
Advanced Networking

Renato Lo Cigno
Renato.LoCigno@disi.unitn.it - Tel: 2026

Csaba Kiraly, Leonardo Maccari, Luca Baldesi
(help with projects & Seminars)

Dipartimento di Ingegneria e Scienza dell’Informazione

Homepage:
disi.unitn.it/locigno/ -> teching duties

What do you find on the web site

•  Exam Rules
•  Exam Details ... should be on ESSE3, but ...
•  Generic (useful) information
•  Teaching Material: normally posted at least the day

before the lesson
•  Additional Material and links
•  News, Bulletin, How to find and meet me, etc.
•  ...

The web site is work in progress and updated frequently, so
please drop by frequently and don’t blame ME if you did’t

read the last news J

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 2

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 3

Program
•  Course Perspective

–  what do we learn and what we do not
–  are there other “networks”

•  Reharsal of basics
–  Internet and TCP/IP
–  THE network? or YetAnother network
–  IP
–  UDP/TCP

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 4

Program
•  IP and routing

–  OSPF and link-state protocols
•  Intra AS routing
•  performance driven routing

–  BGP and policy-based protocols
•  External routing
•  Cost (economical!) based routing

–  Global routing and Internet topology
•  How things look and works end-to-end

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 5

Program
•  Multicast

–  Abstract multicasting
–  Multicast groups and addresses
–  Internet and multicast: IGMP
–  Multicast routing
–  Application level multicast

•  why it’s absurd ...
•  ... why it works!!!

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 6

Program
•  Network congestion

–  Network load and stability
–  Call Admission Control
–  Reactive congestion control

•  Closed-loop systems
•  Implicit/Explicit
•  Forward
•  Backward

–  TCP
•  How it really works

–  TCP stabilization methods: mith and reality
•  RED, RIO, ...

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 7

Program
•  Internet multimedia communications

–  Voice and Video services on packet-based networks
–  Transport: RTP/RTCP
–  SIP standard
–  H.323 standard
–  Skype and P2P approaches

–  IP TV
•  VoD/Broadcast/Live
•  Traditional approach
•  P2P systems

•  Recalling known topics:

- Internet
- IP
- UDP/TCP

Acknowledment:
The following slides are based on the slides developed by
J.Kurose and K.Ross to accompany their book “Computer Networks:
A Top Down Approach Featuring the Internet” by Wiley edts.

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 9

Internet

What we see:
•  Services
•  Applications we use
•  Some “application

level” protocols
•  Throughput
•  Losses
•  Delay (sometimes)
•  Delay Jitter (if

we’re really skilled!)

What is it:
•  A collection of protocols
•  Mainly centered around two

centerpieces:
–  IP (network layer)
–  UDP/TCP (transport layer)

•  Does not mandate a physical
medium or format

•  Does not mandate or limit the
services/applications above
(integrates services)

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 10

IP: The Network Layer

Goals:
•  recall principles

behind network layer
services:
–  routing (path

selection)
–  dealing with scale
–  how a router works

•  instantiation and
implementation in
the Internet

Overview:
•  network layer services
•  routing principle: path

selection
•  IP
•  Internet routing

protocols reliable
transfer
–  intra-domain
–  inter-domain

•  what’s inside a router?

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 11

Network layer functions
•  transport packet from

sending to receiving hosts
•  network layer protocols in

every host, router

three important functions:
•  path determination: route

taken by packets from source
to dest. Routing algorithms

•  switching: move packets from
router’s input to appropriate
router output

•  call setup: some network
architectures require router
call setup along path before
data flows

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 12

Network service model

Q: What service model
for “channel”
transporting packets
from sender to
receiver?

•  guaranteed bandwidth?
•  preservation of inter-packet

timing (no jitter)?
•  loss-free delivery?
•  in-order delivery?
•  congestion feedback to

sender?

? ? ?

virtual circuit
or

datagram?

The most important
 abstraction provided

by network layer:

se
rv

ic
e

ab
st

ra
ct

io
n

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 13

Virtual circuits

•  call setup, teardown for each call before data can flow
•  each packet carries VC identifier (not destination host OD)
•  every router on source-dest path s maintain “state” for each

passing connection
–  transport-layer connection only involved two end systems

•  link, router resources (bandwidth, buffers) may be allocated to VC
–  to get circuit-like perf.

“source-to-dest path behaves much like telephone
circuit”
–  performance-wise
–  network actions along source-to-dest path

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 14

Virtual circuits: signaling protocols

•  used to setup, maintain teardown VC
•  used in ATM, frame-relay, X.25
•  not used in today’s Internet

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Initiate call 2. incoming call
3. Accept call 4. Call connected

5. Data flow begins 6. Receive data

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 15

Datagram networks: the Internet model

•  no call setup at network layer
•  routers: no state about end-to-end connections

–  no network-level concept of “connection”
•  packets typically routed using destination host ID

–  packets between same source-dest pair may take
different paths

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Send data 2. Receive data

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 16

Routing

Graph abstraction for
routing algorithms:

•  graph nodes are
routers

•  graph edges are
physical links
–  link cost: delay, $ cost,

or congestion level

Goal: determine “good” path
(sequence of routers) thru

network from source to dest.

Routing protocol

A

E D

C B

F
2

2
1 3

1

1
2

5
3

5

•  “good” path:
–  typically means minimum

cost path
–  other def’s possible

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 17

Routing Algorithm classification

Global or decentralized
information?

Global:
•  all routers have complete

topology, link cost info
•  “link state” algorithms
Decentralized:
•  router knows physically-

connected neighbors, link
costs to neighbors

•  iterative process of
computation, exchange of
info with neighbors

•  “distance vector”
algorithms

Static or dynamic?
Static:
•  routes change slowly over

time
Dynamic:
•  routes change more quickly

–  periodic update
–  in response to link cost

changes

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 18

A Link-State Routing Algorithm

Dijkstra’s algorithm
•  net topology, link costs known

to all nodes
–  accomplished via “link state

broadcast”
–  all nodes have same info

•  computes least cost paths from
one node (‘source”) to all other
nodes
–  gives routing table for that

node
•  iterative: after k iterations,

know least cost path to k
dest.’s

Notation:
•  c(i,j): link cost from node i to j.

cost infinite if not direct
neighbors

•  D(v): current value of cost of
path from source to dest. V

•  p(v): predecessor node along
path from source to v, that is
next v

•  N: set of nodes whose least
cost path definitively known

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 19

Dijsktra’s Algorithm

1 Initialization:
2 N = {A}
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v)
6 else D(v) = infty
7
8 Loop
9 find w not in N such that D(w) is a minimum
10 add w to N
11 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 20

Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

start N
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

A

E D

C B

F
2

2
1 3

1

1
2

5
3

5

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 21

Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes
•  each iteration: need to check all nodes, w, not in N
•  n*(n+1)/2 comparisons: O(n**2)
•  more efficient implementations possible: O(nlogn)
Oscillations possible:
•  e.g., link cost = amount of carried traffic

A
D

C
B

1 1+e

e 0

e
1 1

0 0
A

D
C

B
2+e 0

0 0
1+e 1

A
D

C
B

0 2+e

1+e 1
0 0

A
D

C
B

2+e 0

e 0
1+e 1

initially … recompute
routing

… recompute … recompute

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 22

Distance Vector Routing Algorithm

iterative:
•  continues until no

nodes exchange info.
•  self-terminating: no

“signal” to stop
asynchronous:
•  nodes need not

exchange info/iterate
in lock step!

distributed:
•  each node

communicates only with
directly-attached
neighbors

Distance Table data structure
•  each node has its own
•  row for each possible destination
•  column for each directly-

attached neighbor to node
•  example: in node X, for dest. Y

via neighbor Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min {D (Y,w)} Z
w

=

=

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 23

Distance Table: example

A

E D

C B
7

8
1

2

1

2
D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E cost to destination via

de
st

in
at

io
n

D (C,D)
E

c(E,D) + min {D (C,w)} D
w =

= 2+2 = 4

D (A,D)
E

c(E,D) + min {D (A,w)} D
w =

= 2+3 = 5

D (A,B)
E

c(E,B) + min {D (A,w)} B
w =

= 8+6 = 14

loop!

loop!

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 24

Distance table gives routing table

D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E cost to destination via

de
st

in
at

io
n

A

B

C

D

A,1

D,5

D,4

D,4

Outgoing link
to use, cost

de
st

in
at

io
n

Distance table Routing table

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 25

Distance Vector Routing: overview

Iterative, asynchronous:
each local iteration caused
by:

•  local link cost change
•  message from neighbor: its

least cost path change
from neighbor

Distributed:
•  each node notifies

neighbors only when its
least cost path to any
destination changes
–  neighbors then notify

their neighbors if
necessary

wait for (change in local link
cost of msg from neighbor)

recompute distance table

if least cost path to any dest
has changed, notify
neighbors

Each node:

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 26

Distance Vector Algorithm:

1 Initialization:
2 for all adjacent nodes v:
3 D (*,v) = infty /* the * operator means "for all rows" */
4 D (v,v) = c(X,v)
5 for all destinations, y
6 send min D (y,w) to each neighbor /* w over all X's neighbors */

X
X

X
w

At all nodes, X:

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 27

Distance Vector Algorithm (cont.):
8 loop
9 wait (until I see a link cost change to neighbor V
10 or until I receive update from neighbor V)
11
12 if (c(X,V) changes by d)
13 /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */
15 for all destinations y: D (y,V) = D (y,V) + d
16
17 else if (update received from V wrt destination Y)
18 /* shortest path from V to some Y has changed */
19 /* V has sent a new value for its min DV(Y,w) */
20 /* call this received new value is "newval" */
21 for the single destination y: D (Y,V) = c(X,V) + newval
22
23 if we have a new min D (Y,w)for any destination Y
24 send new value of min D (Y,w) to all neighbors
25
26 forever

w

X X

X
X

X

w
w

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 28

Distance Vector Algorithm: example

X Z
7 2

1

Y

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 29

Distance Vector Algorithm: example

X Z
7 2

1

Y

D (Y,Z)
X c(X,Z) + min {D (Y,w)} w=

= 7+1 = 8

Z

D (Z,Y)
X c(X,Y) + min {D (Z,w)} w=

= 2+1 = 3

Y

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 30

Distance Vector: link cost changes

Link cost changes:
•  node detects local link cost change
•  updates distance table (line 15)
•  if cost change in least cost path,

notify neighbors (lines 23,24)
X Z

1 4

50

Y
1

algorithm
terminates

“good
news
travels
fast”

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 31

Distance Vector: link cost changes

Link cost changes:
•  good news travels fast
•  bad news travels slow -

“count to infinity” problem!
X Z

1 4

50

Y
60

algorithm
continues

on!

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 32

Distance Vector: poisoned reverse

If Z routes through Y to get to X :
•  Z tells Y its (Z’s) distance to X is

infinite (so Y won’t route to X via Z)
•  will this completely solve count to

infinity problem?

X Z
1 4

50

Y
60

algorithm
terminates

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 33

Comparison of LS and DV algorithms

Message complexity
•  LS: with n nodes, E links,

O(nE) msgs sent each
•  DV: exchange between

neighbors only
–  convergence time varies

Speed of Convergence
•  LS: O(n**2) algorithm

requires O(nE) msgs
–  may have oscillations

•  DV: convergence time varies
–  may be routing loops
–  count-to-infinity problem

Robustness: what happens
if router malfunctions?

LS:
–  node can advertise

incorrect link cost
–  each node computes only

its own table
DV:

–  DV node can advertise
incorrect path cost

–  each node’s table used
by others

•  error propagate thru
network

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 34

The Internet Network layer

routing
table

Host, router network layer functions:

Routing protocols
• path selection
• RIP, OSPF, BGP

IP protocol
• addressing conventions
• datagram format
• packet handling conventions

ICMP protocol
• error reporting
• router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network
layer

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 35

Why different Intra- and Inter-AS routing ?

•  Policy: Inter is concerned with policies (which provider
we must select/avoid, etc). Intra is contained in a single
organization, so, no policy decisions necessary

•  Scale: Inter provides an extra level of routing table size
and routing update traffic reduction above the Intra
layer

•  Performance: Intra is focused on performance metrics;
needs to keep costs low. In Inter it is difficult to
propagate performance metrics efficiently (latency,
privacy etc). Besides, policy related information is more
meaningful.

 We need BOTH!

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 36

IP Addressing •  IP address: 32-bit
identifier for host, router
interface

•  interface: connection
between host, router and
physical link
–  router’s typically have

multiple interfaces
–  host may have multiple

interfaces
–  IP addresses associated with

interface, not host, router, …
•  Address mng & resolution +

DNS must be known well we
do not repeat it

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2 223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 1 1

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 37

Router Architecture Overview
•  Router main functions: routing algorithms and

protocols processing, switching datagrams from an
incoming link to an outgoing link

Router Components

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 38

Input Ports

•  Decentralized switching: perform routing table lookup using a
copy of the node routing table stored in the port memory

•  Goal is to complete input port processing at ‘line speed’, ie
processing time =< frame reception time (eg, with 2.5 Gbps
line, 256 bytes long frame, router must perform about 1
million routing table lookups in a second)

•  Queuing occurs if datagrams arrive at rate higher than can be
forwarded on switching fabric

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 39

Speeding Up Routing Table Lookup

•  Table is stored in a tree structure to
facilitate binary search

•  Content Addressable Memory (associative
memory), eg Cisco 8500 series routers

•  Caching of recently looked-up addresses
•  Compression of routing tables

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 40

Switching Fabric

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 41

Switching Via Memory
• First generation routers: packet is copied under
system’s (single) CPU control; speed limited by
Memory bandwidth. For Memory speed of B packet/
sec or pps, throughput is B/2 pps

Input
Port Output

Port
Memory

System Bus

•  Modern routers: input ports with CPUs that implement output
port lookup, and store packets in appropriate locations (= switch)
in a shared Memory; eg Cisco Catalyst 8500 switches

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 42

Switching Via Bus

•  Input port processors transfer a datagram from
input port memory to output port memory via a
shared bus

•  Main resource contention is over the bus;
switching is limited by bus speed

•  Sufficient speed for access and enterprise
routers (not regional or backbone routers) is
provided by a Gbps bus; eg Cisco 1900 which has a
1 Gbps bus

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 43

Switching Via An Interconnection
Network

•  Used to overcome bus bandwidth limitations
•  Banyan networks and other interconnection networks

were initially developed to connect processors in a
multiprocessor computer system; used in Cisco 12000
switches provide up to 60 Gbps through the
interconnection network

•  Advanced design incorporates fragmenting a datagram
into fixed length cells and switch the cells through the
fabric; + better sharing of the switching fabric resulting
in higher switching speed

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 44

Output Ports

Buffering is required to hold datagrams whenever
they arrive from the switching fabric at a rate
faster than the transmission rate

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 45

Queuing At Input and Output Ports
•  Queues build up whenever there is a rate mismatch or blocking.

Consider the following scenarios:
–  Fabric speed is faster than all input ports combined; more

datagrams are destined to an output port than other output
ports; queuing occurs at output port

–  Fabric bandwidth is not as fast as all input ports combined;
queuing may occur at input queues;

–  HOL blocking: fabric can deliver datagrams from input ports in
parallel, except if datagrams are destined to same output port;
in this case datagrams are queued at input queues; there may be
queued datagrams that are held behind HOL conflict, even when
their output port is available

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 46

Transport Layer: UDP & TCP

Goals:
•  Recall principles behind

transport layer services:
–  multiplexing/

demultiplexing
–  reliable data transfer
–  flow control
–  congestion control

•  instantiation and
implementation in the
Internet

Overview:
•  transport layer services
•  multiplexing/demultiplexing
•  connectionless transport: UDP
•  principles of reliable data

transfer
•  connection-oriented transport:

TCP
–  reliable transfer
–  flow control
–  connection management

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 47

Transport services and protocols
•  provide logical communication

between app’ processes
running on different hosts

•  transport protocols run in end
systems (primarily)

transport vs network layer
services:

•  network layer: data transfer
between end systems

•  transport layer: data
transfer between processes
–  relies on, enhances, network

layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 48

Transport-layer protocols
Internet transport services:
•  reliable, in-order unicast

delivery (TCP)
–  congestion
–  flow control
–  connection setup

•  unreliable (“best-effort”),
unordered unicast or
multicast delivery: UDP

•  services not available:
–  real-time
–  bandwidth guarantees
–  reliable multicast

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 49

application
transport
network

M P2
application
transport
network

Multiplexing/demultiplexing

Recall: segment - unit of data
exchanged between
transport layer entities
–  aka TPDU: transport

protocol data unit
receiver

Ht
Hn

Demultiplexing: delivering
received segments (TPDUs)to
correct app layer processes

segment
segment M

application
transport
network

P1
M

M M
P3 P4

segment
header

application-layer
data

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 50

Multiplexing/demultiplexing

multiplexing/demultiplexing:
•  based on sender, receiver port

numbers, IP addresses
–  source, dest port #s in

each segment
–  recall: well-known port

numbers for specific
applications

source port # dest port #
32 bits

application
data

(message)

other header fields

TCP/UDP segment format

gathering data from multiple
 app processes, enveloping
data with header (later used
for demultiplexing)

Multiplexing:

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 51

Multiplexing/demultiplexing: examples

host A server B
source port: x
dest. port: 23

source port:23
dest. port: x

port use: simple telnet app

WWW client
host A

WWW
server B

WWW client
host C

Source IP: C
Dest IP: B

source port: x
dest. port: 80

Source IP: C
Dest IP: B

source port: y
dest. port: 80

port use: WWW server

Source IP: A
Dest IP: B

source port: x
dest. port: 80

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 52

UDP: User Datagram Protocol [RFC 768]
•  “no frills,” “bare bones”

Internet transport
protocol

•  “best effort” service, UDP
segments may be:
–  lost
–  delivered out of order

to app
•  connectionless:

–  no handshaking between
UDP sender, receiver

–  each UDP segment
handled independently
of others

Why is there a UDP?
•  no connection

establishment (which can
add delay)

•  simple: no connection state
at sender, receiver

•  small segment header
•  no congestion control: UDP

can blast away as fast as
desired

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 53

UDP: more
•  often used for streaming

multimedia apps
–  loss tolerant
–  rate sensitive

•  other UDP uses
(why?):
–  DNS
–  SNMP

•  reliable transfer over UDP:
add reliability at
application layer
–  application-specific

error recover!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 54

UDP checksum

Sender:
•  treat segment contents as

sequence of 16-bit integers
•  checksum: addition (1’s

complement sum) of segment
contents

•  sender puts checksum value
into UDP checksum field

Receiver:
•  compute checksum of

received segment
•  check if computed checksum

equals checksum field value:
–  NO - error detected
–  YES - no error detected.

But maybe errors
nonethless?

Goal: detect “errors” (e.g., flipped bits) in
transmitted segment

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 55

Principles of Reliable data transfer

•  important in app., transport, link layers
•  top-10 list of important networking topics!

•  characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 56

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 57

Reliable data transfer: getting started

We’ll:
•  incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
•  consider only unidirectional data transfer

–  but control info will flow on both directions!
•  use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 58

rdt: channels with errors and loss

Assumption: underlying
channel can lose packets
(data or ACKs)
–  checksum, seq. #, ACKs,

retransmissions will be of
help, but not enough

Q: how to deal with loss?
–  sender waits until certain

data or ACK lost, then
retransmits

–  yuck: drawbacks?

Approach: sender waits
“reasonable” amount of
time for ACK

•  retransmits if no ACK
received in this time

•  if pkt (or ACK) just delayed
(not lost):
–  retransmission will be

duplicate, but use of seq.
#’s already handles this

–  receiver must specify seq
of pkt being ACKed

•  requires countdown timer

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 59

rdt: sender

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 60

rdt in action

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 61

rdt in action

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 62

Performance of rdt

•  rdt works, but performance stinks
•  example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T transmit = 8kb/pkt
10**9 b/sec = 8 microsec

Utilization = U = = 8 microsec
30.016 msec

fraction of time
sender busy sending = 0.00015

–  1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
–  network protocol limits use of physical resources!

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 63

Pipelined Protocols
•  Channel utilization under a Stop&Wait protocol is not

high when the propagation time is long relative to the
transmission time

•  Solution: pipelined protocols, where more than one
packet can be sent without waiting for feedback, thus
filling the ‘pipeline’

•  Two major versions (and lots of variations on the theme):
–  Go-Back-N
–  Selective Repeat

•  New requirements:
–  Buffering more than one packet at sender, and possibly at

receiver too
–  Larger sequence numbers for identifying packets in transit

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 64

Filling the Pipeline

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 65

Stop&Wait Efficiency
Sender Receiver

datatransT

propT

propT

procT
acktransT

product

 "" thecalled

is which , case in this
 1/C; data, ofbit oneFor

 Speed.on Transmissi theis C andlength

Packet theis L where,

 where,
*21

1

or ,
*2

 and small relativelyFor

*2

Delay-Bandwidth
prop

datatrans

datatrans

datatrans

prop

propdatatrans

datatrans

acktransproc

acktransprocpropdatatrans

datatrans

CTa
T

C
LT

T
T

a
a

U

TT
TU

TT
TTTT

TU

=

=

=

=
+

≈

+
≈

+++
=

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 66

Go-Back-N

•  Sender can go ahead and transmit packets without
waiting for feedback up to some number of
packets (for flow control reasons, details later)

•  Definitions:
N: maximum allowable number of transmission without

feedback
Base: lowest sequence number of unacked packets
Nextseqnum: lowest unused sequence number
Maxseqnum: largest sequence number

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 67

Go-Back-N Window
•  From definitions and figure above:

[0, base-1] transmitted and acked
[base, nextseqnum-1] transmitted and waiting

 for feedback, or
‘outstanding’

[nextseqnum, base+N-1] numbers that can be
 used when packets are
 provided by higher layer for
 transmission

[base+N, maxseqnum] numbers that cannot be
 used until more packets are
 acked

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 68

•  Because of the window metaphor, these
protocols are also referred to as sliding window
protocols

•  Stop&Wait can be viewed as a sliding window
protocol, with window size N = 1, and sequence
space = [0,1]

•  Sequence number is carried in a fixed length
field in the packet header; with k bits in the
Sequence number field, the sequence space is

•  Since sequence numbers must wrap around, all
sequence number arithmetic is modulo

Go-Back-N Window (Cont.)

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 69

Go-Back-N Sender

Window NOT full

No other packets outstanding

Acks are cumulative

?
No packets
outstanding

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 70

Go-Back-N Receiver

•  Receiver accepts packets in order only! out-of-order packets are
simply dropped

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 71

Go-Back-N Example (N=4)

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 72

Go-Back-N Performance

•  Bandwidth-Delay Product (ie “pipeline size”) is
defined as the product of the channel
transmission speed and the propagation delay

•  As transmission speed or propagation delay
increases, more packets can be transmitted to
“fill the pipeline”

•  For channels with high Bandwidth-Delay product,
Go-Back-N performance may deteriorate: the
number of outstanding packets may be large and
all these packets will be unnecessarily
retransmitted when an error occurs

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 73

Selective Repeat
•  Selective Repeat addresses the performance limitation

of Go-back-N mentioned above
•  Receiver indicates to sender which packet needs to be

retransmitted; sender retransmits only that packet
•  Receiver accepts and buffers packets received out of

order within a limit imposed by a receiver window
•  Groups of packets with consecutive sequence numbers (or

completed sequences) are delivered to the higher layer
at the sender

•  A timer must be associated with each packet (but we can
use one hardware timer to implement multiple logical
timers)

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 74

Selective Repeat Windows

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 75

Selective Repeat Sender Event-
Driven Algorithms

•  Higher layer calls to transmit data:
if there are unused sequence numbers

then packetize and transmit;
else reject the data;

•  Timeout occurs:
transmit the (single) packet which timed out;

•  Ack is received:
mark packet acked;
if base can be moved

then move it to the unacked packet with the lowest sequence
number;

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 76

Selective Repeat Receiver Event-
Driven Algorithms

•  Packet received, not corrupted, within current receive
window:
Ack the received packet;
if not previously received

then buffer the packet;
deliver consectively sequenced received packets to higher layer;
move window forward;

•  Packet received, not corrupt, sequence number below
window base:
Ack the received packet; /* packet previously acked and already

delivered to higher layer*/

•  Packet received, corrupt, or sequence number beyond
window:
Ignore the packet

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 77

Selective Repeat Example

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 78

Setting The Window Size

•  The window size N is an important parameter
•  N should be large enough to allow filling the

pipeline, thus making better utilization of the
channel

•  On the other hand, N is limited by the protocols
(ensure receiver correctly identifies packets)

•  It was found that N cannot be larger than half
the sequence space length

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 79

Misidentification Example

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 80

Reliable Transport Layer: TCP
•  Full-duplex
•  End-to-end protocol, transparent to network and

lower layers in routers
•  Connection-oriented, connection established

through “three way handshake” protocol
•  Byte Stream transfer, stream is divided into

segments with a maximum segment size (MSS)
•  Reliability through an ARQ type protocol
•  Flow Control: receiver controls the amount of bytes

a sender is allowed to send
•  Point-to-point connection, no multicasting with TCP

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 81

TCP Connection Model

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 82

Flow/Congestion Control
•  Flow Control (strict definition): regulate TCP

flow so as to prevent receive buffer overflow
at destination

•  Flow Control (more general definition):
regulate TCP flow so as to prevent buffer
overflow anywhere along the path

•  Congestion Control: regulate TCP flow(s) so as
to avoid congestion in the entire network and
to achieve efficient, fair sharing of resources.

•  Key TCP flow/congestion mechanism:
adjustable sender window

Renato.LoCigno@disi.unitn.it Advanced Networking – Introduction 83

TCP Connection Management

•  TCP connection is set up using the three way handshake
protocol

•  Special segments (SYN segment, SYNACK segment)
exchange initial client and server sequence numbers and
allocate buffers

•  Three Way Handshake protocol allows to detect and
eliminate “old” connection requests (more robust than
two separate handshakes)

•  Another Three Way Handshake (with FIN flag turned
on) is used to close the connection, releasing all
resources

