
UNIVERSITY OF TRENTO 
Dipartimento di Ingegneria e Scienza dell’Informazione 
Nomadic Communication 
 
 
 

Pagina 1/5 
 

Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved 
 

 

Exercise: heavy hitters 

1. Exercise goals 
After this exercise students should have acquired enough skills to count heavy hitters in a BSS.  
 
2. Tutorial steps 

1) Counting heavy hitters Counting “having hitters” is a basic building block for many 
mechanisms, e.g., improving the fairness, limiting nodes when exceeding a given transmission 
attempts threshold, detecting a Denial of Service attack, etc. As the resources in the wireless chip 
are limited, counting heavy hitters directly on the chip may be tricky: for this reason, counting in 
the chip is usually considered as a method for detecting hardest problems in real-time (e.g., 
reacting immediately to a single heavy hitter), leaving to the kernel the task of maintaining a 
complete list of heavy hitters. If we limit the number of heavy hitters we consider at the same 
time, e.g., 10, we can hence implement a simple search loop that for each incoming frame 
analyzes the entire heavy hitter table (that we keep in a free portion of the shared memory) and 
either 1) refresh the number of frames transmitted by a given node, 2) add a new node to a free 
entry in the table, or 3) replace the oldest entry in the table with a new node. 
 

2) Detecting transmitter address Counting heavy hitters should be done while the frame is still 
being received so that the search code will not block the likely transmission of the 
acknowledgment at the end of the reception. For this reason in the following we focus again on 
the receiver code path, in particular on rx_data_plus that we know is executed during the frame 
reception. We have to first filter out frames not addressed to the station that is counting (the AP): 
this can be easily done inside rx_data_plus by inserting new code before the last line reported 
here below: 
 
rx_data_plus: 
        jext    COND_RX_COMPLETE, end_rx_data_plus 
        jl      SPR_RXE_FRAMELEN, 0x01C, rx_data_plus 
end_rx_data_plus: 
        jl      SPR_RXE_FRAMELEN, 0x01C, rx_check_promisc 
        jnext   COND_RX_RAMATCH, rx_ra_dont_match 
 
    [<--------                add      code      here                -------->] 
 
        jext    COND_TRUE, send_response 
 

Only frames addressed to the counting/receiving station, in fact, match the Receiver Address test 
(RA, COND_RX_MATCH). We have now to extract the transmitter address (TA) that for a data frame 
is always the second one.  
 
Question: 

a. Is the number of bytes we wait (0x1c) enough for considering the second address in the rx 
buffer? 

 
To access the TA (addr2) we can use the three 16-bit definitions RX_FRAME_ADDR2_1, 
RX_FRAME_ADDR2_2 and RX_FRAME_ADDR2_3 that together with the offset register 1 (off1, or 



UNIVERSITY OF TRENTO 
Dipartimento di Ingegneria e Scienza dell’Informazione 
Nomadic Communication 
 
 
 

Pagina 2/5 
 

Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved 
 

SPR_BASE1) point to the part of the frame that is copied inside the share memory as reception goes 
ahead: for instance to load the first two bytes of TA in a free register use 
 
 mov    [RX_FRAME_ADDR2_1,off1], r63 
 
 

3) Maintaining the heavy hitter table A simple table layout could consider for each heavy hitter 
the following data (we always use 16-bit words as the shared memory is) 
 

a. byte 0-1 of TA of this node 
b. byte 2-3 of TA 
c. byte 4-5 of TA 
d. counter for this node 

 
This layout requires 8 bytes for each node: if we limit the table to the ten heaviest hitters, the 
entire table takes as only as 80 bytes. However, there is a problem in this case: it is really hard to 
test if the implemented algorithm works or not, given the limited amount of nodes available for 
each group. For this reason in the following we consider only the TWO heaviest hitters, so that 
each group can use four nodes for testing the algorithm. Even if this would appear more clearly 
in the following, this requires a table with THREE entries: why? We also need two additional 
locations in the shared memory, one for temporarily preserving the value of the offset register 
that we will use to loop over the table, and another location to hold the number of valid entries in 
the table. A possible address choice could be 
 
 
  #define BASE_TABLE_ADDRESS SHM(0xF00) // start address of the table 
 #define VALID_ENTRIES SHM(0xEF0) // number of entries in the table 
 #define TEMP_OFFSET SHM(0xEF2) // temp save location for offXX reg 
 #define MAX_ENTRIES 3 // number of entries in the table 
  
 
 

We then need to define the offset for each entry: 
 
 #define TBL_B01_OFFSET SHM(0x00) // TA 
 #define TBL_B23_OFFSET SHM(0x02) // TA 
 #define TBL_B45_OFFSET SHM(0x04) // TA 
 #define TBL_COUNTER SHM(0x06) // COUNTER 
 #define TBL_ENTRY_SIZE SHM(8) // size of the entry, 8 bytes 
 
 

Questions: 
a. As the counter is a 16-bit value, what is the maximum number of frames that we could 

count for every TA? 
b. What kind of problems can cause this maximum count number? Try to propose simple 

solution for avoiding all nodes under monitoring may reach a sort of saturating condition 
(this will be implemented in PART4 section of the code below). 

 
 

4) Looping over the table entries In the following a simple loop is proposed, but many parts have 
been omitted: it is up to you to fill such parts with the required code. The omitted parts are: 



UNIVERSITY OF TRENTO 
Dipartimento di Ingegneria e Scienza dell’Informazione 
Nomadic Communication 
 
 
 

Pagina 3/5 
 

Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved 
 

PART1, for checking if the TA of the frame being received matches that of the specific table 
entry under analysis during the loop iteration; PART2, for tracking the node already in the table 
that counts the lowest number of transmitted packets; PART3, for refreshing the table at the end 
of the loop; PART4 for handling the case the node in the table reached the maximum number of 
frame that can be represented with a 16-bit value. 
 

We can start with this simple loop skeleton: 
 
 
 mov SPR_BASE0, [TEMP_OFFSET] // save current value of off0 
 mov BASE_TABLE_ADDRESS, SPR_BASE0 // initialize off0 at table start 
 mov 0, r63 // r63 is the loop register 
 mov 0xFFFF, r62 // r62 counts the lowest counting node 
 mov BASE_TABLE_ADDRESS, r61 // r61 tracks the lowest counting node 
 
 
search_loop:  // loop start label 
 je r63, [VALID_ENTRIES], exit_search // loop termination condition 
 
 
PART1 [ add code to compare TA with the address at this position ] 
 [ if match, jump to exit_search                            ] 
 
 
PART2 [ add code to refresh r61 and r62 if needed                ] 
 
 
 add r63, 1, r63 // switch to next entry 
 add SPR_BASE0, TBL_ENTRY_SIZE, SPR_BASE0 // point to next entry 
 jext COND_TRUE, search_loop // continue the loop 
exit_search: 
 
 
PART3 [ add code to refresh the table                            ] 
 
 
exit_final:  // final loop exit 
 mov [TEMP_OFFSET], SPR_BASE0 // restore the offset register we used 
 
 

If the value of r63 at the end of the loop (exit_search) is less than the number of valid entries, it 
means that the TA has been found in the table. In this case we should simply refresh the counter 
but we need to take into account that the counter may reach its maximum, so we need to add 
some code to handle this specific case: we hence have for PART3 
 
 
 je r63, [VALID_ENTRIES], not_found 
 add [TBL_COUNTER,off0], 1, [TBL_COUNTER,off0] 
 jne [TBL_COUNTER,off0], 0, exit_final 
PART4 [ add code to handle the case the counter reached its max  ] 
 [ and wrapped around                                       ] 
 
not_found: 
 
 

If instead the value of r63 is equal to the number of nodes we have in the table, then there are 
two possibilities, 1) the number of nodes is less then the maximum number the table can hold: in 



UNIVERSITY OF TRENTO 
Dipartimento di Ingegneria e Scienza dell’Informazione 
Nomadic Communication 
 
 
 

Pagina 4/5 
 

Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved 
 

this case we can add a new node at the end of the table; 2) the table is full, in this case we need 
to replace the entry with the lowest counting node tracked by r61 with the new one. 
 
 
Before starting implementing and running (at random ☺) this code in the firmware try to add the 
missing parts and ask the facilitator to validate your choices. 
 
 
Questions: 

a. What is the purpose of r62 in this code? 
b. Can we remove it from the algorithm? 

 
5) Improving heavy hitters detection An interesting improvement for the considered algorithm is 

to take time into account. This means that we can make each hitter aging by tracking the time we 
saw its last packet. To this end the table must be expanded as follows:  
 
 
 #define TBL_B01_OFFSET SHM(0x00) // TA 
 #define TBL_B23_OFFSET SHM(0x02) // TA 
 #define TBL_B45_OFFSET SHM(0x04) // TA 
 #define TBL_COUNTER SHM(0x06) // COUNTER 
 #define TBL_CLOCK_MSW SHM(0x08) // MSW of the entry last seen clock 
 #define TBL_CLOCK_LSW SHM(0x0a) // LSW of the entry last seen clock 
 #define TBL_ENTRY_SIZE SHM(12) // size of the entry, 12 bytes 
 
 

We need to take at least 32-bit of the clock as the clock granularity is 1 microsecond and 
considering only 16-bit would require the frequent execution of an “anti-wrap” clock counter-
mechanism. With 32-bit clock, instead, this can be completely avoided as the duration of the 
exercise is less then 2^32 - 1 microseconds ☺!! 
 
In the following we will use two of the four registers that timestamp each new arrival, namely 

LAST_RXTIME_WORD0 and LAST_RXTIME_WORD1, that are initialized by rx_plcp at each new frame 
arrival. 
 
As now we have the concept of TA age, we can track the oldest entry (means: the one that was 
refreshed first in the table), and in case the table is already full and we have a new TA we can 
simply replace the oldest TA with the new one. We have to remove the previous usage of r61 

and r62 and replace PART2 with a new one that track the oldest flow, e.g., initialize r61 and r62 to 
zero, and we have to consider a new register, r60 for tracking the address of the oldest TA: 
 
 mov LAST_RX_TIME_WORD1, r62 // r62 tracks the MSW of the oldest flow 
 mov LAST_RX_TIME_WORD0, r61 // r61 tracks the LSW of the oldest flow 
 mov BASE_TABLE_ADDRESS, r60 // r60 tracks the lowest counting node 

  

In PART2 we have to compare r61 and r62 with the time-stamp stored in the entry, and if the entry 
is older than r62/r61 we refresh the two registers and we load the current value of the SPR_BASE0 

into r60. 
 



UNIVERSITY OF TRENTO 
Dipartimento di Ingegneria e Scienza dell’Informazione 
Nomadic Communication 
 
 
 

Pagina 5/5 
 

Copyright © 2015 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved 
 

As the 32-bit values are splitted into couples of 16-bit registers, the comparison is tricky (it 
involves two subtractions and a test over the carry register): use the following snippet of code at 
your convenience. 
 
 
// compare VAL1 and VAL2, use r63 as convenience register: store in RES = VAL1 - VAL2 
 mov VAL2LSW, r63 
 sub. VAL1LSW, r63, RESLSW 
 mov VAL2MSW, r63 
 subc. VAL1MSW, r63, RESMSW 
 addc 0, 0, r63 
// output: 
//  r63 = 1, if VAL1 >= VAL2 
// r63 = 0, if VAL1 < VAL2 
// RES = VAL1 - VAL2 
 
 

Also in this case before starting implementing and running the code (at random ☺) ask the 
facilitator to validate your choices. 
 
 


