONSEFR,
 SPR_BRC & ~ (NEED_BEACON|NEED_RESPONSEFR|NEED_PROBE_RESP),
 SPR_BRC

c. create a valid PLCP, for the OFDM case this requires to specify in the first 16-bit word
of the PLCP the logical or of the number of octets shift left five times with the rate code
type, where the rate code is (0xB, 0xF, 0xA, 0xE, 0x9, 0xD, 0x8, 0xC) for the
corresponding (6, 9, 12, 18, 24, 36, 48, 54)Mb/s rate; the resulting value should be loaded
in the first register of the TME, e.g.,

mov LENGTH_RATE_KEYWORD, SPR_TME_VAL0
mov 0xFFFF, SPR_TME_MASK0

Here the first assignment overrides the first two bytes of the outgoing packet,
independently it is being transmitted from a FIFO or from the TEMPLATE RAM. To finally
modify only specific bit, however, we can use the corresponding mask, in this case we
want to change all 16 bits so we write 0xFFFF.

For the DSSS/CCK case we have to load into the first two bytes of the PLCP the
DSSS/CCK rate code (e.g., for 1Mb/s it is 0x040A), then load into bytes 2 and 3 the
number of microseconds taken by the transmission of the frame payload, in this case it is
SIG_LENGTH * 8 (1 bit per microsecond) hence

mov RATE_CODE, SPR_TME_VAL0
mov 0xFFFF, SPR_TME_MASK0
mov MICROSECONDS, SPR_TME_VAL2
mov 0xFFFF, SPR_TME_MASK2

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 4/5
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

Note that while for bytes 0 and 1 we use VAL0/MASK0, for bytes 2 and 3 we use
VAL2/MASK2.

Question:

i. What should we use to change only byte 7? (and not byte 6?)

d. remember somewhere, e.g., into a new variable tx_fake_response that we will transmit
our fake response and not the legacy acknowledgment: this will be important in
tx_frame_now for finalizing the transmission.

e. compose the packet: take into account that with this approach we can specify (on the fly)
only the first 64 bytes (using SPR_TME_VAL0 to SPR_TME_VAL62 and SPR_TME_MASK0 to
SPR_TME_MASK62), but as the first 6 bytes are for the PLCP we can change only the first 58
bytes of the frame payload.

Decide the frame control and write it using the correct TME registers: pay attention to
avoid using invalid values otherwise the sniffer will not show such frames.

Exercise:

i. Try to send a short data frame to a valid active station, we will see the ack coming
back from it!

f. finally remember to load into NEXT_TXE0_CTL the value that rx_complete will use for

scheduling the fake response, to to conclude the handler, e.g., copying what done by
send_response do

mov 0x4021, NEXT_TXE0_CTL
jext COND_RX_COMPLETE, rx_complete
jext COND_TRUE, state_machine_idle

g. now we customize the tx_frame_now handler. As we are changing basically the way we
send an ack, we can simply focus on the code right after label dont_update_preamble,
where we can check if we are transmitting a real ack or the fake response by controlling
the value of variable tx_fake_response, e.g.,

dont_update_preamble:
 jne tx_fake_response, 0, finalize_fake_response

[cut ack code]

finalize_fake_response:
 mov 0xB, SPR_TXE0_WM0
 mov 0, SPR_TXE0_SELECT
 mov 0, SPR_TXE0_Template_TX_Pointer
 add SIG_LENGTH, 2, SPR_TXE0_TX_COUNT
 mov 0x826, SPR_TXE0_SELECT
 mov 0, tx_fake_response
 add TX_COUNTER, 1, TX_COUNTER

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Nomadic Communication

Pagina 5/5
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

 jext COND_TRUE, complete_tx

The first line is really important: to modify bytes on the fly with the TME it is not enough
what we did so far, we have also to specify in the couple of registers SPR_TXE0_WM0 and
SPR_TXE0_WM1 which words of 16 bit should be actually modified: consider the two
registers as bitmasks. In this case we want to change byte 0-1, byte 2-3 (PLCP) and byte
6-7 (Frame Control), so the bitmask will be (last four bits of SPR_TXE0_WM0) 1011 which is
exactly 0xB.

Second line specifies the transmission will happens from TEMPLATE RAM (0 in
SPR_TXE0_SELECT), third line sets the start address in the TEMPLATE RAM, fourth requires
SIG_LENGTH + 2 bytes are transmitted (this is because in total we should have SIG_LENGTH
+ 6 considering the first six bytes of the PLCP but the TX Engine will add the FCS
automatically at the end, so we should ask for SIG_LENGTH + 6 - 4 that is exactly what
written ☺). Then we reset the tx_fake_response variable to zero and we store
somewhere in the shared memory how many fake response we sent so far (choose a
shared memory address for TX_COUNTER).

f. REMEMBER also to reset the tx_fake_response variable to zero in rx_plcp !! This is
really important to avoid unexpected behaviors.

4) Experiment Compile the firmware, associate to an AP, then from the AP use iperf to send a
session to the chosen port, use a sniffer to confirm that the packet we forged is actually
transmitted.

