Advanced Networking

Routing: RIP, OSPF, Hierarchical routing, BGP

Renato Lo Cigno Renato.LoCigno@disi.unitn.it

Routing Algorithms: One or Many?

- Is there a single routing protocol in the Internet?
- How can different protocols and algorithms coexist
 - Homogeneous results
 - Risk of incosistent routing
- Complexity of routing algorithms/protocols
 - Can they scale?
 - There is a tradeoff between traffic and computation?
- Hierarchical routing
- Policy routing: what is it, why not "performance"?

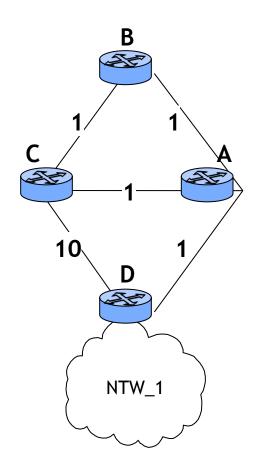
RIP - History

* Late 1960s: Distance Vector protocols were used in the ARPANET

- * Mid-1970s: XNS (Xerox Network system) routing protocol is the precursor of RIP in IP (and Novell's IPX RIP and Apple's routing protocol)
- * 1982: Release of routing software for BSD Unix
- * 1988: RIPv1 (RFC 1058)
 - classful routing
- * 1993: RIPv2 (RFC 1388)
 - adds subnet masks with each route entry
 - allows classless routing
- * 1998: Current version of RIPv2 (RFC 2453)

RIP at a glance

- A simple intradomain protocol
- Straightforward implementation of Distance Vector Routing...
 - Distributed version of Bellman-Ford (DBF)
 - ...with well known issues
 - slow convergence
 - works with limited network size
- Strengths
 - simple to implement
 - simple management
 - widespread use



RIP at a glance

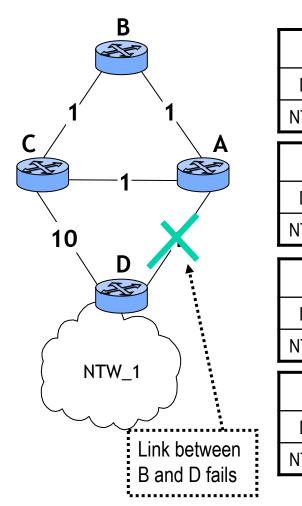
- Metric based on hop count
 - maximum hop count is 15, with "16" equal to " ∞ "
 - imposed to limit the convergence time
 - the network administrator can also assign values higher than 1 to a single hop
- Each router advertises its distance vector every 30 seconds (or whenever its routing table changes) to all of its neighbors
 - RIP uses UDP, port 520, for sending messages
- Changes are propagated across network
- Routes are timeout (set to 16) after 3 minutes if they are not updated

Recall: "counting to infinity" problem

Router A						
Dest	Next	Metric				
NTW_1	D	2				
Router B						
Dest	Next	Metric				
NTW_1	А	3				
Router C						
Dest	Next	Metric				
NTW_1	Α	3				
Router D						
Dest	Next	Metric				

dir

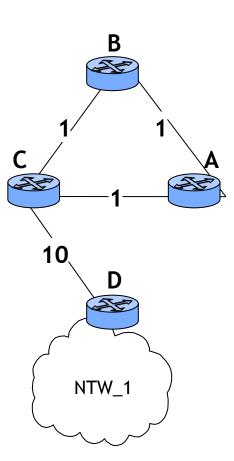
1


NTW 1

- Consider the entries in each routing table for network NTW_1
- Router D is directly connected to NTW_1

Recall: "counting to infinity" problem (2)

time



Router A				Router A				Router A		
Dest	Next	Metric		Dest	Next	Metric		Dest	Next	Metric
NTW_1	Unr.	-	\backslash	NTW_1	С	4	\backslash	NTW_1	С	5
R	outer E	3		Router B				Router B		
Dest	Next	Metric		Dest	Next	Metric		Dest	Next	Metric
NTW_1	А	3		NTW_1	С	4		NTW_1	С	5
R	outer (0		Router C				Router C		
Dest	Next	Metric	/	Dest	Next	Metric		Dest	Next	Metric
NTW_1	А	3		NTW_1	В	4		NTW_1	В	5
Router D				Router D				Router D		
Dest	Next	Metric		Dest	Next	Metric		Dest	Next	Metric
NTW_1	dir	1		NTW_1	dir	1		NTW_1	dir	1

Renato.LoCigno@disi.unitn.it

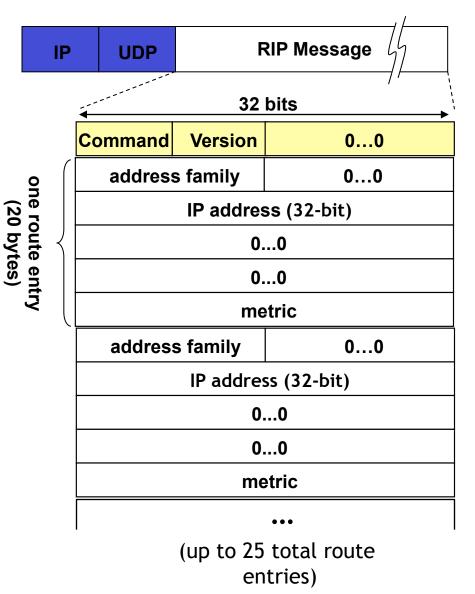
Recall: "counting to infinity" problem (3)

time

Router A				Router A			
Dest	Next	Metric		Dest	Next	Metric	
NTW_1	С	11		NTW_1	С	12	
Router B				R	outer I	3	
Dest	Next	Metric		Dest	Next	Metric	
NTW_1	С	11		NTW_1	С	12	
	-	-			-		
R	outer (C		Router C			
Dest	Next	Metric		Dest	Next	Metric	
NTW_1	В	11		NTW_1	D	11	
	-	-			-	-	
Router D				R	outer [C	
Dest	Next	Metric		Dest	Next	Metric	
NTW_1	dir	1		NTW_1	dir	1	

RIP: solution to "counting to infinity"

- Maximum number of hops bounded to 15
 - this limits the convergence time
- Split Horizon
 - simple
 - each node *omits* routes learned from one neighbor in update sent to that neighbor
 - with poisoned reverse
 - each node *include* routes learned from one neighbor in update sent to that neighbor, setting their metrics to infinity
 - drawback: routing message size greater than simple Split Horizon


RIP: solution to "counting to infinity" (cont'd)

- Triggered updates: nodes send messages as soon as they notice a change in their routing tables
 - only routes that has changed are sent
 - faster reaction...
 - ...but more resources are used (bandwidth, processing)
 - cascade of triggered updates
 - superposition with regular updates

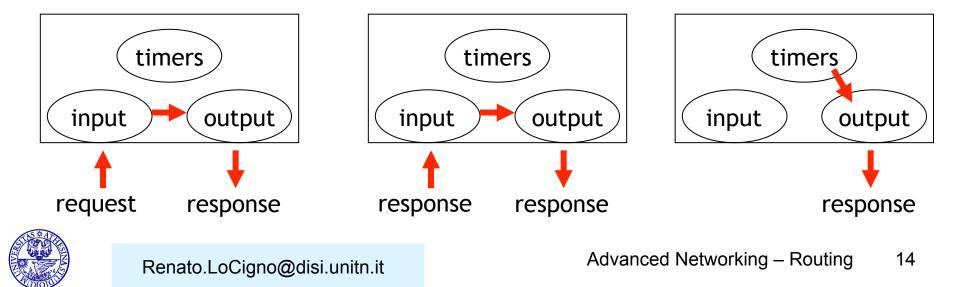
RIP-1: Message Format

- Command: 1=request 2=response
 - Updates are replies whether asked for or not
 - Initializing node broadcasts request
 - Requests are replied to immediately
- Version: 1
- Address family: 2 for IP
- IP address: non-zero network portion, zero host portion
 - Identifies particular network
- Metric
 - Path distance from this router to network
 - Typically 1, so metric is hop count

RIP procedures: introduction

- RIP routing tables are managed by application-level process
 - e.g., *routed* on UNIX machines
- Advertisements are sent in UDP packets (port 520)
- RIP maintains 3 different timers to support its operations
 - Periodic update timer (25-30 sec)
 - used to sent out update messages
 - Invalid timer (180 sec)
 - If update for a particular entry is not received for 180 sec, route is invalidated
 - Garbage collection timer (120 sec)
 - An invalid route in marked, not immediately deleted
 - For next 120 s. the router advertises this route with distance infinity

	route				
ТСР	UDP				
IF					
Data	Link				
Physical					

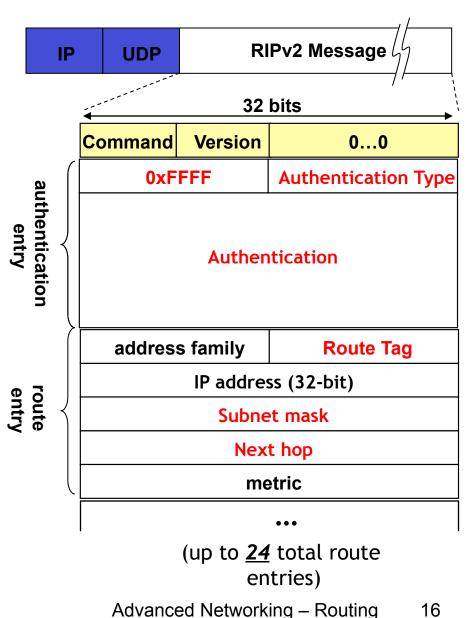

RIP procedures: input processing

- Request Messages
 - they may arrive from routers which have just come up
 - action: the router responds directly to the requestor's address and port
 - request is processed entry by entry
- Response Messages
 - they may arrive from routers that perform regular updates, triggered updates or respond to a specific query
 - action: the router updates its routing table
 - in case of new route or changed routes, the router starts a triggered update procedure

RIP procedures: output processing

- Output are generated
 - when the router comes up in the network
 - if required by the input processing procedures
 - by regular routing update
- Action: the router generates the messages according to the commands received
 - the messages contain entries from the routing table

RIPv2: Message Format


- Version: 2
- Route Tag: used to carry information from *other routing protocols*
 - e.g., autonomous system number
- Subnet mask for IP address
- Next hop
 - identifies a better next-hop address on the same subnet than the advertising router, if one exists (otherwise 0....0)

_									
	IP			UDP	RIPv2 Message				
_			32 bits						
			Command		Version	00			
	one route entry			address	s family	Route Tag			
(20			IP address (32-bit)						
byt		$\left\{ \right $	Subnet mask						
es)	ent	entrv	Next hop						
•	2		metric						
				addres	s family	Route Tag			
			IP address (32-bit)						
		Subnet mask							
			Next hop						
			metric						
			•••						
					••	up to 25 total route entries)			

RIPv2: authentication

- Any host sending packets on UDP port 520 would be considered a router
- Malicious users can inject fake routing entries
- With authentication, only authorized router can send Rip packets
 - Authentication type
 - password
 - MD5
 - Authentication
 - plain text password
 - MD5 hash

RIPv2: other aspects

- Explicit use of subnets
- Interoperability
 - RIPv1 and RIPv2 can be present in the same network since RIPv1 simply ignores fields not known
 - RIPv2 responds to RIPv1 Request with a RIPv1 Response
- Multicast
 - instead of broadcasting RIP messages, RIPv2 uses multicast address 224.0.0.9

RIP limitations: the cost of simplicity

- Destinations with metric more than 15 are unreachable
 - If larger metric allowed, convergence becomes lengthy
- Simple metric leads to sub-optimal routing tables
 - Packets sent over slower links
- Accept RIP updates from any device (if no security is implemented)
 - Misconfigured device can disrupt entire configuration

RIP Was the first ... but ...

- Why is RIP not enough to manage the Internet?
- Can Link-State protocols perform better?
 - OSPF
 - MOSPF (no MRIP exists!!)
- Inter-AS routing requires an entirely different approach ... if not for else for the sake of competition!

Non-RIP, DV Protocols: EXAMPLE IGRP (Interior Gateway Routing Protocol)

- CISCO proprietary; builds on RIP (mid 80's)
- Distance Vector, like RIP
- several cost metrics (delay, bandwidth, reliability, load etc.)
- uses TCP to exchange routing updates
- routing tables exchanged only when costs change
- Loop free routing achieved by using a Distributed Updating Alg. (DUAL) based on *diffused computation*
- In DUAL, after a distance increase, the routing table is frozen until all affected nodes have learned of the change (cfr. split horizon in RIP)

Open Shortest Path First (OSPF)

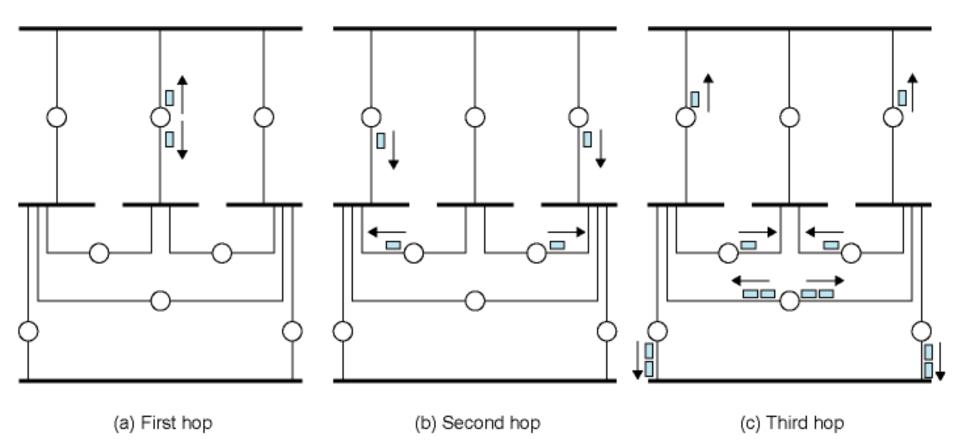
- RIP limited in large internets
- OSPF is often preferred interior routing protocol for TCP/IP based internets
- Uses link state routing
- Floods the messages to all routers in the AS (area)

OSPF "advanced" features (not in RIP)

- Security: all OSPF messages are authenticated (to prevent malicious intrusion);
 - TCP or Unicast in genera connections used sometimes
- Multiple same-cost paths allowed
 - only one path in RIP
- For each link, multiple cost metrics for different TOS (eg, satellite link cost set "low" for best effort; high for real time)
- Integrated uni- and multicast support: Multicast (MOSPF) uses same topology data base as OSPF
- Hierarchical OSPF in large domains

Link State Routing

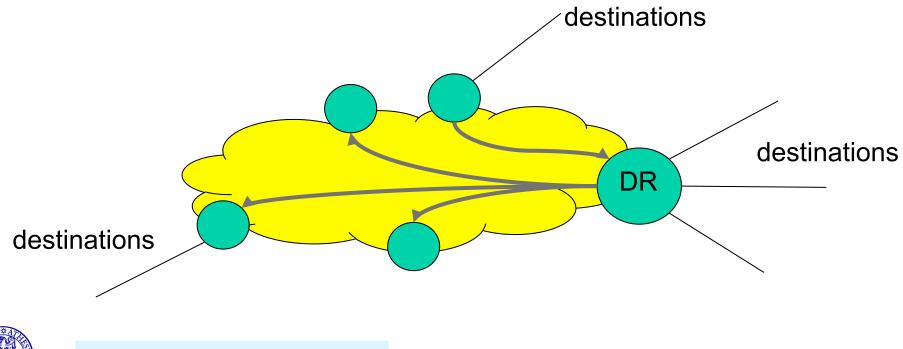
- When initialized, router determines link cost on each interface
- Router advertises these costs to all other routers in topology
- Router monitors its costs
 - When changes occurs, costs are re-advertised
- Each router constructs topology and calculates shortest path to each destination network
- No distributed version of routing algorithm
- Can use any algorithm
 - Dijkstra is recommended and normally used
 - All routers in AS must use same algorithm



Flooding

- Packet sent by source router to every neighbor
- Incoming packet resent to all outgoing links except source link
- Duplicate packets already transmitted are discarded
 - Prevent incessant retransmission
- All possible routes tried so packet will get through if route exists
 - Highly robust
- At least one packet follows minimum delay route
 - Reach all routers quickly
- All nodes connected to source are visited
 - All routers get information to build routing table
- High traffic load

Flooding Example



Renato.LoCigno@disi.unitn.it

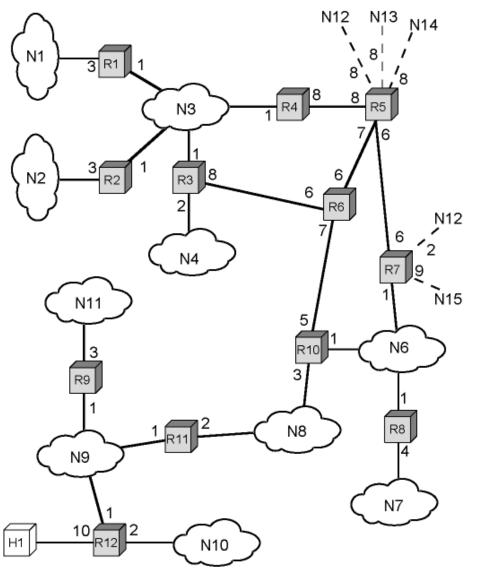
Advanced Networking – Routing 25

Alternative to flooding

- Designated Router (DR) election (with backup-DRB)
- Used on broadcast domains
- Link-State updates are sent to DR/DRB only which diffuse to all others (unicast confirmed communications)

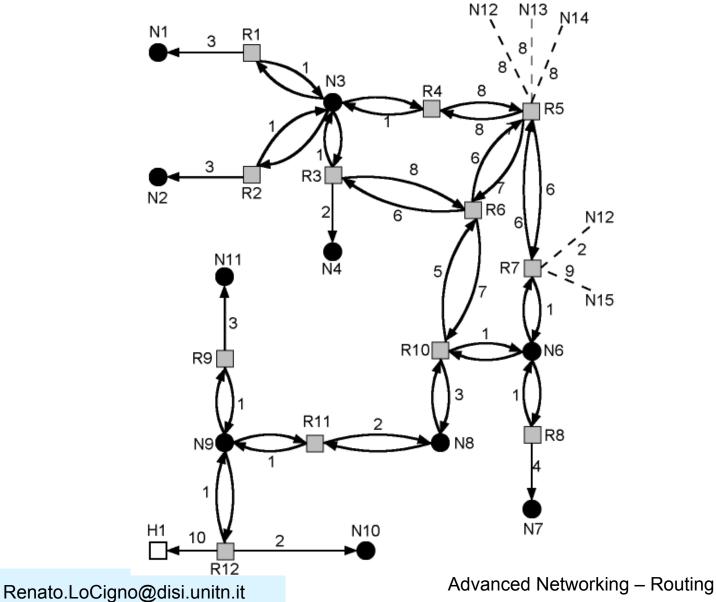
OSPF Overview

- Router maintains descriptions of state of local links
- Transmits updated state information to all routers it knows about (flooding)
- Router receiving update must acknowledge
 - Lots of traffic generated
- Each router maintains database
 - Directed graph



Router Database Graph

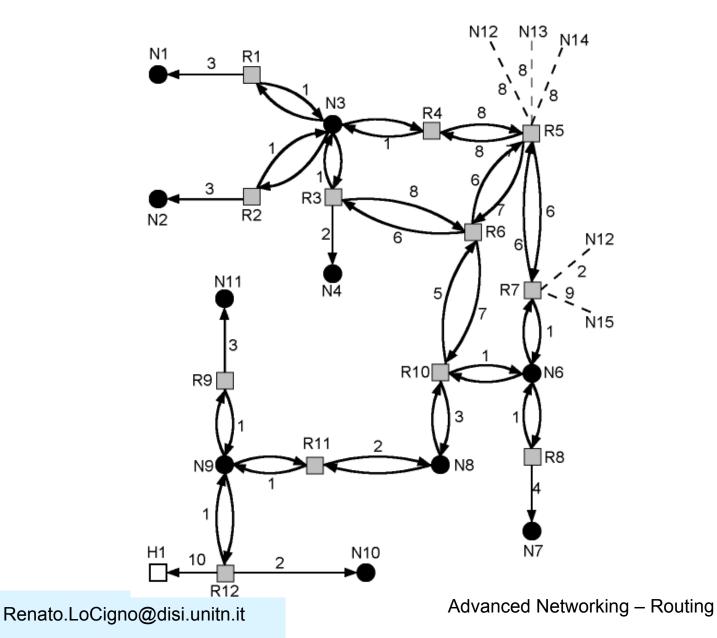
- Vertices
 - Router
 - Network
 - Transit
 - Stub
- Edges
 - Connecting two routers
 - Connecting router to network
- Built using link state information from other routers



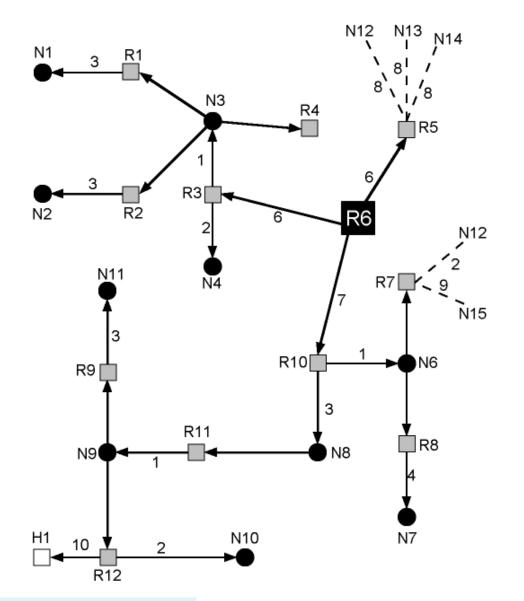
Sample Autonomous System

Directed Graph of Autonomous System in previous slide

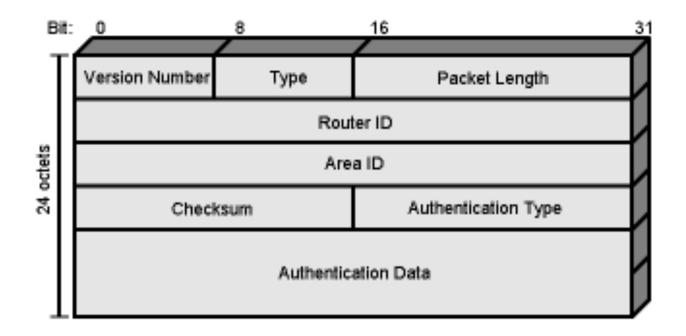
30


Link Costs

- Cost of each hop in each direction is called routing metric
- OSPF provides flexible metric scheme based on type of service (TOS)
 - Normal (TOS) 0
 - Minimize monetary cost (TOS 2)
 - Maximize reliability (TOS 4)
 - Maximize throughput (TOS 8)
 - Minimize delay (TOS 16)
- Each router can generate 5 spanning trees (and 5 routing tables) - AS decision!


What is the SP for Router 6?

32


The Tree for Router R6

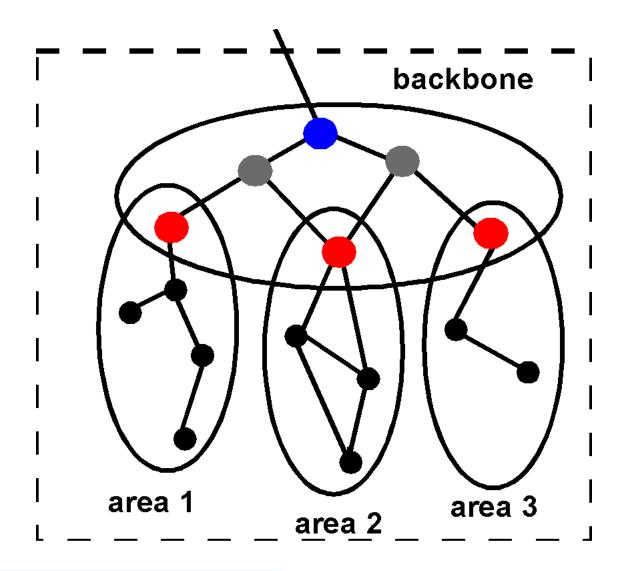
Renato.LoCigno@disi.unitn.it

OSPF Packet Header

Packet Format Notes

- Version number: 2 is current
- Type: one of 5, see next slide
- Packet length: in octets including header
- Router id: this packet's source, 32 bit
- Area id: Area to which source router belongs
- Authentication type:
 - Null
 - Simple password
 - Encryption
- Authentication data: used by authentication procedure

OSPF Packet Types


- 1. Hello: used in neighbor discovery
- 2. Database description: Defines set of link state information present in each router's database
- 3. Link state request
- 4. Link state update
- 5. Link state acknowledgement

- Make large internets more manageable
- Configure as backbone and multiple areas
- Area Collection of contiguous networks and hosts plus routers connected to any included network
- Backbone contiguous collection of networks not contained in any area, their attached routers and routers belonging to multiple areas

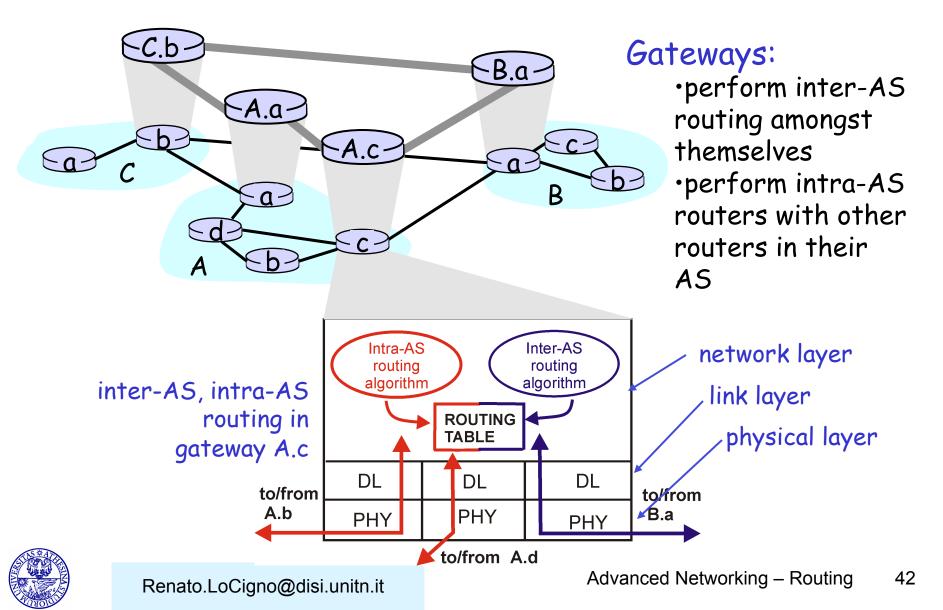
Hierarchical OSPF

Operation of Areas

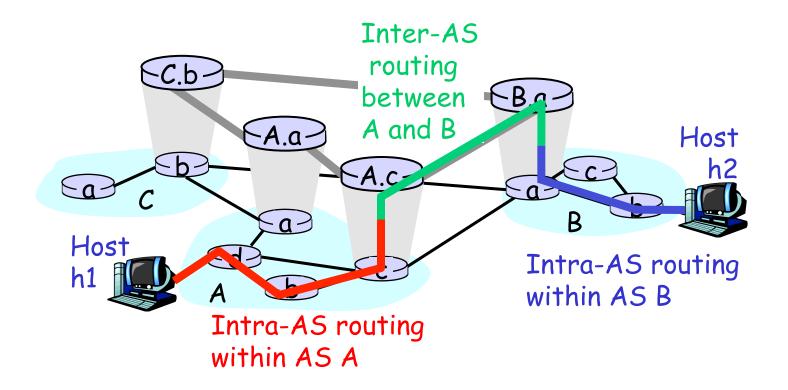
- Each area runs a separate copy of the link state algorithm
 - Topological database and graph of just that area
 - Link state information broadcast to other routers in area
 - Reduces traffic
 - Intra-area routing relies solely on local link state information

Inter-Area Routing

- Path consists of three legs
 - Within source area
 - Intra-area
 - Through backbone
 - Has properties of an area
 - Uses link state routing algorithm for interarea routing
 - Within destination area
 - Intra-area



Hierarchical OSPF


- Two level hierarchy: local area and backbone
- Link state advertisements do not leave respective areas
- Nodes in each area have detailed area topology; they only know direction (shortest path) to networks in other areas
- Area Border routers "summarize" distances to networks in the area and advertise them to other Area Border routers
- Backbone routers run an OSPF routing alg limited to the backbone
- Boundary routers connect to other ASs

Intra-AS and Inter-AS routing

Intra-AS and Inter-AS routing

 We'll examine specific inter-AS and intra-AS Internet routing protocols shortly

Renato.LoCigno@disi.unitn.it

Inter-AS routing

- BGP (Border Gateway Protocol): the de facto standard
- Path Vector protocol an extension of Distance Vector
- Each Border Gateway broadcast to neighbors (peers) the entire path (ie, sequence of AS's) to destination
- For example, Gwy X may store the following path to destination Z:

- Now, suppose Gwy X send its path to peer Gwy W
- Gwy W may or may not select the path offered by Gwy X, because of cost, policy or loop prevention reasons
- If Gwy W selects the path advertised by Gwy X, then:

Path (W,Z) = w, Path (X,Z)

Note: path selection based not so much on cost (eg,# of AS hops), but mostly on administrative and policy issues (eg, do not route packets of competitor's AS)

Why different Intra- and Inter-AS routing ?

- Policy: Inter is concerned with policies (which provider we must select/avoid, etc). Intra is contained in a single organization, so, no policy decisions necessary
- Scale: Inter provides an extra level of routing table size and routing update traffic reduction above the Intra layer
- **Performance**: Intra is focused on performance metrics; needs to keep costs low. In Inter it is difficult to propagate performance metrics efficiently (latency, privacy etc). Besides, policy related information is more meaningful.

We need BOTH!

Border Gateway Protocol (BGP)

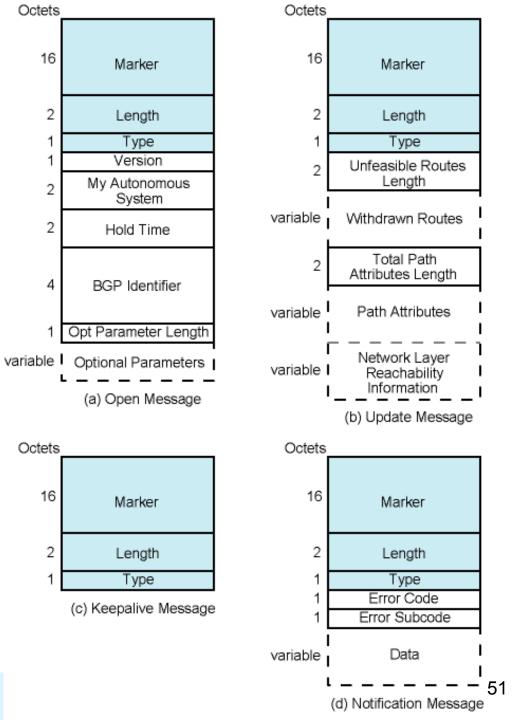
- Allows routers (gateways) in different ASs to exchange routing information
- Messages sent over TCP
 - Messages in next slide
- Three functional procedures
 - Neighbor acquisition
 - Neighbor reachability
 - Network reachability

BGP Messages

- Open
 - Start neighbor relationship with another router
- Update
 - Transmit information about single route
 - List multiple routes to be withdrawn
- Keepalive
 - Acknowledge open message
 - Periodically confirm neighbor relationship
- Notification
 - Send when error condition detected
 - Used for closing connections too

Neighbor Acquisition

- Neighbors attach to same subnetwork
- If in different ASs routers may wish to exchange information
- Neighbor acquisition is when two neighboring routers agree to exchange routing information regularly
 - Needed because one router may not wish to take part
- One router sends request, the other acknowledges
 - Knowledge of existence of other routers and need to exchange information established at configuration time or by active intervention



Neighbor Reachability

- Periodic issue of keepalive messages
- Between all routers that are neighbors
- Each router keeps database of subnetworks it can reach and preferred route
- When change is made, router issues update message (to neighbors only)
- All BGP routers build up and maintain routing information

BGP Message Formats

Renato.LoCigno@disi.unitn.it

Neighbor Acquisition Detail

- Router opens TCP connection with neighbor
- Sends open message
 - Identifies sender's AS and gives IP address
 - Includes Hold Time
 - As proposed by sender
- If recipient prepared to open neighbor relationship
 - Calculate hold time
 - min [own hold time, received hold time]
 - Max time between keepalive/update messages
 - Reply with keepalive

Keepalive Detail

- Header only
- Enough to prevent hold time expiring
- If hold time expires a topology change is triggered

 'Marker' is a field that used for authentication purposes

Update Detail

- Information about single route through internet
 - Information to be added to database of any recipient router
 - Network layer reachability information (NLRI)
 - List of network portions of IP addresses of subnets reached by this route
 - Total path attributes length field
 - Path attributes field (next slide)
- List of previously advertised routes being withdrawn
- May contain both

Path Attributes Field

- Origin
 - Interior (e.g. OSPF) or exterior (BGP) protocol
- AS_Path
 - ASs traversed for this route
- Next_Hop
 - IP address of boarder router for next hop
- Multi_Exit_disc
 - Information about routers internal to AS
- Local_Pref
 - Tell other routers within AS degree of preference
- Atomic_Aggregate, Aggregator
 - Uses subnet addresses in tree view of network to reduce information needed in NLRI

Withdrawal of Route(s)

- Route identified by IP address of destination subnetwork(s)
- May be issued because subnets are not reachable or because policies have changed

Notification Message

- Error notification
- Message header error
 - Includes authentication and syntax errors
- Open message error
 - Syntax errors and option not recognised
 - Proposed hold time unacceptable
- Update message error
 - Syntax and validity errors
- Hold time expired
- Finite state machine error
- Cease
 - Close connection in absence of any other error

BGP Routing Information Exchange

- R1 constructs routing table for AS1 using OSPF
- R1 issues update message to R5 (in AS2)
 - AS_Path: identity of AS1
 - Next_Hop: IP address of R1
 - NLRI: List of all subnets in AS1
- Suppose R5 has neighbor relationship with R9 in AS3
- R5 forwards information from R1 to R9 in update message
 - AS_Path: list of ids {AS2,AS1}
 - Next_Hop: IP address of R5
 - NLRI: All subnets in AS1
- R9 decides if this is preferred route and forwards to neighbors

Routing Domain Confederations

- Set of connected AS
- Appear to outside world as single AS
 - Recursive
- Effective scaling

