Nomadic Communications
Labs

Alessandro Villani
avillani@science.unitn.it

Ad-Hoc
And
Wireless Mesh Network

Routing Protocol & Mesh Network

o Wireless mesh networks bring greater
flexibility, increased reliability, and
improved performance over conventional
wireless LANs

o The main characteristic of wireless mesh
networking is the communication between
nodes over multiple wireless hops on a
meshed network graph

A Mesh — Ad-hoc network

o Ad-Hoc can be meshed
onon single broadcast channel
omulti-hop require routing

Routing Protocol & Mesh Network

o Efficient routing protocols provide paths
through the wireless mesh and react to
dynamic changes in the topology, so that
mesh nodes can communicate with each
other even if they are not in direct wireless
range

o Intermediate nodes on the path will forward
the packets to the destination

Routing Protocol & Mesh Network

o IEEE created the 802.11s working group to
develop a standard for mesh network

o In the meantime there are a lot of network
protocol currently available. Some of them
are:
= AODV
= OLSR
= B.A-T.M.A.N.
= BABEL

o OLSR is the main candidate to be included
in 802.11s standard

Routing Protocol

o There are three type of routing protocols:

= Reactive: we search a path between nodes
when there is a data to send. No wasting of
network bandwidth, best suited for network
where the data path change very fast

= Proactive: actively establish and maintain data
path both if a data has to be sent or not. Lower
latency, but require a higher number of packets
to be exchanged

= Hybrid: the protocol use reactive and proactive
routing in different situation. The hybrid
protocols are more complex to implement.

Routing Protocol

o Lo Cigno will explain the algorithms and
how they works

o In our labs we will try to configure a testbed
with our laptop and play with the Ad-Hoc
wireless mesh network

OLSR

Routing Protocol: OLSR

o OLSR: Optimised Link State Routing

o OLSR is a routing protocol for mobile ad-hoc
networks

o Information are available at URL:

o OLSR is defined in the RFC 3626:

Routing Protocol: OLSR

o Proactive, link-state routing protocol

o Based on the notion of Dynamic MultiPoint
Relay (MPR)

o Each node N selects from its neighbors an
MPR(N) set such that all two-hop
neighbors of N are covered by (one-hop
neighbors) of MPR(N)

o The idea is to:
= Reduce flooding overhead
= Provide optimal flooding distances

Routing Protocol: OLSR

o As an examples:
= Left image: standard flooding

= Right image: only MPR nodes (light blue)
forward the messages

Routing Protocol: OLSR

o Look at the configuration files:
/etc/olsrd.conf
o Verify the configuration:
= Change the debug level
= Change the interface name
= Set the IP Version you plan to use (4)

Routing Protocol: OLSR

o To run OLSRD on our laptop, define a
script like the following:
#!/bin/sh
ifconfig ethl down

iwconfig ethl mode ad-hoc channel 11 essid
"TEST-OLSR"

ifconfig ethl up

ifconfig ethl 192.168.13.32 netmask
255.255.255.0 broadcast 192.168.13.255

/usr/sbin/olsrd -d 9
o Don‘t forget:

= Use different IP addresses on all the client of
your ad-hoc network

Routing Protocol: OLSR

o You should obtain something like:

06-02 00:57:55 on vernadsky

Routing Protocol: OLSR

BATMAN

Routing Protocol: BATMAN

o BATMAN: Better Approach To Mobile Ad hoc
Network

o BATMAN is a routing protocol for multi-hop
ad-hoc mesh networks
o Information are available at URL:

o An IETF draft of the protocol is available at
URL:

Routing Protocol: BATMAN

o Proactive routing protocol

o Decentralized knowledge of routing
information:
= No single node has the route to all destinations

= Each node only maintains the general direction
toward the destination and relays the data to
the best next-hop neighbor

Routing Protocol: BATMAN

o To establish the general direction toward a
destination:
= Better link will provide faster and more reliable
communication

= Every node periodically sends out broadcast
message (Originator Messages) to advertise its
existence

Routing Protocol: BATMAN

o Look at the configuration files:
/etc/default/batmand

o Verify the configuration:
= Change the debug level
= Change the interface name

Routing Protocol: BATMAN

o To run BATMAN on our laptop, define a
script like the following:
#!/bin/sh
ifconfig ethl down

iwconfig ethl mode ad-hoc channel 11 essid
"TEST-BATMAN"

ifconfig ethl up
ifconfig ethl 192.168.13.33 netmask
255.255.255.0 broadcast 192.168.13.255
batmand -d 4 ethl
o Don‘t forget:

= Use different IP addresses on all the client of
your ad-hoc network

Routing Protocol: BATMAN

O You should obtain something like:

Interface ac
Using interfac
B.AT.M

debug leve:
i
t
t

cket (): ethl

0] Received B

£ packet via NB:
192.168.13.33, via old

0G: 192.168.13.33,
ew originator: 192

eqno: old 0, new 5
ew last-hop neighbour of originator
orig = 192.168.13.33 neigh = 192.168.13.33 => own_bcast = 0,
real recv = 0, local tq: 0, asym penalty: 0, total tq: 0

880] schedule_forward_packet ()

880] forwarding: tgorig: 0, tgavg: 0, tq forw: 0, ttl orig:

9, ttl_forw: 49

t

t

[880] Forward packet: rebroadcast neighbour packet with direct link flag

t 880]

t 950]

i 960] Forwarding packet (originator 192.168.13.33, seqno 5, T0 0, TTL 49, IDF on) on
interface ethl

i 9601

ket via NB: 192.
2.168.13.33, seano
ket: received my own broadcast (sender:

2 (from 0G:

P
2

[10901

Routing Protocol: BATMAN

i 1100] Sending own packet (originator 192.1
on interface ethl

50, IDF off)

1100] schedule_ow et(): ethl

i

[1100] count own beast (schedule_own_packet): old = 0, [1100] new = 0
t 1100] DEBUG

t 1100] Forward

t 1100] 192, 32 at 2171

t 1100 Originator

[1110] originator (#/255) Nexthop [outgoingIF]: Potential nexthops
t 1110] No batman nodes in range ...

t 1110] END DEBUG

i 1110

[

1110]
192.168.13.32, via old

i 1110] Drop packet: received my own

[1110

[1210] R 2 (from 0G:
192.168.13.

1210 ©
1210] Drop p
12101

3.33, IF: eth
, tq 255, TTL

Routing Protocol: BATMAN

1790] update_oric

ing originator entr
1790] Updating existing last-hop nei
1790] update_routes ()

1790] Route to 192.168.13.33 via 192.168.1
1790] Adding new route

nbour of originator

1790] Adding route to 192.168.13.33 via 0.0.0.0 (table 86 - ethl)

1790] et():

1790] : 12, tqavg: 12,

1790] Forward packet: rebroadcast neighbour packet with direct
17901

1860]

1870] Forwarding
interface ethl
i 1870]

cket (originator 192

ceived BATMAN 192.1;
192.168.13.33, via old 0G: 192.168.13.33, seqno 6, tq 10, TTL 43,
1870] Drop packet: received my own broadcast (sender: 192.168.13.

ket via NB: 192.168.13.32, IF: ethl 192.1

v s,

y of received packet,

IDF on) on

32 (from 06G:

i

[18701

[2170]

[2170] DEBUG

[2170] Forward list

t 2170] 192.168.13.32 at 2171

t 2170] Originator list

[2170] originator (#/255) Nexthop [outgoingIF]: Potential nexthops
t 2170 192.168. (12) 192.168.13.33 ethl], last_valid: 1790:
t 2170] 192.168.13.33 (12)

t 2170] END DEBUG

t 2170]

Routing Protocol: BATMAN

i 2180]
[2190] Sending own packet (originator 192.168.
on interface ethl

3.32, seqno 2,

[2190] schedule_own_packet (): ethl

[2190] count own beast (schedule_own_packet): old = 1, [2190
t 2190]

t 2190] R 6 F: ethl 192.

ived BATMAN packet v 32, T
.168.13.32, via old 0G: tq 255, TTL 50, V.
2190] Drop packet: received my own broadcast (sender: 192.168.

ia NB: 192.168.
192.168.13.32, seqno 2,

AN packet via NB: 192.168.

2280] count own beast (is_my_orig): old

. 2280] new = 2
2280] Drop packet: originator packet from myself (via neighbour)

33, TF: ethl 192
tq 255, TTL 50,

acket via NB: 192.168.
192.168.13.33, sedno
g last_seqno 7

2870] updati:
2870] bidirectiona
real recv = 2, local

old 6, new
orig = 192.168.13.33 neigh = 192.168.13.33
255, asym_penalty: 24, total tq: 24

2870] Updating existing last-hop neighbour of originator
2870] update_routes ()

2870] schedule_forward_packet ()¢

2870] forwarding: tq orig: 24, tqavg: 18, tq for
2870] Forward packet: rebroadcast neighbour
2870]

cket with direct

: 192.168.13.32, seqno 2, tg 10, TTL 49, V 5, IDF 1)

50, IDF off)

32 (from 0G:
0

32 (from 0G:

32 (from 0G:
0

=> oun_bcast = 2,

2870] update_originator(): Searching and updating originator entry of received packet,

BABEL

Routing Protocol: BABEL

o BABEL is proactive routing protocol

o It is based on a loop-free Distance Vector
Algorithm
o Information are available at URL:

o An IETF draft of the protocol is available at
URL:

Routing Protocol: BABEL

o Babel uses history-sensitive route
selection:
= If there are more than one route, the selected

one is the already established path

o Babel execute a reactive update and force
a request for routing information when it
detects a link failure from one of its
neighbors

Routing Protocol: BABEL

o Look at the configuration files:
/etc/babeld.conf

o Verify the configuration, put something
like:

interface ethl wired false

Routing Protocol: BABEL

o To run BABEL on our laptop, define a
script like the following:
#!/bin/sh

iwconfig ethl mode ad-hoc channel 11 essid
“TEST-BABEL"

ifconfig ethl up

ifconfig ethl 192.168.13.32 netmask
255.255.255.0 broadcast 192.168.13.255
babeld -d 5 ethl

o Don‘t forget:

= Use different IP addresses on all the client of
your ad-hoc network

Routing Protocol: BABEL

O You should obtain something like:

rk eth:

Adding net
t 21

Netlink messags , [multi] (msg "o,

Netlink m o1 [multi , [malti] (msg found address on interface ethl(3):
£e80::213:coff: fed9:4952

",

Netlink message: [multi] (done)

sending hello 27317 (400) to ethl.
sending request to ethl for any.
Noticed IPv4 change for

Sending self update to e
Sending update to ethl for any.

Checking kernel routes.

Netlink message: [multi] (m found address on interface lo(l
" 1), [multi] (msg -> "foun ress on interface ethl(3): 192.
"1,

Netlink message: [multi] (msg -> "found address on interface lo(l
" 1), [(multi] (msg -> "" 0),

Netlink message: [multi] (done)

, [malti
, [multi

) [multi] (msg -> " 0), [multi]
, [multi] (msg -> "% 0),

Routing Protocol: BABEL

Netlink message: [multi] (done)
Netlink message: [multi] (msg
metric: 0 if: ethl (proto:
[multi] (msg -
0), [multi] (msg

Netlink message: [multi] (done)

(flushing 12 buffered bytes on ethl)

Sending hello 27318 (400) to ethl.
(flushing 20 buffered bytes on ethl)

Sending hello 27319 (400) to ethl.

Sending self update to ethl.

Sending update to ethl for 192.168.13.32/32.
(flushing 1 buffered updaf

sending request to eth
(flushing 60

Entering main

Creating neighl
Sending hello
Sending ihu 65535 on ethl to £e80:
Received hello 13577 (400) from fel
(flushing 24 buffered bytes on ethl)
Sending hello 27321 (400) to ethl.
sending ihu 1023 on ethl to fes0
Received ihu 65535 (1200) from fes

Routing Protocol: BABEL

192.168.13.33/32 metric 2042 refmet id 0;
ethl neigh £eB0::224:d6ff:fe7l:a’ed nexthop 1

The Report

The report

o Setup an Ad-Hoc network with 2/3/4/...
laptops

o Test at least two of the Multi-Hop routing
protocol

o Test the throughput using netperf/iperf and
using ping to verify the number of hop
= Try to setup a testbed with 1, 2, 3, ... hops

= Verify the bandwidth for all the possible couple
of destination (1, 2, 3, ... hops)

The report

o Optional:

= Evaluate the ratio between 1 hop and 2/3/...
hops throughput obtained in the previous test.

= Run the previous test changing the rate of the
wireless card involved into the test.

= Evaluate again the ratio between 1 hop and
2/3/... hops throughput.

= There is any difference?

The report

o Optional:

= Run a 2 hops test with just 3 laptops

= Run the same test as before, using 4 laptops
(you have two laptops available ad intermediate
node)

= There is any difference in the performance? How
many times the routes changes during the
second test?

The report

o Optional:
= In a 2/3 hop scenario stop one of the node
involved in the test and verify how long it takes
to find the new route
o Optional:
= Implement the same topology don't using

iptables but moving the laptops around the
buildng. There is any changes in the throughput?

The report

o An interesting starting point:
= M. Abolhasan, B. Hagelstein, J. C.-P. Wang.

The report

o When you assign an IP address to the
wireless interface, Linux insert a default
route for the corresponding network:

mylaptop> sudo ifconfig eth3 192.168.10.100

mylaptop> route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.10.0 0.0.0.0 255.255.255.0 u 0 eth3

o After the configuration of the wireless,
remove this route, to assure the correct
behavior of the routing protocols:

mylaptop> sudo route del -net 192.168.10.0 netmask 255.255.255.0

The report

o Given 3 nodes: A, B, C

o Using OSLR, we want to force A to

communicate with C going through B
o On laptop A:

iptable -A INPUT -s X_.y,.Z,.W, -P UDP —-source-port 698 —j DROP
o On laptop C:

iptable -A INPUT -s Xx,.y,.Z,.w, -p UDP —-source-port 698 —j DROP
o Other solution:

iptable -A INPUT -m mac —-mac-source A°B°:C°DS:E°FS:G°H°:ISLC:M°NC -p UDP —--

source-port 698 —-j DROP

iptable -A INPUT -m mac --mac-source A°B*:C°D®:E°F®:G°H*:I°L°:M°N® -p UDP --—
source-port 698 —-j DROP

The report

o Given 3 nodes: A, B, C

o Using BATMAN, we want to force A to
communicate with C going through B

o On laptop A:

iptable -A INPUT -s x_.y,.z..w, -p UDP --source-port 1966 —-j DROP

o On laptop C:

iptable -A INPUT -s x,.y,.z,.w, -p UDP --source-port 1966 —-j DROP

o Other solution:
iptable -A INPUT -m mac --mac-source A°B®:C°D¢: EFC: GSHC: I°LS : M°NC -p UDP —-
source-port 1966 —3j DROP
iptable -A INPUT -m mac --mac-source A°B*:C°D®:E°F®:G°H*:I°L°:M°N® -p UDP --—
source-port 1966 —3j DROP

The report

o To drop/reject packets (so we force the use
of a multi-hop path):
iptable -A INPUT -m mac --mac-source AA’:B!B0:C!C°:D'D°:E'E°:F'F° -j DROP

o To accept packets:

iptable -A INPUT -m mac —-mac-source A'A°:B!B°:C!C°:D!D°:E'E°:F'F° -j ACCEPT

o To clear the iptables:

iptable -F

