
University of Trento
Dipartimento di Ingegneria e Scienza dell’Informazione
” NOMADIC COMMUNICATIONS”, Lab tutorial - Dr. F. Gringoli, A.A. 2013/2014

Pagina 1/6
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

A glimpse of the real time 802.11 firmware

1. Tutorial goals

After this tutorial students should have acquired enough skills to
1) understand code-flow of the real time firmware
2) count, filter, and jam unicast packets

2. Tutorial steps

1) Code path The firmware code path is “complex” and it is reported in Figure 1. Given this complexity we have to
approach it slowly and we will start with the reception part, which is easier to understand as the underlying state
machine is simple.

2) Understanding the rx code path When a valid packet preamble is detected on the channel, the firmware executes
handler rx_plcp to analyze the header and decide how to manage the frame. This is done “as early as possible” when
the packet is still being received: independently of the decision, in fact, handler rx_complete will be executed later,
when the packet is received completely. Going back to rx_plcp, the firmware first waits at least 6 bytes of the
preamble (plcp) plus 32 of the MPDU are received: check the loop in wait_for_header_to_be_received

wait_for_header_to_be_received:
 jext COND_RX_COMPLETE, header_received
 jl SPR_RXE_FRAMELEN, 0x026, wait_for_header_to_be_received
header_received:

Instruction jl is a conditional jump (jump if less) that loops until SPR_RXE_FRAMELEN is less than 0x26 (6 + 32). It is
worth noting that to avoid the firmware to stall in case the packet is shorter than 38 bytes, the loop keeps checking if the
reception is finished (jext is a conditional jump that verify if the operand-condition is true). Remember this type of
loop is used many times in the firmware!
The initial part of the packet is also copied in the shared memory starting from location 0xA08: this is exploited by the
firmware for checking the received packet type (RX_TYPE) and subtype (RX_TYPE_SUBTYPE) and taking further
decisions. For instance if rx_plcp detects frame is management or control, then it waits for completely receiving them
(check the loop rx_plcp_not_data_frame): if an acknowledgment is detected, then it jumps to handler rx_ack,
which, among others actions, cleans the transmission timeout. If instead it detects a data packet, it jumps to
rx_data_plus, that checks if the packet contains at least 22 bytes

rx_data_plus:
 jext COND_RX_COMPLETE, end_rx_data_plus
 jl SPR_RXE_FRAMELEN, 0x01C, rx_data_plus
end_rx_data_plus:
 jl SPR_RXE_FRAMELEN, 0x01C, rx_check_promisc
 jnext COND_RX_RAMATCH, rx_ra_dont_match
 jext COND_TRUE, send_response

Questions:

a. Why we said 22 bytes if it checks for at least 28 (0x1c)?
b. Why it is important having 22 bytes? How many fields we can find inside?
c. Ideas about why if the frame is shorter then it’s a “suspect one” and it should be handled by this

“rx_check_promisc” handler whose name recalls that of a sniffer-only receiver?

If the receiver address matches the one of the station that is executing the firmware, then the firmware jumps to
send_response that prepares the acknowledgment frame WITHOUT actually scheduling it, as this decision must be
taken afterwards, when the frame is completely received. Besides, send_response “remembers” in the state machine
register (SPR_BRC represents the state of the MAC algorithm) that the frame needs a response (NEED_RESPONSEFR),
while cleaning the condition which could trigger the transmission of a beacon or a probe response (NEED_BEACON,
NEED_PROBE_RESP)

 orxh NEED_RESPONSEFR,
 SPR_BRC & ~ (NEED_BEACON|NEED_RESPONSEFR|NEED_PROBE_RESP),
 SPR_BRC

University of Trento
Dipartimento di Ingegneria e Scienza dell’Informazione
” NOMADIC COMMUNICATIONS”, Lab tutorial - Dr. F. Gringoli, A.A. 2013/2014

Pagina 2/6
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

Here instruction orxh performs a special logical “or” between operand 1 and 2 and put the result in operand 3. Pay
attention this is special which means that only some combination of the bits to clean/set are allowed.

Question:

d. Why whether scheduling the ack or not must be decided when the frame is completely received?

For all the cases we considered (management, control and data), the reception process needs a final handler
rx_complete, that is executed when the time reserved for the MPDU expires. Based on previous decisions, this
handler can schedule the transmission of the ack, e.g.,

 jnext COND_NEED_RESPONSEFR, check_frame_subtype
need_regular_ack:

The condition COND_NEED_RESPONSEFR is true if the state machine (SPR_BRC) was previously programmed by
send_response. In this case need_regular_ack sets up the modulation type and MCS of the ack frames that will
be scheduled according to the incoming frame properties. If instead no ack frame was prepared (e.g., on reception of a
multicast frame) then it jumps to check_frame_subtype and no ack is scheduled. Ack schedule happens below,
when the transmission engine is loaded with one of the possible schedule control keys, in this case:

 or NEXT_TXE0_CTL, 0x000, SPR_TXE0_CTL

Where the keyword NEXT_TXE0_CTL was previously set up by send_response.

3) Receiving packets In this exercise we will start practicing with the firmware and we will count incoming packets that
satisfy some rules. This ability is important for programming the firmware as the incremental changes for implementing
new MAC algorithms should be executed only for some traffic and not for all frames. We will start with counting UDP
packet at some port.
The initial part of each packet (configurable length) is copied in shared memory starting from address 0xA08
(configurable address). To better understand how a UDP packet appears inside the shared memory use iperf to generate
greedy traffic from the AP to port 3000 of a STA (for selecting such port add “-p 3000” to the command lines of both
instances of iperf on client and on server). Then, as long as traffic is flowing, run this command on the receiver

shmread -s

This will display the entire content of the shared memory: scroll down and start the analysis from address 0xA00. You
should clearly see a 0x45 byte somewhere, preceded by the LLC header 0xAA 0xAA 0x03 0x00 0x00 0x00 0x08
0x00. If you do not see it, reissue the command again.

a. Where is it better to filter data frames? One good point is in rx_data_plus if we are interested in taking
some special decision for packets as they are being received. In this case the minimum number of bytes to wait
must be increased to include the initial 6 bytes PLCP, the entire MAC header, IP and UDP ones (at least the
destination port). Another good point is in rx_complete, e.g., before/after checking that the packet was
received without errors.

In the following we will use a couple of nodes, an AP and a STA. The counter will be set up in the receiving node, let’s
start with rx_data_plus.

4) CPU and memory access basics Shared memory is accessed as a 16-bit memory, e.g., to copy the content at (per byte)

address 0xFF0 inside register r63, use

 mov [SHM(0xFF0)], r63

Here brackets mean “access memory directly”, while SHM() is just a macro that divides the argument by two.
Assignment with mov is left to right: it will copy the 16-bit value at byte addresses 0xFF0 and 0xFF1 into register r63.
As the CPU is little endian, byte in 0xFF0 will go into the LSB of r63, while byte in 0xFF1 will go into MSB.
Remember that all registers from r0 to r63 are 16-bit, and that only upper registers (e.g., from r46 to r63) are free: all the
others should not be changed as the MAC state machine deeply relies on their values.

University of Trento
Dipartimento di Ingegneria e Scienza dell’Informazione
” NOMADIC COMMUNICATIONS”, Lab tutorial - Dr. F. Gringoli, A.A. 2013/2014

Pagina 3/6
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

While mov instruction allows direct assignment of 16-bit constant into a register or memory, operations including
arithmetic, logic and conditional jumps with direct operands allows only constants in the range [0, 0x1ff]. In
particular, these are valid

 mov 0xdead, r62 // r62 <= 0xdead
 mov 0xbeef, r61 // r61 <= 0xbeef
 add r61, 0x1f0, [SHM(0xFF0]) // [SHM(0xFF0)] <= value(r61) + 0x1f0
 and r59, 0xff, r63 // r63 <= value(r59) & 0xff
 je r60, 0x45, action1 // if value(r60) == 0x45, jump to action1
 sr [SHM(0xFF0)], 8, r63 // r63 <= [SHM(0xFF0)] >> 8
 sub r60, 1, r60 // r60 <= value(r60) - 1

while these are not:

 add r61, 0x4000, r63
 je r60, 0x1234, action2

To achieve the same effects with correct code do this:

 mov 0x4000, r63
 add r61, r63, r63 // r63 <= value(r61) + 0x4000

 mov 0x1234, r63
 je r60, r63, action2 // if value(r60) == 0x1234, jump to action2

5) Count packets Examine again the rx_data_plus handler:

rx_data_plus:
 jext COND_RX_COMPLETE, end_rx_data_plus
 jl SPR_RXE_FRAMELEN, 0x01C, rx_data_plus
end_rx_data_plus:
 jl SPR_RXE_FRAMELEN, 0x01C, rx_check_promisc
 jnext COND_RX_RAMATCH, rx_ra_dont_match
 jext COND_TRUE, send_response

Place your filtering instructions between the last two statements. Rules should be: packet is IP (first byte of the MPDU
payload is 0x45), IP type should be protocol UDP (check the IP header for field “proto”), and destination UDP port
should be 3000 (check UDP header for destination port field). As the filtering code should verify three conditions, if any
of them is not verified then jump directly to send_response, e.g., to verify that the first byte of the MAC payload is the
first byte of an IP packet (0x45):

 and [SHM(0xA2E)], 0xFF, r63 // see the question below
 jne r63, 0x45, send_response // jump if not equal
 …other filters…
 …increment some register…
 jext COND_TRUE, send_response

a. Why we compare the LSB of 16-bit value at address [SHM(0xA2E)] to 0x45? (This is done by the logical and
operation) Why instead not comparing the MSB? Remember that CPU is little endian.

b. How to count packets that pass all the filtering? Try incrementing a free register you do not use like r60.

Start now sending traffic from AP to STA to port 3000. You can see the value of r60 increasing by issuing command
“shmread” and check that register is increasing! (Running the command without “-s” avoid displaying the entire
content of the shared memory).

6) Counting more than 65535 packets As registers (or single 16-bit values in shared memory) are only 16 bit wide, they
allow for counting up to 2^16-1=65535 events. To count more we should use couple of registers/values in shared
memory and use the carry when we do sum, e.g., if we plan to use r61 and r60 respectively for MSW and LSW of a 32-
bit counter we should do

 add. r60, 1, r60

University of Trento
Dipartimento di Ingegneria e Scienza dell’Informazione
” NOMADIC COMMUNICATIONS”, Lab tutorial - Dr. F. Gringoli, A.A. 2013/2014

Pagina 4/6
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

 addc r61, 0, r61

where the first addition use “.” that means to remember the carry (if any), while second addition “addc” adds the two
operands and the carry and store the results into the third operand (pay attention second operand is zero).

7) Counting (likely) total packet vs correct packets If we count packets in rx_data_plus, we count all packets that
satisfy the rules, including also those that might collide afterwards. If instead we want to count only correct packet we
should place the same filter instructions in rx_complete after evaluating the condition on successful packet:

frame_successfully_received:
 jext COND_RX_FIFOFULL, rx_fifo_overflow
 jnext COND_NEED_RESPONSEFR, check_frame_subtype

Filtering instructions should be placed between the last two statements: try adding again the same filters, this time of
course use different register(s) to store the results, then run iperf.

a. Why the number of packets counted in rx_data_plus is greater than that counted in rx_complete?
b. What kind of information can you get by their ratio?
c. Try finding out a relation between their ratio and the values in rc_stats file on debugfs of the sender.

8) Jamming packets Jamming some traffic means that we are going to disturb the communication between the couple of

peers that are actually exchanging such traffic. An easy way to do this is to set up a third node to reply with an
acknowledgment as if it were the recipient of the traffic. This will cause a collision of the correct acknowledgment with
that generated by the jammer, so that the transmitter will not receive and ack frame and will start deferring with longer
backoffs. To this end we need to change the rx_data_plus code of the jammer so that the firmware of the jammer
will prepare a valid acknowledgment, then we need to also change the rx_complete code so that it also schedules the
transmission of the ack frame, in particular we should jump to send_response even if the receiver address does not
match (of course it can not, as the jammer has a different mac address than the intended receiver)

end_rx_data_plus:
 jl SPR_RXE_FRAMELEN, 0x01C, rx_check_promisc
 // put your filter here: at first non match, jump to skip_filter
 jext COND_TRUE, send_response
skip_filter:
 jnext COND_RX_RAMATCH, rx_ra_dont_match
 jext COND_TRUE, send_response

We should then change rx_complete, by adding a similar filter, e.g.,

frame_successfully_received:
 jext COND_RX_FIFOFULL, rx_fifo_overflow
 // put your filter here: at first non match, jump to skip_filter2
 jext COND_TRUE, need_regular_ack
skip_filter2:
 jnext COND_NEED_RESPONSEFR, check_frame_subtype
need_regular_ack:

Try running now an iperf session between the AP and the STA and check the throughput. Then bring the jammer up and
connect it to the same AP.

a. Does make any difference whether or not the jammer is running?

9) Improve the jammer As the ack frames generated by the jammer and the intended recipient are equals, this could not
puzzle up the traffic session too much. To make a mess instead we have two options:

1. Slightly change the content of the ack on the jammer on the fly;
2. Start transmitting the fake ack immediately instead after a SIFS.

With regard to the first possibility we should take a look to handler send_response: it is using the Transmission and
Modify Engine (TXME) to compose the ack frame on the fly, by copying the transmitter address of the received frame
into the receiver address of the ack. There are two interesting points:

University of Trento
Dipartimento di Ingegneria e Scienza dell’Informazione
” NOMADIC COMMUNICATIONS”, Lab tutorial - Dr. F. Gringoli, A.A. 2013/2014

Pagina 5/6
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

a. For picking up the transmitter address from the received packet a sort of indirect memory access is used

 or [RX_FRAME_ADDR2_1,off1], 0x000, SPR_TME_VAL10

This involves using offset register off1, always initialized to SHM(0xA08). This addressing type allows to also
specify an offset with respect to the base value stored in the offset register, in this case RX_FRAME_ADDR2_1

i. Check in the include files (.inc) if this offset actually correspond to where you expect to find the first
two bytes of the transmitter address

b. For storing the value into the receiver address of the ack the TXME is used. This allows to change on the fly the

first 64 bytes of any outgoing packet by simply referring to registers like SPR_TME_VALXY where XY can be an
even number in range [0, 62]. In this case SPR_TME_VAL10 means byte 10 and 11 of the outgoing ack

i. Why not overwriting bytes 4 and 5 (and following)? Remember about the first 6 bytes of every packet.

The conclusion holds for both received and transmitted packets.

For the purpose of jamming it is enough to replace the value in SPR_TME_VAL10 with something like 0xdead
or 0xbeef. Try, recompile and check if this improves jamming.

With regard to the second possibility we have to change the scheduling keyword in rx_complete, that is

 or NEXT_TXE0_CTL, 0x000, SPR_TXE0_CTL

Here the keyword is that chosen inside send_response and stored inside NEXT_TXE0_CTL, that is 0x4021 which
means “schedule after 10us since the conclusion of the current reception if it is a good packet”. To schedule an
immediate transmission replace NEXT_TXE0_CTL variable (it’s a register) with 0x4007, which means “schedule
immediately”: this will force the radio to start transmitting immediately.

a. Try the new jammer and check if it improves. Pay attention, it could crash

University of Trento
Dipartimento di Ingegneria e Scienza dell’Informazione
” NOMADIC COMMUNICATIONS”, Lab tutorial - Dr. F. Gringoli, A.A. 2013/2014

Pagina 6/6
Copyright © 2014 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

Figure 1 - Main code blocks of the real time firmware

Check TX
Data

Set TX parm
Schedule

TX now:
select source

No Report
TX status

Wait TX
Start

Update
Contention

Need
response?

Wait
Countdown

Yes

MAX attempt?
No

Yes

1

3

5

12

10

Flush
Queue

13

From
forgery?

Yes

No

Wait TX
End

4

6

7

8
9

11

For me,
need reply

1

Prepare
response 2

Complete
RX 6

Is reply?

3

IDLE

RX: plcp

RX: done

TX: start

TX: done

Data in
queue?

2
Yes

No

timeout

Wait RX
End 5

No

Yes

Yes

No

TX state machine RX state machine Main Loop

Stop
Countdown

4

Frame for me?

7

Push frame
to host 8

Yes

No

