AP Management and Handover support

CapWap and 802.11f

Renato Lo Cigno – Alessandro Villani
www.disi.unitn.it/locigno/didattica/NC/

ESS and Micro-mobility

- A collection of coordinated IBSS forms an ESS
- The APs in the same ISS can broadcast the same SSID

- As far as they are on the same LAN mobility between APs is allowed seamlessly (nearly)
AP Coordination (1)

- How to position APs?
- How to assign them channels and power level?
- What happens if I add/remove an AP?
- How fast is the re-association to a new AP if I'm roaming the area?

0.1s, 1s, 10s

AP Coordination (2)

- Centralized management?
- Distributed coordination?
- What layer (Ethernet or IP)?
- What functionalities?
- Integration with user management?
- What about resources?
- Can we balance their use?

IEEE vs. IETF

- Two main proposals for standardization of an Inter Access Points Protocol - IAPP
- One in IEEE: 802.11f (already standard, ... not much implemented; it mainly supports coordinated handovers, 802.11r (resource management), 802.11k (fast handover for vehicular applications)
- One in IETF: capwap (Control And Provisioning of Wireless Access Points), not yet definitive (RFCs 4118, 4565, 4564, 3990, plus drafts), omni-comprehensive, not much focused on handovers
- Proprietary solutions (Cisco, Avaya, ...
Scope & Goals

• Main (unique??) goal is enabling and simplifying the mobility between APs within the same ESS

IEEE 802.11f

• Recommendation to implement an Inter-Access Point Protocol (IAPP) over a Distribution System (DS) possibly wireless
• Not much used, also because of limited functionalities
• Standard available @
Realization & Implementation

- IAPP is an application level protocol
- Runs directly on ethernet multicast or on IP multicast, obviously enclosed within the DS
- The standard provides primitives for handover only
- Requires the presence of a Radius server for management purposes
- APs should be registered on the Radius server
- Uses standard MIBs for accessing managing the AP data

Some more stuff...

- IAPP is not a routing protocol, and assumes a 802-based DS
- IAPP is not concerned with user data delivery
- No address management is considered, STA must have/obtain valid addresses
- May keep a table of physically adjacent APs to support handovers and do load balancing
- If IAPP is used all APs with the same SSID on the same DS are part of the same ES

IEEE 802.11f: primitives (examples)

- IAPP-INITIATE/ADD/TERMINATE: create an ESS, add a node (1 AP) to it, terminate one node
- IAPP-MOVE.request/indication(STA, AP1): indicates on the multicast group that STA re-associated with AP1
- APP-MOVE.response/confirm(STA, AP1, AP2): transmit all information relevant to STA from the old association AP2 to the new association AP1
Example: IEEE 802.11f on AP Avaya

Frame 8706 (87 bytes on wire, 87 bytes captured)
Ethernet II, Src: 00:02:2d:48:4d:47, Dst: 01:00:5e:00:01:4c
Internet Protocol, Src Addr: 172.31.194.21, Dst Addr: 224.0.1.76
User Datagram Protocol, Src Port: 2313 (2313), Dst Port: 2313 (2313)
Inter-Access-Point Protocol
Version: 1
Type: Announce Request (0)
Protocol data units
BSSID(1) Value: 00:02:2d:8a:44:fe
Capabilities(4) Value: 0f (WEP)
PHY Type(16) Value: DSSS
Regulatory Domain(17) Value: ETSI (Europe)
Radio Channel(18) Value: 7
Beacon Interval(19) Value: 100 Kus
Network Name(0) Value: "WILMA\000"

Example: IEEE 802.11f on AP Avaya

Frame 607 (83 bytes on wire, 83 bytes captured)
Ethernet II, Src: 00:02:2d:47:4a:c5, Dst: 01:00:5e:00:01:4c
Internet Protocol, Src Addr: 172.31.194.25, Dst Addr: 224.0.1.76
User Datagram Protocol, Src Port: 2313 (2313), Dst Port: 2313 (2313)
Inter-Access-Point Protocol
Version: 1
Type: Announce Request (0)
Protocol data units
BSSID(1) Value: 00:20:a6:50:da:ca
Capabilities(4) Value: 66 (ForwardingWEP)
PHY Type(16) Value: Unknown
Regulatory Domain(17) Value: ETSI (Europe)
Radio Channel(18) Value: 13
Beacon Interval(19) Value: 100 Kus
Network Name(0) Value: "WILMA\000"

CapWap
capwap basics

- Not alternative to any 802.11 standard/proposal
- Takes a "wide-network (or network-wide?)" perspective w.r.t. the "local-network" perspective of 802
- Indeed, in the end, it is alternative to 802.11f
- Starts providing an interesting classification of different WLAN solutions all supported by 802.11

capwap taxonomy

- AP used as a generic, legacy term
- WTP - Wireless Termination Point: A point of wireless access to the network
 - may or may not implement all APs functionalities
 - if not is also known as "thin-AP"
- AC - Access Controller: centralized point of control if many WTPs are jointly controlled by a back-end unit

capwap functions

- RF monitoring
 - radar detection
 - noise and interference detection
 - measurement
- RF configuration
 - for retransmission
 - channel selection/assignment
 - transmission power adjustment
- WTP configuration
- WTP firmware loading (e.g. granting network wide consistency)
- Network-wide STA state information
 - information for value-added services
 - mobility and load balancing
 - ...
- Mutual authentication between network entities
WLAN arch: autonomous

- Traditional WLAN architecture (a WTP is an AP as we know and use every day)
- Each WTP is a single physical device
- Implements all the 802.11 services,
- Configured and controlled individually
- Can be monitored and managed via typical network management protocols like SNMP
- Such WTPs are sometimes referred to as "Fat APs" or "Standalone APs"

capwap WLAN arch: centralized

- Hierarchical architecture
- One or more Access Controllers (ACs) manage a large number of WTPs
- AC can be the aggregation point for the data plane
- AC is often co-located with an L2 bridge (Access Bridge), a switch, or an L3 router (Access Router)
- Much better manageability for large scale networks
- IEEE 802.11 functions and CAPWAP control functions are provided by the WTP devices and the AC together
- The WTPs may no longer fully implement 802.11 functions
- WTPs are sometimes called "light weight" or "thin APs"
capwap centralized: protocol view

- Interconnection can be L3, L2 or even direct physical connection
- AC can be distributed over several physical devices
- Can support 3 different protocol architectures

802.11 MAC
802.11 PHY
WTP

“local MAC”
“split MAC”
“remote MAC”

capwap centralized: AC-WTP Interface

- Discovery: The WTPs discover the AC with which they will be bound to and controlled by
- Authentication: WTPs must authenticate with AC (and possibly vice-versa)
- WTP Association: WTP registers with the AC
- Firmware Download: WTP pull or AC push the WTPs firmware
- Control Channel Establishment: The WTP establishes an IP tunnel with the AC
- Configuration Download: AC push configuration parameters to the WTP

capwap WLAN arch: distributed

- Wireless nodes can form a distributed network among themselves, via wired or wireless media
- A wireless mesh network is one example
- Some of these nodes may have wired Ethernet connections acting as gateways to the external network
- Mesh Networks are a “chapter” by themselves in our course, due to the interesting applications and routing problems
capwap WLAN arch: distributed

- APs or mesh nodes are peers
- No centralized management
- Service support model??
- Interesting IAPP protocol issues and interesting distributed algorithms issues

Wireless Meshes
- Can solve problems of remote area coverage
- Can extend, improve, make resilient Internet Access

Capwap Protocol (1)

- Conceived for the centralized architecture
 - "local" and "split" MAC only
- Runs on top of IP
 - independent from radio technology
 - "bindings" required for technology mapping
- Deals with both Data and Control communications
 - WTP are not independent
 - All traffic is centralized on the AC
Capwap Protocol (2)

- Its definition for 802.11 includes STAs, though they don’t need to implement capwap
- Wireless frames are managed by the AC
 - Local MAC implied bridging at WTP
 - Split MAC details still undefined

Capwap Protocol Goals

- Centralize authentication and policy enforcement
 - AC does bridging, forwarding, encryption
 - Reduced costs for WTP and higher efficiency
 - WTP can be easily substituted for technology improvements
- Relieve WTP from higher protocol processing
 - Light, low cost WTPs
- Define a generic encapsulation and transport mechanism independent from technology
 - Can be applied to 802.15, 802.16, etc.

Capwap Transport

- UDP-like encapsulation
- Builds on top of DTLS (Datagram Transport Layer Security)
 - Not yet widely deployed
 - Cryptographic layer for connectionless services
- Establish a session on WTP connection to the AC
 - Authentication
 - Connection
 - Operation (indefinite, until the WTP is on)
Sample Session

WTP

Discover Request (opt.)

Discover Response (opt.)

ClientHello

ClientHello(cookie)

HelloVerifyReq(cookie)

HelloVerifyRes(cookie)

ServerHello; Certificate; ServerHelloDone

exchange certificate, key, setup ciphered channel

(DTLS session is established at this point)

Sample Session (cont.)

WTP

Join Request

Join Response

Configure Request

Configure Response

Event (Echo) Request/Response

Event (Echo) Request/Response

enter RUN state

repeat for all session duration

DTLS close, session teardown, reset, ...
