Nomadic Communications AA 2010/11

Vehicular Ad Hoc Networks

90% of this material is reproduced (with permission!) from a tutorial at MobiHoc 2007

thanks to the original authors:

Hannes Hartenstein
University of Karlsruhe
Karlsruhe, Germany
hartenstein@rz.uni-karlsruhe.de

Ken Laberteaux Toyota Technical Center Ann Arbor, USA

ken.laberteaux@tema.toyota.com

Renato Lo Cigno 'Nomadic Communications' AA10-1

Agenda

- Vehicular networks are a very active research/development area
- Recent advances in location (GPS/Galileo) and communication techniques made them technically feasible
- Burst of interest
 - From authorities to reduce accidents and enhance infrastructure
 usage
 - From car factories to improve safety and increase vehicles appeal
- Possibility of Master theses
 - In Trento
 - With Erasmus Exchange in Carlsruhe (Hartenstein)

Hannes Hartenstein and Ken Laberteaux,

Renato Lo Cigno 'Nomadic Communications' AA10-

Agenda

- 1. Applications and recent projects
- 2. Mobility and radio channel
- 3. Communication technology and strategies
- 4. Architectural and application-specific issues
- 5. Security and privacy aspects
- 6. Discussion

Hannes Hartenstein and Ken Laberteaux, 3
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

Scope

- Networking-centric view to Vehicular Ad Hoc Networks
- Focus is on wireless local area networking techniques for communication between vehicles and between vehicles and roadside units
 - Not on Inter-Vehicle Communications (IVC) based on wide area cellular networks
- We do not look at location techniques
- We do not look at services nor at transmission techniques and details

Hannes Hartenstein and Ken Laberteaux,

Henato Lo Cigno 'Nomac

Agenda

1. Applications and recent projects

- 2. Mobility and radio channel incl. modeling and simulation
- 3. Communication technology and strategies incl. modeling and simulation
- 4. Architectural and application-specific issues
- 5. Security, privacy and incentives aspects
- 6. Discussion

Hannes Hartenstein and Ken Laberteaux, 8

Renato Lo Cigno 'Nomadic Communications' AA10

Active safety

[Graphics by S. Labitzke]

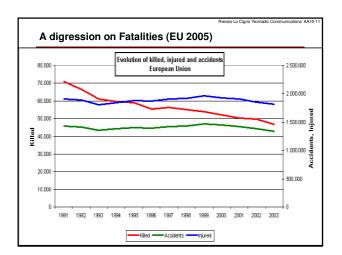
Applications and recent projects
 Applications

Hannes Hartenstein and Ken Laberteaux, 6
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

A digression on Fatalities (EU 2005) Main Causes and driving errors: • 95% of all road accidents involve some human error

- In 76% of the cases the human is solely to blame
- Misjudging, driving dynamics, weather (50%)
- Distraction (38%)
- 39% of passengers vehicles and 26% of trucks do not activate brakes before a collision
- Some 40% more do not brake effectively

• Underlying Causes:


- Alcohol
- Inexperience
- Tiredness

Road Accidents

- 41.600 fatalities
- 1.4 million accidents
- involving injury

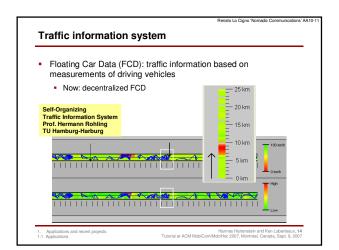
 2.0 million injuries

Hannes Hartenstein and Ken Laberteaux, 7 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

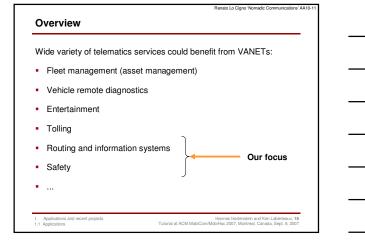
Cooperative-Driving or Info-Tainment

- The main "official" push for Vanets is safety/efficiency
- Industry (automotive) needs a revenue "golden fleece" to invest
- Industry (other) see a possible huge market for generic applications, from local info/ads to entertainment
- Technicians/scientists need to put it all together

Hannes Hartenstein and Ken Laberteaux, 9 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007


	_
Resto Lo Cigno Yomado Communications' AA10-11 Infrastructure and Equipment	
 The average car life is 8-10 years with many lasting 20 or more Cooperative driving requires a very high penetration, say > 50% 	
 so what The chosen technology will peack in about 20 years and be still there after 40 	
 This is a different "pace" wrt the communication marketplace 	
Hannes Hartenstein and Ken Laberteaux, 10 Tutorial at ACM MobiCom/MobiNez 2007, Mortreal, Canada, Sept. 9, 2007	
Renato Lo Cigno 'Nomado: Communications' AA10-11 Retrofitting	
Starting from the superflous Communications can be put on any car as an add-on	
feature Just like GPS navigation, most of the installed systems are not "embedded"	
 Building cooperative driving on top of add-on is not feasible, but safety is much more than CoDri and InfoTainment can be appealing 	
 Accidents warnings can be given to the driver, not to the breaks Dangerously small distances can trigger alarms (beware of too 	
many false alarms!)	
Hannes Harfenstein and Ken Laberteaux, 11 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007	
Renato Lo Cigno Younadic Communications' AA10-11 Working together and the missing leg	
We're missing the road management from the picture	
 Starting from a simple information delivery systems (cheap and incremental) can convince users of the utility of retro-fitting 	
 Add a communication AP every time a mobile message system is added/maintained 	

 Cooperative Driving ... will come by itself when times are mature


When the penetration is enough increment services with the safety goal

Hannes Hartenstein and Ken Laberteaux, 12 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

VSC ranking of safety-related applications 1. Traffic Signal Violation Warning Communication 2. Curve Speed Warning requirements: 3. Emergency Electronic Brake Lights Periodic 4. Pre-Crash Warning 100ms latency 150m range 5. Cooperative Forward Collision Warning 6. Left Turn Assistant Vehicle Safety 7. Lane Change Warning Communications Project – Final Report, DOT HS 810 591, April 2006 8. Stop Sign Movement Assistance

Renato La Cigno Nomado Communicatione' AA10-11 Roadside (commercial) services - Electronic payments - Drive-by info-fueling - DaimlerChrysler - Drive-thru internet - Work by Ott und Kutscher - Point of interest notifications - Location-based services - ... [Source: Network on Wheels project]

Renato Lo Cigno 'Nomadic Communications' AA10

Safety versus efficiency

- Target could be efficiency, still it might be highly safetycritical
- Convention on Road Traffic
 - Vienna, Nov. 8, 1968
 - By Economic Commission for Europe
 - "Every moving vehicle ... should have a driver." (Article 8 (1))
 - "Every driver shall at all times be able to control his vehicle ..." (Article 8 (5))
- Our focus: driver assistance

Applications and recent project
 Applications

Hannes Hartenstein and Ken Laberteaux, 1 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 200

Renato Lo Cigno Nornadio Communications ACTO-

Vehicle Infrastructure Integration

- Goals: reduce societal costs of crashes and traffic congestion
- Deployment decision by the end of 2008

 $Source: http://www.sigmobile.org/workshops/vanet2006/slides/Cops_VANET06.pdf$

Applications and recent project
 Projects

Hannes Hartenstein and Ken Laberteaux, Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 20 Renato Lo Cigno 'Nomadic Communications' AA10-

Agenda

- 1. Applications and recent projects
- 2. Mobility and radio channel incl. modeling and simulation

Basic building blocks for research

- 3. Communication technology and strategies incl. modeling and simulation
- 4. Architectural and application-specific issues
- 5. Security and privacy aspects
- 6. Discussion

Hannes Hartenstein and Ken Laberteaux, 19
Tutorial et ACM MehiCom/MehiHop 2007, Mantreal, Consella, Sont, 9, 2007

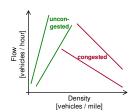
Renato Lo Cigno 'Nomadic Communications' AA10-

Vehicular traffic flow modeling

- More than 50 years of research
- Disciplines involved: civil engineering, physics
- Recommended overview paper (and reference used):

State-of-the-art of vehicular traffic flow modelling, S. P. Hoogendoorn, P. H. L. Bovy, Journal of Systems and Control Engineering, 215(4):283-304, August 2001, Special Issue on Road Traffic Modelling and Control

- Level-of-detail classification:
 - (Sub-) Microscopic models
 - Mesoscopic models
 - Macroscopic models

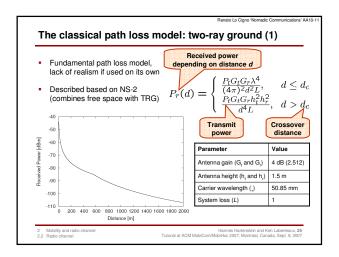

2 Mobility and radio channel

Hannes Hartenstein and Ken Laberteaux, 2

Renato Lo Cigno 'Nomadic Communications' AA10-

Fundamental terms in traffic flow theory

- Traffic density
 - Number of vehicles per km
- Traffic flow
 - Number of vehicles per hour passing a specific crosssection
- Average velocity
- Time headway
 - Distance in time of two successive vehicles



Flow-density relation 'Fundamental diagram'

2 Mobility and radio channel 2.1 Mobility Hannes Hartenstein and Ken Laberteaux, 21
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

Renato Lo Cigno Normado Communications' AA10-11 Characterization of traffic flow models	
Macroscopic models: Do not look to individual entities Feature of the aggregation Typical features: flow-rate, density, average velocity	
Mesoscopic models: Specify behavior on an individual level But do not trace individual vehicles Example: time-headway distribution	-
Microscopic models: Space-time behavior of vehicles and drivers Their interactions On individual level	
Examples: car-following models, cellular automaton approaches [Source: Hoogendorn, Bovy 2001, see previous slides]	
Mobility and radio channel Hannes Hartenstein and Ken Laberteaux, 22 Mobility Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007	
Renato Lo Cigno Normado Communications' AA10-11 Needed: accurate models of cities and freeways	
Need for models, simulation tool is not enough Topological data Vehicular traffic flow data	
 Example: city scenario Origin-destination pairs for vehicles, travel demand models 	
 Topological data Example: TIGER database (Topologically Integrated Geographic Encoding and Referecing) 	
Modeling mobility for vehicular ad hoc networks, A. K. Saha, D. B. Johnson, Proc. ACM VANET, 2004, p. 91-92	
 Validation, calibration takes time We need more calibrated models of cities etc. for public use 	
Mobility and radio channel Hannes Hartenstein and Ken Laberteaux, 23 Tutorial at ACM MobiCom/MobiHoz 2007, Montreal, Canada, Sept. 9, 2007	
Renato Lo Cigno Nomado Communications' AA10-11	
Radio channel characterization	
 'Classical' experimental set-up: Two cars in the desert Results look great 	
In reality:Strong environmental influence	
Typically, strong radio fluctuations	

2 Mobility and radio channel 2.2 Radio channel Hannes Hartenstein and Ken Laberteaux, 24
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

The classical path loss model: two-ray ground (2) Reception and interference models: Carrier Sense Threshold → Carrier sense range (CS) Reception Threshold → Communication range (CR) Capture Threshold 3 Mbps Parameter Value 6 Mbps data rate: Cs Reception Th. (RxTh) Capture Th. (CpTh) -92 dBm 7 dB 3 Mbps data rate: Reception Th. (RxTh) Capture Th. (CpTh) -95 dBm 4 dB Carrier Sense Th. (CSTh) -96 dBm -99 dBm

Renato Lo Cigno 'Nomadic Communications' AA10-

Probabilistic models

- More realistic: include fading or shadowing model
- Notion of CS range and communication range has to be adapted
 - Mean value → 'Intended CS/communication range'
- Influential paper:

Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks, M. Takai, J. Martin and R. Bagrodia, *Proc. ACM Int. Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc 2001)*, October 2001, pp. 87-94

- Log-normal shadowing (part of NS-2 release)
- Rayleigh and Ricean fading: modules for NS-2
 - http://www.ece.cmu.edu/~wireless
 - http://web.informatik.uni-bonn.de/IV/BoMoNet/ns2.htm

2	Mobility	and	radio	channel
22	Radio of	hann	iol I	

Hannes Hartenstein and Ken Laberteaux, 27
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

Renato Lo Cigno 'Nomadic Communications' AA10-1

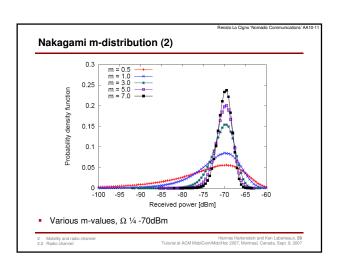
Nakagami m-distribution (1)

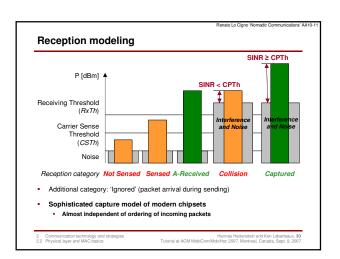
Empirical data and curve fitting by V. Taliwal et al. in 2004

Empirical determination of channel characteristics for DSRC vehicle-to-vehicle communication, Vikas Taliwal, Daniel Jiang, Heiko Mangold, Chi Chen, Raja Sengupta, ACM VANET 2004, p. 88

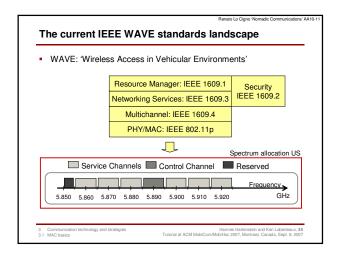
• Nakagami: original work

m-Distribution, a General Formula of Intensity Distribution of the Rapid Fading, M. Nakagami, in: Statistical Methods in Radio Wave Propagation, W.C. Homan, Ed. Oxford, England: Pergamon, 1960.


Nakagami m-distribution: two-parameter family


$$f_{amp}(x;m;-) = \frac{2m^m}{\mid (m)\mid^{-m}} x^{2m\mid \mid 1} exp(\mid \frac{m}{\mid} x^2); \quad m \; , \quad \frac{1}{2}$$

$$\begin{array}{c} \text{Fading} \\ \text{intensity} \end{array} \qquad \begin{array}{c} \text{Average} \\ \text{received power} \end{array}$$


2 Mobility and radio chann

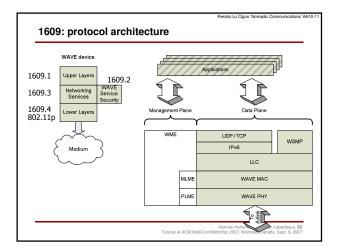
Hannes Hartenstein and Ken Laberteaux, 2

Renato Lo Cigno 'Nomadic Communications' AA10-1	
Agenda	
Applications and recent projects	
Mobility and radio channel incl. modeling and simulation	
3. Communication technology and strategies incl. modeling and simulation	
Architectural and application-specific issues	
5. Security and privacy aspects	
6. Discussion	
Hannes Harlenstein and Ken Laberteaux, 31 Tutorial at ACM McblCom/McbHcc 2007, Mothreat, Canada, Sept. 9, 2007	
Renato Lo Cigno Normadic Communications' AA10-1 Structure	11
3. Communication technology and strategies	
incl. modeling and simulation 1. IEEE 802.11p MAC basics	-
2. One-hop broadcasts ('beacons')	
Performance analysis of 802.11p Power control	
3. Repetition strategies 3. Multi-hop communication	-
Unicast position-based forwarding (PBF) Unicast contention-based forwarding (CBF)	
3. Information dissemination 4. Multi-channel operation	
Hannes Harfenstein and Ken Laberteaux, 32 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007	
Renato Lo Cigno Nomadic Communications' AA10-1	11
Standards	
 Frequency allocation (specific for IVS) is now agreed upon in the 5.8-5.9 GHz band 	
 Definitely short range (< 1000m range) Licenced to avoid too much interference Easy to make directional systems 	
PHY is derived from OFDM WLANs	
 MAC is mixed random/guaranteed access with priorities 	
Hannes Harfenstein and Ken Laberteaux, 33 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007	

IEEE P1609

- Wireless Access in Vehicular Environments (WAVE)
- IEEE P1609.1 Resource Manager
 - services and interfaces for resource management
 - Describes key components
 - Defines data flows and resources
 - Defines command message formats and data storage formats
 - Specifies the types of devices that may be supported by the On Board Unit (OBU)
- IEEE P1609.2 Security Services for Applications and Management Messages

 - Defines secure message formats and processing
 Defines the circumstances and purposes/contents for using secure message exchanges
 - Specify mandatory processing based for specific exchanges


Hannes Hartenstein and Ken Laberteaux, 35 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

IEEE P1609

- IEEE P1609.3 Networking Services
 - Network and transport layer services, including addressing and
 - Defines Wave Short Messages (WAVE-specific alternative to
 - Defines the Management Information Base (MIB) for the WAVE protocol stack
- IEEE P1609.4 Multi-Channel Operations
 - Enhancements to the IEEE 802.11 MAC to support WAVE operations

Hannes Hartenstein and Ken Laberteaux, 36 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

1609: system architecture Encompasses both CtC and ItCtl communications Defines also a subnet on the vehicle for info distribution and management OBU

IEEE 802.11p

- Define 802.11 modes for

 - Rapidly changing PHYVery short-duration communications exchanges
- Provide the minimum set of specifications to ensure interoperability
- Support transactions shorter (in time) than the minimum possible with infrastructure or ad hoc 802.11 networks
- Defines WAVE signaling and interface controlled by the MAC
- Describes functions and services required by WAVE-conformant stations

Hannes Hartenstein and Ken Laberteaux, 39
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

Renato Lo	Cigno	'Nomadic Communications'	AA10-1

Agenda

- 1. Applications and recent projects
- 2. Mobility and radio channel incl. modeling and simulation
- 3. Communication technology and strategies incl. modeling and simulation
- 4. Architectural and application-specific issues
- 5. Security and privacy aspects
- 6. Discussion

Hannes Hartenstein and Ken Laberteaux, 40 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

......

Structure

- 4. Architectural and application-specific issues
 - 1. System architecture
 - 2. Middleware
 - 3. Application centric performance evaluation
 - 4. Decision and control aspects

Hannes Hartenstein and Ken Laberteaux, 4

Renato Lo Cigno 'Nomadic Communications' AA10

WAVE protocol stack

WME LLC

MLME WAVE MAC Multi-Channel Operation

PLME WAVE PHY

- WAVE: Wireless Access in Vehicular Environments
- WSMP: Wave Short Message Protocol
- WME: Wave Management Entity

4 Architectural & application-specific issues 4.1 System architecture Hannes Hartenstein and Ken Laberteaux, 42 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

•			
•			
•			
•			

Paneta La Ciana 'Namadia Communicationa' AA10 1

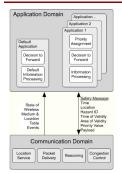
WAVE Short Message Protocol

WSM-WaveShortMessage.request

Parameters of primitive contain 'ChannelInfo':

- ChannelNumber
- Adaptable
- DataRate
- TxPwr_Level
- Permits applications to control these transmit parameters for each individual frame
- WSM-WaveShortMessage.indication

WSM header format:


1	1	1	1	1	4	2	variable
		Channel Number		TxPwr_ Level	PSI	WSM Length	WSM Data

4 Architectural & application-specific issues

Hannes Hartenstein and Ken Laberteaux, 43

Renato Lo Cigno 'Nomadic Communications' AA10-

Data packets versus information

- Balance between 'networking services' and applications?
- Existence of 'dumb' nodes
 - Forwarding of packets, no understanding of 'semantics'

System design for information dissemination in VANETs, M. Torrent Moreno, A. Festag, H. Hartenstein, Proc. 3rd Int. Workshop on Intelligent Transportation, Hamburg, Germany, 2006

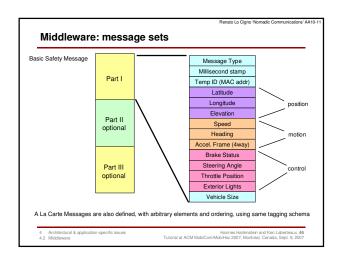
Architectural & application-specific issues
 System architecture

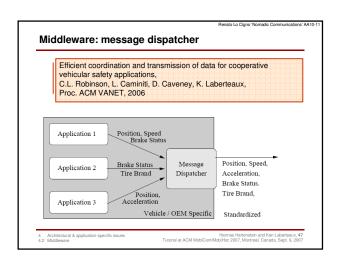
Hannes Hartenstein and Ken Laberteaux,

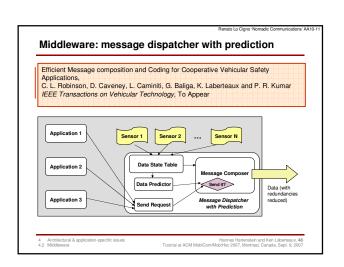
Renato Lo Cigno 'Nomadic Communications' AA10-1

Middleware: message sets

- SAE J2735 Dedicated Short Range Communications (DSRC)
 Message Set Dictionary (SAE Recommended Practice, Dec. 2006)
 - Goal: communication interoperability vehicle-vehicle and vehicle-infrastructure
 - Goal: support for innovation and product differentiation in applications
 - Therefore: standard, but flexible and extensible messages that are distinct from applications
 - More than 70 data elements: Acceleration to YawRate (e.g. anti-lock brake state, heading, latitude/longitude, rain sensor, vehicle length, wiper rate and status etc).

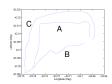

 | Name | DELWhickLatitude | DE
 - Messages composed of elements identified with light-weight tagging scheme


Name	DE_VehicleLatitude
Unique ID	70
Unit	microdegrees
Accuracy	LSB is 1 microdegree
Range	-900000000 to 900000000
Size	32bits
	The latitude position of the center
	of the vehicle, expressed in micro
Description	degrees and based on the WGS-84


Example: latitude element

Architectural & application-specific issues
 Middleware

Hannes Hartenstein and Ken Laberteaux, 45 Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

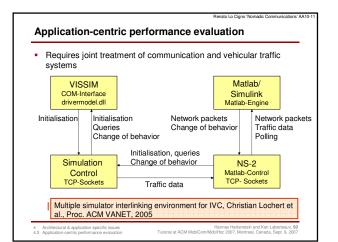


Renate Le Ciano 'Nemadia Communications' AA10

Middleware: message dispatcher with prediction

Data Set Collected-Ann Arbor, MI, USA

Parameter	Data Set A	Data Set B	Data Set C
Environment	Urban	Urban	Highway
Sample Freq.	5Hz	5Hz	5Hz
Duration	8min 24sec	10min 34sec	6min 17sec
Length	6.1km	7.6km	9.1km
# of Stops	2	2	0
# Turns	7	5	0



Data Element	E[error] at end of 200 msec.	Data rate of predicted data, with 0.25 Hz lower bound	Data rate of predicted data
Latitude (deg)	3.33 E-5	0.26	0.07
Longitude (deg)	2.77 E-5	0.27	0.10

With appropriate middleware design, the data-rate of safety messages may be much smaller than originally expected.

4 Architectural & application-specific issues

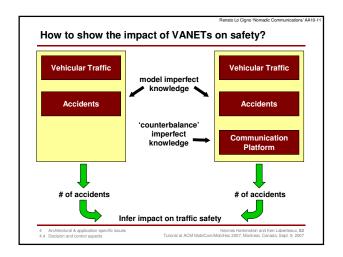
Hannes Hartenstein and Ken Laberteaux, 4

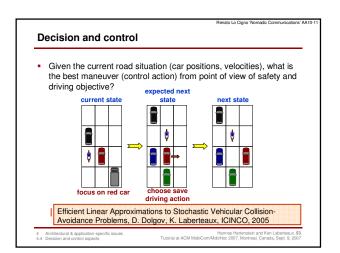
Renato Lo Cigno 'Nomadic Communications' AA10-1

Selection of other coupling approaches

An Integrated Vehicular and Network Simulator for Vehicular Ad-Hoc Networks, C. Gorgorin, V. Gradinescu, R. Diaconescu, V. Cristea, L. Iftode, 20th European Simulation and Modelling Conference, 2006

- A 'monolithic' design: vehicular and network simulator parts are built together in one (new) simulator framework
 - Tiger topology, Wiedemann-74 traffic flow model
 - Nice: fuel consumption and pollutant emission estimation modules included


Simulation of car-to-car messaging: Analyzing the impact on road traffic, S. Eichler, B. Ostermaier, C. Schroth, and T. Kosch, Proc. 13th IEEE MASCOTS'05, 2005.


- Nice overview on coupling approaches, principles and a proposal for a Carisma and NS-2 coupling
- TraNS: Traffic and network simulation environment developed by EPFL, combines SUMO and NS-2

4	Architectural & application-specific issues
43	Annlication-centric performance evaluation

Hannes Hartenstein and Ken Laberteaux, 51
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

,		
-		
-		

Renato Lo Cigno 'Nomadic Communications' AA10

Agenda

- 1. Applications and recent projects
- 2. Mobility and radio channel incl. modeling and simulation
- 3. Communication technology and strategies incl. modeling and simulation
- 4. Architectural and application-specific issues
- 5. Security and privacy aspects
- 6. Discussion

5 Security and privacy aspects

Hannes Hartenstein and Ken Laberteaux, 54
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

Renato	Lo	Cigno	'Nomadic	Communications'	AA10-

Why Security and Privacy

- Security to guarrantee
 - Integrity (of messages)
 - Identification (of users or devices)
 - Non-repudiation (of messages)
- Privacy to enforce
 - Users' protection (violations notification)
 - Anti-tracking (avoid positioning cars an track movements)

5 Security and privacy aspects 5.1 Security Basics

Hannes Hartenstein and Ken Laberteaux, 55
Tutorial at ACM MobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007

Agenda

- 1. Applications and recent projects
- 2. Mobility and radio channel incl. modeling and simulation
- 3. Communication technology and incl. modeling and simulation
- 4. Architectural and application-sp
- 5. Security and privacy aspects

6. Discussion

Where are we today?

- Dream of direct radio communication be
- Since the end of the 90's the ingredien 'reasonable' costs) are there
 - Triggered research in VANETs in the la
- What have we (as community) achieve
 - · Feasibility of VANETs has been shown
 - Basic building blocks (something to use are available: PHY/MAC

 - Communication strategies (beaconing, dissemination) based on repetitions, po
 - System architecture and middlewareSimulation methodology

Tutorial at ACM N

s	
d strategies	
pecific issues	
Hannes Hartenstein and Ken Laberteaux, 56 dobiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007	
Renato Lo Cigno 'Nomadic Communications' AA10-11	
petween vehicles has	
ts (WLAN, GPS at	
ast 7 to 10 years ed so far?	
e, improve, extend, or replace)	
event-driven messages, info wer control etc.	
nd challenges are waiting for us?	
Hannes Hartenstein and Ken Laberteaux, 57 ArbiCom/MobiHoc 2007, Montreal, Canada, Sept. 9, 2007	

Intelligent Transportation Society of America
nttp://www.itsa.org/
 CALM: Communications Architecture for Land Mobile environment
http://www.tc204wg16.de/
Car 2 Car Communication Consortium
http://www.car-to-car.org/
Hannes Hartenstein and Ken Laberteaux, 58 Tutorial at ACM MobiComMobiHoc 2007, Montreat, Canada, Sept. 9, 2007
Renato Lo Cigno "Nomadic Communications" AA10-11
-
White Paper submitted by the Commission on 12 September 2001: "European transport policy for 2010: time to decide"
White Paper submitted by the Commission on 12 September 2001: "European transport policy for 2010: time to decide" COM(201) 370 Safety: propose a strategy for accelerating the research, development, deployment and use of ICT-based intelligent active safety systems for improving road safety in Europe
White Paper submitted by the Commission on 12 September 2001: "European transport policy for 2010: time to decide" COM(2001) 370 Safety: propose a strategy for accelerating the research, development, deployment and use of ICT-based intelligent active safety systems for improving road safety in Europe Since 2002 http://ec.europa.eu/information_society/activities/esafety/index_en.htm
White Paper submitted by the Commission on 12 September 2001: "European transport policy for 2010: time to decide" COM/2011 370 Safety: propose a strategy for accelerating the research, development, deployment and use of ICT-based intelligent active safety systems for improving road safety in Europe Since 2002 Inter/ice suropa eu/information society/activities/esafety/index en.htm 12010 Intelligent Car Initiative: policy framework to guide stakeholder efforts
White Paper submitted by the Commission on 12 September 2001: "European transport policy for 2010: time to decide" COM(2001) \$70\$ Safety: propose a strategy for accelerating the research, development, deployment and use of ICT-based intelligent active safety systems for improving road safety in Europe Since 2002 http://ec.auropa.eu/information_society/activities/esafety/index_en.htm 12010 Intelligent Car Initiative: policy framework to guide

Renato Lo Cigno 'Nomadic Communications' AA10-11