
Francesco Gringoli
University of Brescia

A glimpse into the
Linux Wireless Core:

From kernel to firmware

Outline

•  Linux Kernel Network Code
– Modular architecture: follows layering

•  Descent to (hell?) layer 2 and below
– Why hacking layer 2
– OpenFirmWare for WiFi networks

•  OpenFWWF: RX & TX data paths
– Hands on: examples

•  OpenFWWF exploitations

Trento 10/3/2013 Slide 2 From kernel to firmware

Linux Kernel Network Code

A glimpse into the
Linux Kernel Wireless Code

Part 1

Linux Networking Stack
Modular architecture

•  Layers down to MAC (included)
–  All operations above/including layer 2 done by kernel code
–  Network code device agnostic
–  Net/code prepares suitable packets

•  In 802.3 stack
–  Eth code talks with device drivers
–  Device drivers

•  Map/unmap DMA desc to packets
•  Set up Hardware registers

e1000
pkt

Upper layers
Ethernet

PCI

8139cp
pkt

pkt

pkt

Trento 10/3/2013 Slide 4 From kernel to firmware

•  What happens with 802.11?
–  New drivers to handle WiFi HW: how to link to net code?
–  A wrapper “mac80211” module is added

Upper layers
Ethernet

Linux Networking Stack
Modular architecture

Upper layers
Ethernet

PCI

8139cp e1000 b43 ath9k

PCI PCI

? mac80211

Trento 10/3/2013 Slide 5 From kernel to firmware

Linux & 802.11
Modular architecture

•  Layers down to LLC (~mac) common with 802.3
–  All operations above/including layer 2 done by ETH/UP code

•  Packets converted to 802.11 format for rx/tx
–  By wrapper “mac80211”

•  Manage packet conversion

•  Handle AAA operations

•  Drivers: packets to devices
–  One dev type/one driver

•  Add data to “drive” the device

mac80211

Upper layers
Ethernet

b43 ath9k

PCI PCI

8139cp

Trento 10/3/2013 Slide 6 From kernel to firmware

Linux & 802.11
Modular architecture/1

mac80211

ETH

b43

P
C

I

DA SA ET PACKET PAYLOAD

PACKET PAYLOAD

BSS SA LLC PACKET PAYLOAD CN DUR DA SEQ

802.11 PACKET DEVICE
DATA

802.11 PACKET DEVICE
DATA

OFDM1 OFDM2 OFDM3 OFDM4 PLCP Set HW
registers

Wait TX opportunity

GO!

• Look in neighbor tables for the destination address and egress device
• Fetch from the egress device data the source address
• Check if the egress device is associated to an AP connected to DA
• Compute Control Word, Duration, sequence num
• Fill header, add LLC (0xAA 0xAA, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00)
• Add information for HW setup (device agnostic) in info fields

INFO

• Convert agnostic info into device dependent data

Trento 10/3/2013 Slide 7 From kernel to firmware

Linux & 802.11

•  Opposite path: conversions reversed
•  Several operations involved for each packet
•  Multiple buffer copies (should be) avoided

–  E.g., original packet at layer 4 correctly allocated
•  Before L3 encapsulation output device already known

•  Packets are queued twice/(3 times)
–  Qdisc: before wrapper
–  Device queues: between wrapper and driver/(+DMA)

•  Bottom line:
–  Clean design but can be resource exhausting

Trento 10/3/2013 Slide 8 From kernel to firmware

•  Forwarding/routing packet on a double interface box

Linux & 802.11
Modular architecture

mac80211

Ethernet & upper layers

b43 ath9k

PCI

802.11 pkt

802.3 pkt 802.11 pkt

FW/Route decision

Trento 10/3/2013 Slide 9 From kernel to firmware

Linux & 802.11

•  On CPU limited platform, fw performance too low
–  Need to accelerate/offload some operations

•  Ralink was first to introduce SoC WiFi devices
–  A mini-pci card hosts an ARM CPU
–  Main host attaches a standard ethernet iface
–  The ARM CPU converts ETH packet to 802.11
–  Main host focuses on data forwarding

•  Question: where can be profitably used?

Trento 10/3/2013 Slide 10 From kernel to firmware

Linux & 802.11: setup

•  A simple BSS with Linux only nodes
–  One station runs hostapd (AP)
–  Others (STAs) join:

•  Once, with iw/iwconfig
•  Use a supplicant to join, e.g., use wpa_supplicant

–  Why using a supplicant?
•  management frame lossesSTA disconnection
•  Why? Kernel (STA) periodically checks if AP is alive
•  If management frames lost, kernel (STA) does not retransmit!
•  A supplicant (wpa_supplicant) is needed to re-join the BSS

transparently

Trento 10/3/2013 From kernel to firmware Slide 11

Linux & 802.11: kernel setup

•  Check the device type with
$: lspci | grep –i net!

•  Load the driver for Broadcom devices and check is loaded
$: insmod b43 qos=0!
$: lsmod | grep b43!

•  Check kernel ring buffer with
$: dmesg | tail -30

•  Bring net up and configure an IP address
$AP: ifconfig wlan0 172.16.0.1 up!

 ! !$STA: ifconfig wlan0 172.16.0.10 up!

•  In following experiments we fix arp associations
$: ip neigh replace to PEERIP lladdr PEERMAC dev wlan0!

–  Traffic not encrypted
–  QoS disabled!

Trento 10/3/2013 Slide 12 From kernel to firmware

Linux & 802.11: hostapd setup

•  Configuration of the AP in “hostapd.conf”
interface=wlan0!
driver=nl80211!
dump_file=/tmp/hostapd.dump!
ctrl_interface=/tmp/hostapd!
ssid=TESTTODAY!
hw_mode=g!
channel=14!
beacon_int=100!
auth_algs=3!
wpa=0

•  Runs with!
$: hostapd -B hostapd.conf # -B: run in background!

•  Check dmesg!!

Try to send SIGUSR1
signal to hostapd

PIPE used by
hostapd_cli

BSS properties

No encryption/
authentication

Trento 10/3/2013 Slide 13 From kernel to firmware

Linux & 802.11: station setup

•  Scan for networks
! !$: iwlist wlan0 scan

•  Configuration of STAs in wpasupp.conf
ctrl_interface=/tmp/wpa_supplicant!
network={!
 ssid=”TESTODAY"!

 scan_ssid=1!
 key_mgmt=NONE!
}!

•  Runs with
$: wpa_supplicant -B -i wlan0 -c wpasupp.conf!

•  Check dmesg!
•  Simple experiment: ping the AP

$: ping 172.16.0.1!

PIPE used by
wpa_cli

BSS to join

Trento 10/3/2013 Slide 14 From kernel to firmware

Linux & 802.11:
run some traffic

•  We use iperf in UDP mode
•  On AP, server mode
!$: iperf -s -u -p3000 -i1!

•  On STA, client mode
!$: iperf -c172.16.0.1 -u -p3000 -i1 -t100 -b54M!

•  Channel 14 is usually free (by law)
–  Try another channel, e.g., 1 or 6 or 11
–  How to do it?
–  Reconfigure hostapd and reconnect, let’s see how…

Trento 10/3/2013 From kernel to firmware Slide 15

Linux & 802.11:
check status

•  There are some “debug” helpers, on AP:
– Browse this folder

/sys/kernel/debug/ieee80211!

– Learn what is phy0
– Cd to phy0/netdev:wlan0/stations!
– Cd to the MAC address of the STA!!

•  Explore all the stats
•  Why rc_stats is almost empty?

•  What on the STA?

Trento 10/3/2013 From kernel to firmware Slide 16

Linux & 802.11:
capturing packets

•  On both AP and STA run “tcpdump”
$: tcpdump -i wlan0 -n !

•  Is exactly what we expect?
–  What is missing?
–  Layer 2 acknowledgment?

•  Display captured data
$: tcpdump -i wlan0 -n -XXX!

•  What kind of layer 2 header?
•  What have we captured?

Trento 10/3/2013 Slide 17 From kernel to firmware

Linux & 802.11:
capturing packets

•  Run “tcpdump” on another station set in monitor mode
$: ifconfig wlan0 down!
$: iwconfig wlan0 mode monitor chan 4(?)!
$: ifconfig wlan0 up!
$: tcpdump -i wlan0 –n!

•  What’s going on? What is that traffic?
–  Beacons (try to analyze the reported channel, what’s wrong?)
–  Probe requests/replies
–  Data frames

•  Try to dump some packet’s payload
–  What kind of header?
–  Collect a trace with tcpdump and display with Wireshark

Trento 10/3/2013 Slide 18 From kernel to firmware

Linux & 802.11:
capturing packets

•  Exercise: try to capture only selected packets
•  Play with matching expression in tcpdump

$: [cut] ether[N] ==|!= 0xAB!

•  Discard beacons and probes
•  Display acknowledgments
•  Display only AP and STA acknowledgments
•  Question: is a third host needed?

Trento 10/3/2013 Slide 19 From kernel to firmware

Virtual Interfaces

•  Wrapper/driver “may agree” on virtual packet path
–  Each received packet duplicated by the driver
–  mac80211 creates many interfaces “binded” to same HW
–  In this example

•  Monitor interface attached
•  Blue stream follow upper stack
•  Red stream hooked to pcap!

$: iw dev wlan0 interface add \!
!! !fish0 type monitor!

–  Try capturing packets on the AP
•  What’s missing?

mac80211

Ethernet & upper layers

b43

PCI
pkt

pkt

pkt

Trento 10/3/2013 Slide 20 From kernel to firmware

Descent to layer 2 and below
An open firmware

A glimpse into the
Linux Kernel Wireless Code

Part 2

Linux & 802.11
Modular architecture

mac80211

carl9170

Ethernet & upper layers

b43 ath9k
P

C
I

U
S

B

M
-P

C
I

Wrapper for all hw
Find interface;

remove eth head;
add LLC&dot11 head;

fill (sa;da;ra;seq);
fill(control;duration);
set rate (from RC);
fill (rate;fallback);

Trento 10/3/2013 Slide 22 From kernel to firmware

Linux & 802.11
Modular architecture/2

mac80211

carl9170

Ethernet & upper layers

b43 ath9k
P

C
I

U
S

B

M
-P

C
I

Set up hw regs;
Fill hw private fields;
Send frame on DMA;

Get stats; $
Reports to mac80211

Several MAC
primitives missing!

Who takes care of
ack?

Trento 10/3/2013 Slide 23 From kernel to firmware

Linux & 802.11
Modular architecture/3

mac80211

carl9170

Ethernet & upper layers

b43 ath9k
P

C
I

U
S

B

M
-P

C
I

For sure
•  Retransmission;
•  Beaconing;
•  Acknowledgment
Handled by boards!

HOW?
Firmware does

We will see the firmware in this course
but first…

Let’s check why we should do that

Trento 10/3/2013 Slide 24 From kernel to firmware

Why/how playing with 802.11

•  Radio access protocols: issues
–  Some are unpredictable: noise & intf, competing

stations
•  Experimenting with simulators (e.g., ns-3)

–  Captures all “known” problems
•  Testing changes to back-off strategy is possible

–  Unknown (not expected)?
•  Testing how noise affects packets not possible

•  In the field testing is mandatory
– Problem: one station is not enough!

Trento 10/3/2013 Slide 25 From kernel to firmware

Programmable Boards

•  Complete platforms like
–  WARP: Wireless open-Access Research Platform
–  Based on Virtex-5
–  Everything can be changed

•  PHY (access to OFDM symbols!)
•  MAC

–  Two major drawbacks
•  More than very expensive
•  Complex deployment

–  If PHY untouched: look for other solutions!

Trento 10/3/2013 Slide 26 From kernel to firmware

Off-the-shelf hardware

•  Five/Six vendors develop cheap WiFi hw
– Hundreds different boards
– Almost all boards load a binary firmware

•  MAC primitives driven by a programmable CPU
– Changing the firmware Changing the MAC!

•  Target platform:
–  Linux & 802.11: modular architecture
– Official support prefers closed-source drivers
– Open source drivers && Good documentation

•  Thanks to community!

Trento 10/3/2013 Slide 27 From kernel to firmware

Linux & 802.11
Broadcom AirForce54g

•  Architecture chosen because
–  Existing asm/dasm tools

•  A new firmware can be written!
–  Some info about hw regs

•  We analyzed hw behavior
–  Internal state machine decoded
–  Got more details about hw regs
–  Found timers, tx&rx commands
–  Open source firmware for DCF possible

•  We released OpenFWWF!
–  OpenFirmWare for WiFi networks

mac80211

ath9k

IP & upper layers

b43

P
C

I

Trento 10/3/2013 Slide 28 From kernel to firmware

Broadcom AirForce54g
Basic HW blocks

DMA FIFOs

ucode

Template
RAM

TXE

Internal
memory

CPU

PHY

RXE

Trento 10/3/2013 Slide 29 From kernel to firmware

Description of the HW

•  CPU/MAC processor capabilities
–  88MHz CPU, 64 general purpose registers

•  Data memory is 4KB, direct and indirect access
–  From here on it’s called Shared Memory (SHM)

•  Separate template memory (arrangeable > 2KB)
–  Where packets can be composed, e.g., ACKs & beacons

•  Separate code memory is 32KB (4096 lines of code)
•  Access to HW registers, e.g.:

–  Channel frequency and tx power
–  Access to channel transmission within N slots, etc…

Trento 10/3/2013 Slide 30 From kernel to firmware

TX side

•  Interface from host/kernel
– Six independent TX FIFOs
– DMA transfers @ 32 or 64 bits
– HOL packet from each FIFO

•  can be copied in data memory
–  Analysis of packet data before transmission
–  Kernel appends a header at head with rate, power etc

•  can be transmitted “as is”
•  can be modified and txed, direct access to first 64

bytes

Trento 10/3/2013 Slide 31 From kernel to firmware

TX side/2

•  Interface to air
– Only 802.11 b/g supported, soon n
– Full MTU packets can be transmitted (~2300bytes)

•  If full packet analysis is needed, analyze block-by-block

– All 802.11 timings supported
•  Minimum distance between Txed frames is 0us

– Note: channel can be completely captured!!

– Backoff implemented in software (fw)
•  Simply count slots and ask the HW to transmit

Trento 10/3/2013 Slide 32 From kernel to firmware

RX side

•  Interface from AIR
–  HW acceleration for

•  PLCP and global packet FCS - Destination address matching

–  Packet can be copied to internal memory for analysis
•  Bytes buffered as soon as symbols is decoded

–  During reception and copying CPU is idle!
•  Can be used to offload other operations
•  Try to suggest something

–  Packets are pushed to host/kernel
•  If FW decides to go and through one FIFO ONLY
•  May drop! (e.g., corrupt packets, control…)

Trento 10/3/2013 Slide 33 From kernel to firmware

PKT

Example:
TX a packet, wait for the ACK

DMA FIFOs

ucode

Template
RAM

TXE

SHM

CPU

ACK

PHY

RXE

DROPPED!

Trento 10/3/2013 Slide 34 From kernel to firmware

Example:
RX a packet, transmit an ACK

FIFOs

ucode SHM

CPU

PKT

RXE

Send to
host

PKT is
for me

DMA

Prepare
ACK ACK

Wait SIFS

Template
RAM

TXE

PHY

Trento 10/3/2013 Slide 35 From kernel to firmware

What lesson we learned

•  From the previous slides
– Time to wait ack (success/no success)
– Dropping ack (rcvd data not dropped, goes up)
– And much more

•  When to send beacon
•  Backoff exponential procedure and rate choice

– Decided by MAC processor (by the firmware)
•  Bottom line:

Hardware is (almost) general purpose
Trento 10/3/2013 Slide 36 From kernel to firmware

From lesson to OpenFWWF
Description of the FW

•  OpenFWWF
–  It’s not a production firmware
–  It supports basic DCF

•  No RTS/CTS yet, No QoS, only one queue from Kernel

– Full support for capturing broken frames
–  It takes 9KB for code, it uses < 200byte for data

•  We have lot of space to add several features

•  Works with 4306, 4311, 4318 hw
– Linksys Routers supported (e.g., WRT54GL)

Trento 10/3/2013 Slide 37 From kernel to firmware

PKT

Broadcom AirForce54g
Simple TDM

DMA FIFOs

ucode

Template
RAM

TXE

SHM

CPU

PHY

RXE

TDM
needed!
Waiting

turn

GO! 3 2 1

Trento 10/3/2013 Slide 38 From kernel to firmware

Broadcom AirForce54g
Simple TDM/2

FIFOs

ucode

Template
RAM

TXE

SHM

CPU

PKT

PHY

RXE

Sync the
clock

PKT from
TDM

domain

DMA

Trento 10/3/2013 Slide 39 From kernel to firmware

OpenFWWF
RX & TX data paths

A glimpse into the
Linux Kernel Wireless Code

Part 3

Firmware in brief

•  Firmware is really complex to understand
–  Assembly language

•  CPU registers: 64 registers [r0, r1, …, r63]
•  SHM memory: 4KB of 16bits words addressable as [0x000] -> [0x7FF]
•  HW registers: spr000, spr001, …, spr1FF

–  Use #define macro to ease understanding
•  #define !CUR_CONTENTION_WIN !r8!
•  #define !SPR_RXE_FRAMELEN !spr00c!
•  #define !SHM_RXHDR ! !SHM(0xA88)!

–  SHM(.) is a macro as well that divides by 2
–  Assignments:

•  Immediate mov 0xABBA, r0; // load 0xABBA in r0
•  Memory direct mov [0x0013], r0; // load 16bit @ 0x0026 (LE!)

Trento 10/3/2013 Slide 41 From kernel to firmware

Firmware in brief/2

•  Value manipulation:
–  Arithmetic:

•  Sum: add !r1, r2, r3; // r3 = r1 + r2
•  Subtraction: sub !r2, r1, r3; // r3 = r2 - r1

–  Logical:
•  Xor: xor !r1, r2, r3; // r3 = r1 ^ r2

–  Shift:
•  Shift left: sl !r1, 0x3, r3; // r3 = r1 << 3

•  Pay attention:
–  In 3 operands instruction, immediate value in range [0..0x7FF]
–  Value is sign extended to 16bits

Trento 10/3/2013 Slide 42 From kernel to firmware

Firmware in brief/3

•  Code flow execution controlled by using jumps
–  Simple jumps, comparisons

•  Jump if equal: je !r2, r5, loop; !// jump if r2 == r5
•  Jump if less: jl !r2, r5, exit; // jump if r2 < r5 (unsigned)

–  Condition register jumps: jump on selected CR (condition registers)
•  on plcp end: jext !COND_RX_PLCP, rx_plcp;!
•  on rx end: jext !COND_RX_COMPLETE, rx_complete;!

•  on good frame: jext !COND_RX_FCS_GOOD, frame_ok;!

•  unconditionally: jext !COND_TRUE, loop;
–  A check can also clean a condition, e.g.,

•  jext !EOI(COND_RX_PLCP), rx_plcp; !// clean CR bit before jump
–  Call a code subsection, save return value in link-registers (lr):

•  call !lr0, push_frame; ! !// return with ret lr0, lr0;!

Trento 10/3/2013 Slide 43 From kernel to firmware

Firmware in brief/4

•  OpenFWWF is today ~ 1000 lines of code
–  Not possible to analyze in a single lesson
–  We will analyze only some parts

•  A simple exercise:
–  Analyze quickly the receiver section
–  Propose changes to implement a jammer

•  When receives packets from a given STA, jams noise!

AP

JAMMER

STA pkt pkt

jam

ack

Trento 10/3/2013 Slide 44 From kernel to firmware

RX code made easy

•  During reception
–  CR RX_PLCP set when PLCP is completely received
–  CR COND_RX_BADPLCP set if PLCP CRC went bad
–  SPR_RXE_FRAMELEN hold the number of already received bytes
–  First 64B of packet are copied starting at SHM_RXHEADER = SHM(0xA08)!

•  First 6B hold the PLCP
–  CR COND_RX_COMPLETE set when packet is ready

•  We can have a look at the code flow for a data packet
–  rx_plcp: checks it’s a data packet
–  rx_data_plus: checks packet is longer than 0x1C = 6(PLCP)B + 22(MAC)B
–  send_response: copy src mac address to ACK addr1, set state to TX_ACK
–  rx_complete: schedule ACK transmission!

Trento 10/3/2013 Slide 45 From kernel to firmware

good

RX code path

Trento 10/3/2013 From kernel to firmware Slide 46

rx_plcp

rx_ack

send_CTRL_
frame_to_host

RX
complete

control ack

management

rx_beacon

beacon
rx_data_plus

data

send_response_
If_ra_matches

RX check
promisc

send_response

match

no match

send_frame_
to_host

FCS good

rx_badplcp
bad

Wait
enough
header
bytes

Prepare
ACK in

template
RAM

WAIT
packet end

Fill HW
header for

kernel,
raise IRQ

JAM

Let’s hack and do jamming

•  During reception CPU keeps on running
–  Detect end of PLCP
–  May wait for a given number of bytes received
–  May prepare a response frame (ACK)
–  Wait for end of reception
–  May schedule response frame transmission after a while

now

PL
C
P

[N-1…0] [M-1…N]

PLCP received WAIT first N bytes Received: analyze header
If from jam target setup jam
Wait for packet end Reception complete

JAM READY!

Wait N microseconds TX JAM

Trento 10/3/2013 Slide 47 From kernel to firmware

•  Disturbing a station when sending data
–  Jammer recognizes tx’ed data and sends fake ACK

•  Maybe (for testing) jamming all packets is too much
–  Selected packets?

Let’s hack and do jamming/2

TX station

AP DATA1

ACK

SIFS
JAMMER

JAM

Trento 10/3/2013 Slide 48 From kernel to firmware

Let’s hack and do jamming/3

•  If first byte of a packet are copied to SHM
•  If we have ways of displaying SHM

–  Could we find evidence of received packets?

•  Useful tool
–  $: readshm /path/to/phy/!
–  Display shared memory

•  Run this experiment: run traffic from the STA to AP
–  On AP dump the SHM: locate the UDP packet
–  Fix the rate on STA: how do the first 6 bytes change?

Trento 10/3/2013 Slide 49 From kernel to firmware

Let’s hack and do jamming/4

•  Shared memory appears like this

0x0A00: 0000 0000 0000 0000 CCBF 0200 0000 0801 !
0x0A10: 0400 0014 A442 958D 0014 A442 958D 0013 B.....B....!
0x0A20: D4BB 2CBF C006 AAAA 0300 0000 0800 4500 ..,...........E.!
0x0A30: 05DA 3E7E 4000 4011 751B C0A8 0028 C0A8 ..>~@.@.u....(..!

0x0A40: 0001 CB86 0BB8 05C6 0F6E 0000 459E 531C n..E.S.!
0x0A50: ADA9 0000 84FD 0000 0000 0000 0001 0000 !
0x0A60: 0BB8 0000 0000 0337 F980 FFFE 7960 3637 7....y`67!
0x0A70: 3839 3031 3233 3435 3637 3839 3031 3233 8901234567890123!
0x0A80: 3435 3637 3839 3031 5100 0000 0600 2A50 45678901Q.....*P!
0x0A90: E54F 0000 0000 0000 B4FB A202 0000 0000 .O..............!

Trento 10/3/2013 From kernel to firmware Slide 50

Let’s hack and do jamming/4

•  Shared memory appears like this

0x0A00: 0000 0000 0000 0000 CCBF 0200 0000 0801 !
0x0A10: 0400 0014 A442 958D 0014 A442 958D 0013 B.....B....!
0x0A20: D4BB 2CBF C006 AAAA 0300 0000 0800 4500 ..,...........E.!
0x0A30: 05DA 3E7E 4000 4011 751B C0A8 0028 C0A8 ..>~@.@.u....(..!

0x0A40: 0001 CB86 0BB8 05C6 0F6E 0000 459E 531C n..E.S.!
0x0A50: ADA9 0000 84FD 0000 0000 0000 0001 0000 !
0x0A60: 0BB8 0000 0000 0337 F980 FFFE 7960 3637 7....y`67!
0x0A70: 3839 3031 3233 3435 3637 3839 3031 3233 8901234567890123!
0x0A80: 3435 3637 3839 3031 5100 0000 0600 2A50 45678901Q.....*P!
0x0A90: E54F 0000 0000 0000 B4FB A202 0000 0000 .O..............!

•  What should we check if we want to jam only UDP frame to port 3000?
•  We have also to wait for at least …. Bytes have been received, right?

Trento 10/3/2013 From kernel to firmware Slide 51

Let’s hack and do jamming/5

•  Legacy rx_data_plus:
rx_data_plus:!
 jext COND_RX_COMPLETE, end_rx_data_plus!
 jl SPR_RXE_FRAMELEN, 0x01C,rx_data_plus!
end_rx_data_plus:!
 jl SPR_RXE_FRAMELEN, 0x01C, rx_check_promisc!
 jnext COND_RX_RAMATCH, rx_ra_dont_match!
 jext COND_TRUE, send_response!

•  What we change?
–  Change the frame length
–  Add filter
–  If frame match filter, then “send_response” and remember

somewhere!

Trento 10/3/2013 From kernel to firmware Slide 52

Let’s hack and do jamming/6

•  Legacy rx_complete
rx_complete:!
![cut]!

frame_successfully_received:!
 jext COND_RX_FIFOFULL, rx_fifo_overflow!
 jnext COND_NEED_RESPONSEFR, check_frame_subtype!
need_regular_ack:!
 je [SHM_CURMOD], 0x001, ofdm_modulation!

•  What we change?
–  If we had remembered somewhere this is to jam

•  JAM IT!, schedule the frame anyway

Trento 10/3/2013 From kernel to firmware Slide 53

JAM code

•  To switch to a different firmware
–  Look at /lib/firmware
–  Link the desired firmware release as “b43”
–  Remove b43 module, reload and bring back the network

up
$: rmmod b43 . . .

•  How to test JAM code? “iperf” performance tool
•  On AP run in server mode (receiver)

$: iperf -s -u -p 3000 -i 1!

•  On STA run in client mode (transmit)
$: iperf –c 192.168.1.1 –u –p 3000 –i 1 –t 10!

Trento 10/3/2013 Slide 54 From kernel to firmware

TX made easy

•  Packets are prepared by the kernel
– Fill all packet bytes (e.g., 802.11 header)
– Choose hw agnostic device properties

•  Tx power to avoid energy wasting
•  Packet rate: rate control algorithm (minstrel)

– A driver translates everything into hw specific
•  b43: rate encoded in PLCP (first 6B)
•  b43: append a fw-header at packet head

–  Firmware will setup hw according to these values

Trento 10/3/2013 Slide 55 From kernel to firmware

TX made easy/2

•  Kernel (follows)
–  b43: send packet data (+hw info) through DMA

•  firmware:
–  Continuous loop, when no receiving

•  If IDLE, check if packet in FIFO (comes from DMA)
•  If packet does not need ACK, TX,report and exit
•  If packet needs ACK, wait ACK timeout
•  If ACK timeout expired:

–  if ACK RXed, report to kernel, exit
–  If ACK not RXed, setup backoff, try again
–  If too much TX attempts

»  remove packet from FIFO, report to kernel, exit

Trento 10/3/2013 Slide 56 From kernel to firmware

TX made easy/3

1

Device TX FIFO

New packet in FIFO

TX attempt = 0

1

TX ANT

TX STATUS FIFO

Packet corrupt
No ACK back TX attempt = 1 Ti

m
eo

ut
!

1
ACK

Packet OK
TX ACK back

2

RX ANT

ACK ok
Report to
kernel

S
ta

tu
s

N
=

2

IRQ wake status
handler in kernel

Second attempt:
increase backoff

Trento 10/3/2013 Slide 57 From kernel to firmware

TX made easy/4

•  Summary

•  FW reports to kernel the number of attemps
–  Kernel feeds the rate control algo

–  A rate for the next packet is chosen

Trento 10/3/2013 From kernel to firmware Slide 58

t backoff

AP

DATA DATA

A
C
K

DATA
backoff

A
C
K

COLLISION COLLISION OK

TX made easy/5

•  Currently “minstrel” is the default RC algo

–  At random intervals tries all rates

–  Builds a tables with success “rate” for each “rate”

–  In the short term it selects the best rate

–  How to checks this table from userspace?

•  DEBUGFS

•  Take a look at folder

sys/kernel/debug/ieee80211!

Trento 10/3/2013 From kernel to firmware Slide 59

TX made easy: exercise

•  Firmware: backoff entered if ack is not rx
–  Simple experiment

•  Two STAs joined to the same BSS
•  iperf on both STAs to the AP
•  They should share the channel

–  What happen if we hack one station fw?
–  Let’s try…

•  TX path really complex, skip
•  But at source top we have a few “_CW” values

Trento 10/3/2013 Slide 60 From kernel to firmware

OpenFWWF Exploitations

A glimpse into the
Linux Kernel Wireless Code

Part 4

OpenFWWF Exploitation:
Partial Packet Recovery

In collaboration with

Errors & noise in WiFi

•  Packet Error Rate of 802.11 networks is
high[1]
– Random noise can affect only a few bits

•  One or multiple blocks of corrupted bits inside a packet

– Corrupted frames are discarded
•  Even if only 1 bit is wrong!

–  802.11 retransmits after ACK timeout
– Correctly received bits are completely wasted

[1] Bo Han, Lusheng Ji, Seungjoon Lee, Bobby Bhattacharjee, and Robert
R. Miller. All Bits Are Not Equal. A Study of IEEE 802.11
Communication Bit Errors. INFOCOM 2009, pp. 1602-1610, Apr. 2009.

Trento 10/3/2013 Slide 63 From kernel to firmware

Errors & noise in WiFi/2

•  Suppose we divide packets into 64bytes block
–  Typical packet trace of a managed station

Trento 10/3/2013 Slide 64 From kernel to firmware

Recent Approaches

•  Forward Error Correction (FEC) based

–  ZipTx [2] sends RS redundant bits for recovery

–  Two-round coding scheme

–  Educated guess of BER and high recovery delay

•  Implemented(?) in kernel-space on Atheros devices

•  Evaluated in 11a, outdoor tests (low interference)

[2] K. C.-J. Lin, N. Kushman, and D. Katabi. ZipTx: Harnessing Partial Packets
in 802.11 Networks. ACM MOBICOM 2008, pag. 351–362, Sept. 2008.

Trento 10/3/2013 Slide 65 From kernel to firmware

Recent Approaches

•  Based on Automatic Repeat reQuest (ARQ)

–  PPR [3] relies on the confidence of each bit’s correctness

–  Retransmit only corrupted bits

–  Not available in commercial hardware

•  implemented and evaluated on 802.15.4 protocol stack

[3] K. Jamieson and H. Balakrishnan. PPR: Partial Packet Recovery for Wireless
Networks. ACM SIGCOMM 2007, pag. 409–420, Aug. 2007

Trento 10/3/2013 Slide 66 From kernel to firmware

Our approach

•  Similar to PPR
–  No access to confidence information

•  Use checksum coefficient embedded in packets
•  We implemented everything from scratch

–  Changes to Linux kernel

–  Changes to OpenFWWF

•  We designed MARANELLO and BOLOGNA
–  AKAS Practical Partial Packet Recovery P3R!

Trento 10/3/2013 From kernel to firmware Slide 67

Maranello: P3R

•  At rx corrupted packet is divided into blocks
–  Blocks are equally sized (apart the last one)
–  For each block apart the first compute a checksum
–  Checksums sent back to the transmitter in a N-ACK

–  Transmitter retransmits only corrupted blocks
–  First block can’t be protected

•  It must always be retransmitted, contains the header!

Block 1 Block 2 Block 3 Block 4 Corrupted
packet:

NACK Header C1 C2 C3 To transmitter

Trento 10/3/2013 Slide 68 From kernel to firmware

Corrupt block replacement Block checksum computation (Fletcher32); packet transmission Block Checksums comparison Generation and transmission of repair packet FCS checking, generation and transmission of NACK

Maranello: handling
retransmission

Tx Rx

Trento 10/3/2013 Slide 69 From kernel to firmware

•  Like Maranello but…
•  At tx packet is expanded

–  In each block a checksum is embedded
•  Rx checks all blocks:

–  If packet fails, send back a NACK
– NACK is the bitmap of corrupt blocks

Bologna: P3R

Block 1 Block 2 Block 3 Block 4 Corrupted
packet:

NACK Header

C1 C2 C3

To transmitter

Trento 10/3/2013 Slide 70 From kernel to firmware

Generation and transmission of repair packet Corrupt block replacement Packet reduction

Bologna: handling
retransmission

Tx Rx

Block checksums computation (Fletcher16) Packet expansion and transmission Block checksums checking Generation and transmission of NACK

Trento 10/3/2013 Slide 71 From kernel to firmware

Advantages of P3R

•  Receiver-controlled recovery
•  Utilizing the airtime reserved for ACKs

– No additional overhead for correct packets
•  Faster packet recovery

– Recovery immediately after a transmission
fails

– Shorter recovery frames

Trento 10/3/2013 Slide 72 From kernel to firmware

Implementation Architecture

•  Time-critical operations should be implemented in
firmware space
–  RX: block checksum calculation, NACK generation

–  TX: block checksum calc., block retransmissions

•  Why not in driver space
–  High bus transfer delay + interrupt latency (>70 us)

•  ACK, and NACK:
–  must start within 10us after receiving a frame

Trento 10/3/2013 Slide 73 From kernel to firmware

Implementation: Transmitter

•  Kernel=>Maranello operations:
–  precompute checksums for each output packet

–  send packet and checksums to the firmware

•  Firmware=>Maranello operations:
–  receive NACK: compares checksums to those precomputed

–  rebuild “special retransmission” putting pieces together

NACK Header C1 C2 C3

TX Block 1
Block 2

Block 3 Block 4

Output packet (backlogged)

C1
C2
C3

Block 3
C2!=C2

Block 1

Sends this “special retransmission”

Trento 10/3/2013 Slide 74 From kernel to firmware

Implementation: receiver

•  Firmware=>Maranello operations:
– compute checksums on packet reception
–  if frame is corrupted

•  send NACK instead of ACK, same timings
•  send corrupted packet up to kernel

•  Kernel=>Maranello operations:
– stores corrupted packet
– when receives a special retransmission

•  rebuild the original packet

Trento 10/3/2013 Slide 75 From kernel to firmware

Other details

•  Maranello & Bologna
– We used 64-byte blocks
– Checksum:

•  CRC16 is desiderata
•  OpenFWWF has not access to CRC engine
•  We compute Fletcher-16/32 checksums on the fly

– Recovered packets protected by an additional
CRC32 checksum

Trento 10/3/2013 Slide 76 From kernel to firmware

Throughput tests

•  Repeat this experiment
–  60s UDP traffic, sta to AP (iperf), legacy => ϑ1
–  60s UDP traffic, sta to AP (iperf), Maranello => ϑ2
–  Plot (ϑ1, ϑ2)

•  Each run follows sta initialization
•  Three environments

–  ATT lab
–  Maryland campus
–  Bo’s home

•  Linux sta
–  Fixed channels (1, 6, 11)
–  Minstrel as RC

Trento 10/3/2013 Slide 77 From kernel to firmware

Throughput tests

•  Reliable test?

Trento 10/3/2013 Slide 78 From kernel to firmware

Throughput tests

•  Bo’s home

Trento 10/3/2013 Slide 79 From kernel to firmware

Throughput tests

•  ATT lab

Trento 10/3/2013 Slide 80 From kernel to firmware

Throughput tests

•  Maryland campus

Trento 10/3/2013 Slide 81 From kernel to firmware

Throughput tests

•  Link layer latency is reduced (shorter retr)

Trento 10/3/2013 Slide 82 From kernel to firmware

MARANELLO vs BOLOGNA

Maranello
PRO
•  Partial Packet Recovery
•  Backward comp. 802.11
•  Link latency--
•  No extra-bits in reg.

packets

ISSUES
•  NACK very long

BBR
PRO
•  Partial Packet Recovery
•  Backward comp. 802.11
•  Link latency--
•  NACK minimized

ISSUES
•  Packet expansion

Trento 10/3/2013 83 From kernel to firmware

OpenFWWF Exploitation:
Implementation of 802.11aa

In collaboration with

Universidad Carlos
III de Madrid

Dept. Ingeniería
Telemática

Overview

•  Uni/Multicast support in IEEE 802.11

•  New amendment IEEE 802.11aa

•  Implementation description

•  Performance tests

•  Conclusions

From kernel to firmware 85 Trento 10/3/2013

802.11 Channel access techniques
Unicast traffic

•  Distributed Coordination Function
–  Based on CSMA/CA with binary exponential back-off

•  Waits for channel to be idle

•  Transmits a frame and wait for acknowledgement

•  If collision, inflates contention window and retransmits

–  Reliability through feedback

From kernel to firmware 86

?
Trento 10/3/2013

802.11 Channel access techniques/2
Unicast traffic

•  DCF access and unicast frames

•  Evolutions since release of first standard (1997)
–  QoS:

•  Many queues at single node competing for access

–  Block-Ack:
•  Transmits many frame and waits for single ack frame

–  AMPDU (Aggregated MPDU)
•  Transmits a single physical header + many frames, use a single HT-

ACK

•  Majority of 11N and 11 AC chipsets already support!

What about multicast access?
From kernel to firmware 87 Trento 10/3/2013

802.11 Channel access techniques/3
Multicast traffic (as in 1997 802.11)

•  Multicast access
–  Frames sent with default (minimum) contention
–  No ACK, no retransmission
–  Transmission rate up to basic service rate (24Mb/s)

•  Not reliable!

•  Stuck to 1997…?

From kernel to firmware 88

Error!

?

Trento 10/3/2013

802.11 Channel access techniques/4
Multicast traffic: some news!

•  802.11aa and Group Address Transmission Service (GATS)
–  Removes 24Mb/s limit in MCS selection
–  Defines GroupCast Concealment Address as multicast target

•  Access mechanisms
–  DMS – Directed Multicast Service

•  Delivers multicast frames with many unicast streams

–  GCR UR – GroupCast with Retries – Unsolicited Retries
•  Preemptively transmits frames 1 + R times

–  GCR BA – GCR with Block-Acknowledgment
•  Transmits burst of M frames and polls stations for collecting info

•  Problem: do they work? No implementation yet… no real test!
–  We built the first working prototype and measured performance

From kernel to firmware 89 Trento 10/3/2013

802.11aa: Directed Multicast
Service

•  Use DCF for unicast delivery to each destination
–  From a single stream (multicast) to many (unicast)

•  Standard access: exponential backoff!
–  No prioritization over other traffic

•  Reliability builds on DCF!

From kernel to firmware 90 Trento 10/3/2013

802.11aa: GCR Unsolicited
Retry

•  Similar to legacy service without MCS limit
•  Reliability builds on preemptive R (re)transmission

–  Open loop, does not use feedback from receivers

From kernel to firmware 91

Frame 58 ReTx Frame 58 ReTx Frame 58

Frame 58

Frame 58

Frame 58

Trento 10/3/2013

802.11aa: GCR Block-Ack

•  Frames sent in (configurable length M) bursts
–  Really multicast delivery to Groupcast address

•  Feedback (Block-Ack) collected with unicast polls
–  Block-Ack-Request(BAR) followed by Block-Ack(BA)

From kernel to firmware 92

1 2 3

1 2 3

1 2 3

1 2

Trento 10/3/2013

802.11aa: synoptic table of
GATS

From kernel to firmware 93 Trento 10/3/2013

802.11aa: summary

•  Tradeoff between
– Complexity – Overhead

From kernel to firmware 94

GCR UR DMS GCR Block-Ack

+  Independent on
the number of
stations

/  Discrete
reliability

+  Simple
-  Lot of overhead

-  Highly dependent
on the number of
stations

+  Excellent
reliability

+  Simple
-  Lot of overhead

/  Depends on the
number of
stations

+  Good reliability
-  Complex
+  Some

overhead for
poll procedure
+  Retransmit only

what is missing

Trento 10/3/2013

Implementation of GATS

•  DMS & GCR-UR: can be implemented at kernel
•  But GCR-BA: many time-critical operations

–  Need to change the firmware at the NIC
–  Broadcom 4318 consumer chipset mandatory choice

•  Supported by Opensource firmware OpenFWWF

–  New functionalities at NIC:
•  Keep delivery statistics at receiver in real-time
•  Collect delivery statistics at sender by BAR-BA procedure

–  Polling mechanism: forging BAR and BA

•  Immediate retransmission of lost frames

•  Platform: Linux + b43 kernel driver + OpenFWWF

From kernel to firmware 95 Trento 10/3/2013

Performance evaluation

•  Compare GATS mechanisms, different input load
–  Multicast video is CBR, generated at fixed rate r
–  Nv = 10 multicast receiver
–  Nd = 10 data stations sending backlogged UDP to AP
–  All frames are 1400 bytes

•  Two performance figures
–  Video Delivery Rate (VDR)

•  Average percentage of throughput received by Nv
–  Aggregated Data Throughput (ADT)

•  Sum of data throughput at AP
•  Reveal how many wireless resources are left

From kernel to firmware 96 Trento 10/3/2013

Testbed

•  AP is a PC
•  Both Video and Data stations are Alix 2d2 nodes

–  All tests done at UC3M
•  Tests on channel 14 (interference free) and 11

–  On channel 11 also with (Emulated) massive video loss
•  For GCR-BA

–  Explored M=[8, 16, 32]
•  For GCR-UR

–  Explored R= [0, 1, 4]
•  MCS choice

–  GATS: fixed to 54Mb/s
–  Legacy: fixed to 24Mb/s

From kernel to firmware 97 Trento 10/3/2013

Results

•  Video Delivery Ratio channel 14

From kernel to firmware 98 Trento 10/3/2013

Results/2

•  Aggregated data throughput channel 14

From kernel to firmware 99 Trento 10/3/2013

Results/3

•  Video Delivery Ratio channel 11

From kernel to firmware 100 Trento 10/3/2013

Results/4

•  Video Delivery Ratio: 25% loss at one video receiver

From kernel to firmware 101 Trento 10/3/2013

Analysis of current devices
About supporting GCR-BA

•  GCR-BA: after BAR-BA polling
–  AP retransmits frames (if needed) within milliseconds
–  Problem: NICs do not have large buffers

•  Hosts push frames through DMA subsystem

From kernel to firmware 102 Trento 10/3/2013

Analysis of current devices
About supporting GCR-BA/2

•  For 802.11aa with GCR-BA
–  We replicate each M-frame burst filling all 5 queues
–  Original transmission empties queue #1
–  For first retransmission, NIC scans queue #2

•  Only lost frame are transmitted

–  When all frames are retransmitted, frames left in other
queues are simply dropped (queue flush)

•  Problem: given these “queues” are DMA FIFO
–  Scanning/flushing a queue requires time for

transferring frame from host memory to the NIC
•  Limited bandwidth (it’s a PCI bus)

From kernel to firmware 103 Trento 10/3/2013

Analysis of current devices
About supporting GCR-BA/3

•  We found this can be an issue, example:
–  All frames received at first attempt
–  Need to flush the remaining four queues: takes time
–  We can not cope with maximum throughput!

•  Bottom line:
–  If 802.11aa implemented like we did (no other

possibilities actually) current NIC generation can’t
cope with 802.11aa at full speed!

•  We examined most recent devices
–  E.g., 11ac chipset from Broadcom exhibit same

architecture, meaning same problems!
From kernel to firmware 104 Trento 10/3/2013

Conclusions

•  First experimental evaluation of 802.11aa standard
–  Each GATS mechanism offers specific improvement WRT

legacy multicast

•  We release all sources as open-source
–  Simple starting-block for developing new multicast access

delivery protocols

•  Future works
–  Add support for rate control

•  Especially for GCR-BA: transmitter knows channel joint probability
of reception, can estimate best rate

–  Find optimal configuration for R and M

From kernel to firmware 105 Trento 10/3/2013

OpenFWWF Exploitation:
Node localization

In collaboration with

Too many…

Localization with 802.11

•  Find position of a node
–  Ranging problem: measure distances from known anchors

•  Ingredients:
–  Fast clock: Broadcom cards have 88MHz,
–  Easy to trigger conditions: TX_END and RX_COMPLETE,

From kernel to firmware 107 Trento 10/3/2013

Localization with 802.11: how to/1

From kernel to firmware 108

Real position

Ranging #3
with anchor below

Ranging #2

Ranging #1

Estimated position
Localization error!

Trento 10/3/2013

Localization with 802.11: how to/2

•  Many anchors send probes to target to localize
–  When probe tx’ed, start a clock
–  When ACK rx’ed, stop the clock, compute delay DTn

•  It’s based on Time-of-flight (TOF)
•  Positions of anchors is known (e.g, museum, store…)

–  Correlates DTn from all anchors
–  May use Bancroft algorithm (GPS), or bounding box…

•  It’s easy… Cisco and Fraunhofer sell this system today!
–  Q: so what? (BTW, they also use power estimation)
–  A: we want to check if it works

From kernel to firmware 109 Trento 10/3/2013

OpenFWWF Exploitation:
TCP-PIGGYB-ACK

In collaboration with
Ilenia Tinnirello & Pierluigi Gallo

University of Palermo

•  AP: sends data segments to STA (e.g., from remote)

•  STA: sends TCP ACK to AP (that forwards them)
–  Two separate channel accesses

•  Idea: TCP ACK is short
–  Why not replacing L2 ACK with a mixed L2+L4 ACK?

TCP_DATA

ACK TCP_ACK

ACK

backoff

frozen backoff

DIFS DIFS

Ta=TCP_DATA+SIFS+ACK+DIFS+TCP_ACK+ACK+DIFS+E[backoff]

TCP flow over WiFi

Trento 10/3/2013 Slide 111 From kernel to firmware

•  Expected behavior: TCP-PIGGYB-ACK!

•  Enhanced behavior, work in progress.

TCP_DATA

TCP_ACK

backoff

frozen backoff

DIFS DIFS
TCP_ACK

TCP_DATA

Tb=2 TCP_DATA+2 SIFS+2 DIFS+2 TCP_ACK+ACK+E[backoff]

TCP_DATA

backoff
frozen backoff

DIFS DIFS

TCP_ACK

Tc=2 TCP_DATA+3 SIFS+3 DIFS+2 TCP_ACK+2 ACK+2 E[backoff]

ACK

TCP_DATA TCP_ACK

ACK

DIFS

backoff

TCP flow over WiFi/2

Trento 10/3/2013 Slide 112 From kernel to firmware

TCP-PIGGYB-ACK: scenario
TX RX

egress
queue

egress
queue

If this packet gets lost…
It will never be retransmitted!

TCP will correct this at next
ACK

Trento 10/3/2013 Slide 113 From kernel to firmware

TCP-PIGGYB-ACK: changes

•  FW @ rx
–  Piggyback: only if a TCP DATA is received

•  Avoid Ping-Pong

–  Piggyback: only if a TCP ACK is in queue
•  If not, send L2 ACK

–  Piggyback: header is L2ACK, longer!

•  Kernel @ tx
–  If L2ACK long (=>TCP ACK) received

•  Forge and inject a recovered TCP ACK in the stack

Trento 10/3/2013 Slide 114 From kernel to firmware

TCP-PIGGYB-ACK
Performance Evaluation

•  Testbed & measurement
–  Two peers, several other BSS
–  One peer is the Access Point

while(1) {!
For 60 sec: exchange traffic with no PIGGYBACK!
Measure throughput T1 at rx!
For 60 sec: exchange traffic with PIGGYBACK!
Measure throughput T2 at rx!
Plot(T1, T2)!

}!

Trento 10/3/2013 Slide 115 From kernel to firmware

Performance Evaluation
Data rate fixed to 2Mb/s

Trento 10/3/2013 Slide 116 From kernel to firmware

Performance Evaluation
Data rate fixed to 11Mb/s

Trento 10/3/2013 Slide 117 From kernel to firmware

TCP-PIGGYB-ACK: Comments

•  Lost TCP-ACK in piggybacking
– Not retransmitted

•  Problems with rate control algorithm?
•  Not all TCP segment are piggybacked with

TCP-ACK
– E.g., when the queue is empty

Trento 10/3/2013 Slide 118 From kernel to firmware

