Advanced Networking

Renato Lo Cigno Renato.LoCigno@disi.unitn.it - Tel: 2026 Csaba Kiraly, Leonardo Maccari, Alessandro Russo (help with projects & Seminars)

Dipartimento di Ingegneria e Scienza dell'Informazione Homepage:

disi.unitn.it/locigno/ -> teching duties

What do you find on the web site

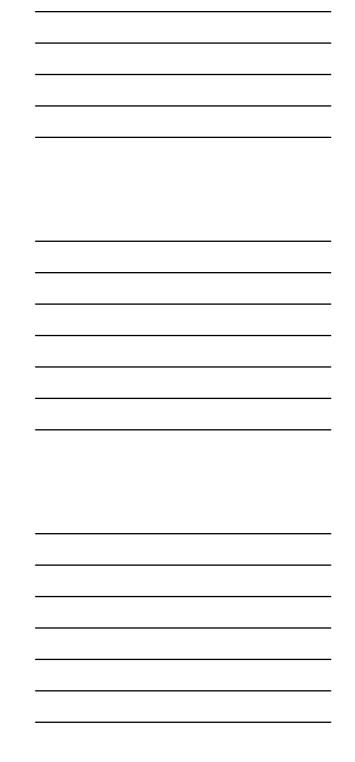
- · Exam Rules
- Exam Details ... should be on ESSE3, but ...
- · Generic (useful) information
- Teaching Material: normally posted at least the day before the lesson
- · Additional Material and links
- · News, Bulletin, How to find and meet me, etc.

•

The web site is work in progress and updated frequently, so please drop by frequently and don't blame ME if you did't read the last news ©

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction 2


Program

- · Course Perspective
 - what do we learn and what we do not
 - are there other "networks"
- · Reharsal of basics
 - Internet and TCP/IP
 - THE network? or YetAnother network
 - IP
 - UDP/TCP

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction

Program \cdot IP and routing - OSPF and link-state protocols · Intra AS routing · performance driven routing - BGP and policy-based protocols External routing · Cost (economical!) based routing - Global routing and Internet topology · How things look and works end-to-end Renato.LoCigno@disi.unitn.it **Program** Multicast - Abstract multicasting - Multicast groups and addresses - Internet and multicast: IGMP - Multicast routing - Application level multicast · why it's absurd ... · ... why it works!!! Advanced Networking – Introduction 5 Renato.LoCigno@disi.unitn.it **Program** · Network congestion - Network load and stability - Call Admission Control - Reactive congestion control · Closed-loop systems · Implicit/Explicit Forward · Backward - TCP · How it really works - TCP stabilization methods: mith and reality · RED, RIO, ...

Advanced Networking – Introduction

Renato.LoCigno@disi.unitn.it

Program · Internet multimedia communications - Voice and Video services on packet-based networks - Transport: RTP/RTCP - SIP standard - H.323 standard - Skype and P2P approaches - IP TV VoD/Broadcast/Live · Traditional approach · P2P systems Renato.LoCigno@disi.unitn.it **Recalling known topics:** - Internet - IP - UDP/TCP Acknowledment: The following slides are based on the slides developed by J.Kurose and K.Ross to accompany their book "Computer Networks: A Top Down Approach Featuring the Internet" by Wiley edts. Internet What we see: What is it: Services A collection of protocols Mainly centered around two · Applications we use centerpieces: Some "application level" protocols - IP (network layer)

- UDP/TCP (transport layer)

· Does not mandate a physical

services/applications above (integrates services)

Advanced Networking – Introduction

medium or format · Does not mandate or limit the

· Throughput

Delay (sometimes)

Renato.LoCigno@disi.unitn.it

· Delay Jitter (if we're really skilled!)

Losses

IP: The Network Layer

Goals:

- recall principles behind network layer services:
 - routing (path selection)
 - dealing with scale
 - how a router works
- · instantiation and implementation in the Internet

Overview:

- network layer services
- routing principle: path selection
- · Internet routing protocols reliable transfer
 - intra-domain
 - inter-domain
- · what's inside a router?

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction 10

- transport packet from sending to receiving hosts
- network layer protocols in every host, router

three important functions:

- path determination: route taken by packets from source to dest. Routing algorithms
- switching: move packets from router's input to appropriate router output
- call setup: some network architectures require router call setup along path before data flows

Renato.LoCigno@disi.unitn.it

Network layer functions

Advanced Networking – Introduction

Network service model

Q: What service model for "channel" transporting packets from sender to receiver?

guaranteed bandwidth?

- preservation of inter-packet timing (no jitter)?
- · loss-free delivery?
- in-order delivery?
- congestion feedback to sender?

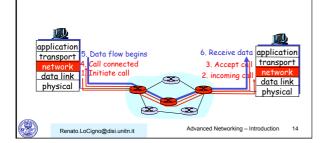
The most important

abstraction provided by network layer:

Renato.LoCigno@disi.unitn.it

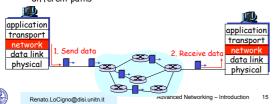
Virtual circuits

- "source-to-dest path behaves much like telephone circuit"
 - performance-wise
 - network actions along source-to-dest path
- · call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host OD)
- every router on source-dest path s maintain "state" for each passing connection
- transport-layer connection only involved two end systems
- \cdot link, router resources (bandwidth, buffers) may be allocated to VC
 - to get circuit-like perf.



Renato.LoCigno@disi.unitn.it

Advanced Networking - Introduction


Virtual circuits: signaling protocols

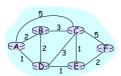
- used to setup, maintain teardown ${\it VC}$
- · used in ATM, frame-relay, X.25
- · not used in today's Internet

Datagram networks: the Internet model

- · no call setup at network layer
- · routers: no state about end-to-end connections
 - no network-level concept of "connection"
- · packets typically routed using destination host ID
 - packets between same source-dest pair may take different paths

Routing

-Routing protocol-


Goal: determine "good" path (sequence of routers) thru network from source to dest.

Graph abstraction for routing algorithms:

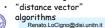
- graph nodes are routers
- graph edges are physical links
 - link cost: delay, \$ cost, or congestion level

Renato.LoCigno@disi.unitn.it

- "good" path:
 - typically means minimum cost path
 - other def's possible

Advanced Networking – Introduction 16

Routing Algorithm classification


Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- "link state" algorithms

Decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors

Static or dynamic?

Static:

 routes change slowly over time

Dynamic:

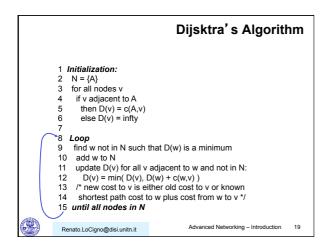
- · routes change more quickly
 - periodic update
 - in response to link cost changes

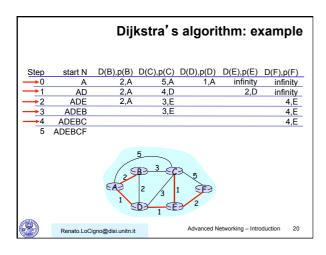
Advanced Networking – Introduction

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives routing table for that node
- iterative: after k iterations, know least cost path to k dest.'s


Notation:


- C(i,j): link cost from node i to j. cost infinite if not direct neighbors
- D(v): current value of cost of path from source to dest. V
- p(v): predecessor node along path from source to v, that is next v
- N: set of nodes whose least cost path definitively known

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction

Distance Vector Routing Algorithm

iterative:

- continues until no nodes exchange info.
- self-terminating: no "signal" to stop

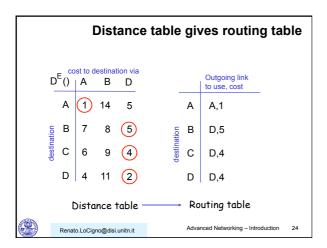
asynchronous:

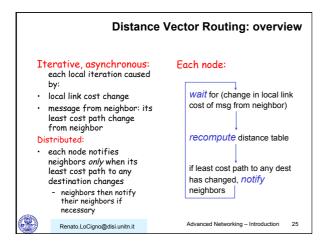
 nodes need not exchange info/iterate in lock step!

distributed:

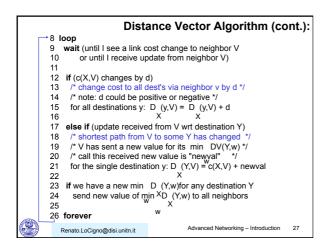
 each node communicates only with directly-attached neighbors

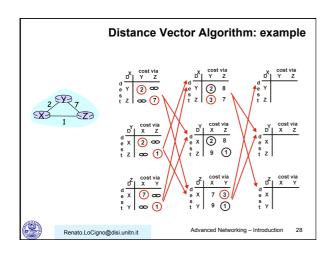
Renato.LoCigno@disi.unitn.it

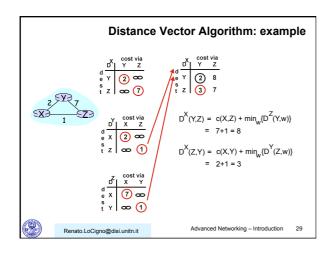

Distance Table data structure

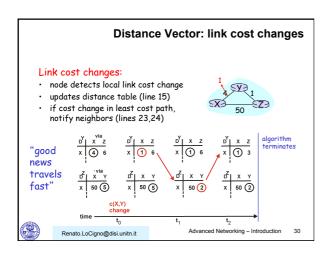

- · each node has its own
- · row for each possible destination
- column for each directlyattached neighbor to node
- example: in node X, for dest. Y via neighbor Z:

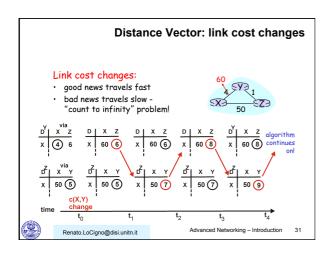
$$X = \begin{cases} x & = \text{ distance } from X \text{ to } \\ Y, Via Z \text{ as next hop} \end{cases}$$
$$= c(X,Z) + \min_{W} \{D^{Z}(Y,W)\}$$

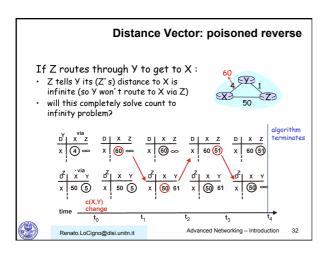

Advanced Networking – Introduction 22

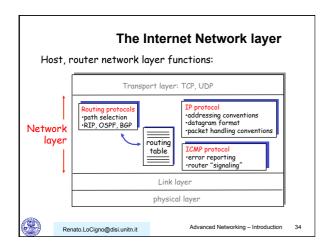

Advanced Networking – Introduction 23






At all nodes, X: 1 Initialization: 2 for all adjacent nodes v: 3 DX(*,v) = infty _/* the * operator means "for all rows" */ 4 DY(v,v) = c(X,v) 5 for all destinations, y 6 send min_DX(y,w) to each neighbor /* w over all X's neighbors */

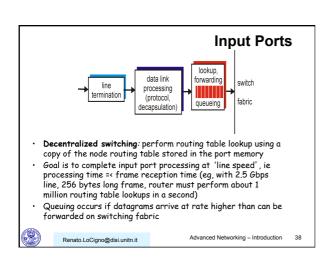




Comparison of LS and DV algorithms Message complexity Robustness: what happens LS: with n nodes, E links, if router malfunctions? O(nE) msgs sent each **DV**: exchange between node can advertise neighbors only incorrect link cost - convergence time varies each node computes only its own table Speed of Convergence LS: O(n**2) algorithm requires O(nE) msgs DV: - DV node can advertise incorrect path cost - may have oscillations each node's table used $\underline{\text{DV}}$: convergence time varies by others - may be routing loops error propagate thru network count-to-infinity problem Advanced Networking – Introduction Renato.LoCigno@disi.unitn.it

Why different Intra- and Inter-AS routing?

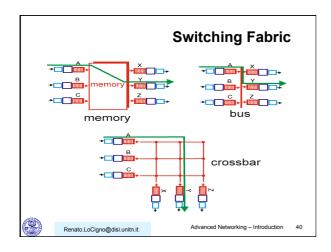
- Policy: Inter is concerned with policies (which provider we must select/avoid, etc). Intra is contained in a single organization, so, no policy decisions necessary
- Scale: Inter provides an extra level of routing table size and routing update traffic reduction above the Intra layer
- Performance: Intra is focused on performance metrics; needs to keep costs low. In Inter it is difficult to propagate performance metrics efficiently (latency, privacy etc). Besides, policy related information is more meaningful.


We need BOTH!

Renato.LoCigno@disi.unitn.it

ic	dent	ddress: 32-bit tifier for host, router tface	IP Addressing
Ь	etw	rface: connection ween host, router and ical link	223.1.1.1 223.1.2.1 223.1.1.2 223.1.2.9
	mı - ho	uter's typically have ultiple interfaces st may have multiple terfaces	223.1.1.3 223.1.3.27 223.1.2.2
-		addresses associated wit terface, not host, router,	223.[.3.]] [223.1.3.2
		ress mng & resolution must be known well v	
d	o no	ot repeat it	223.1.1.1 = 11011111 00000001 00000001 00000001
			223 1 1 1
)	Renato.LoCigno@disi.unitn.it	Advanced Networking – Introduction 36

Router Architecture Overview Router main functions: routing algorithms and protocols processing, switching datagrams from an incoming link to an outgoing link input port output port


Router Components

Renato.LoCigno@disi.unitn.it

Speeding Up Routing Table Lookup

- Table is stored in a tree structure to facilitate binary search
- Content Addressable Memory (associative memory), eg Cisco 8500 series routers
- · Caching of recently looked-up addresses
- · Compression of routing tables

-			
(4)	Renato.LoCigno@disi.unitn.it	Advanced Networking – Introduction	3

**First generation routers: packet is copied under system's (single) CPU control; speed limited by Memory bandwidth. For Memory speed of B packet/sec or pps, throughput is B/2 pps **Input Port Port Port Port Port Port limited by Memory bandwidth. Sec or pps, throughput is B/2 pps **Modern routers: input ports with CPUs that implement output port lookup, and store packets in appropriate locations (= switch) in a shared Memory; eg Cisco Catalyst 8500 switches

Switching Via Bus

Advanced Networking – Introduction 41

- Input port processors transfer a datagram from input port memory to output port memory via a shared bus
- Main resource contention is over the bus; switching is limited by bus speed

Renato.LoCigno@disi.unitn.it

 Sufficient speed for access and enterprise routers (not regional or backbone routers) is provided by a Gbps bus; eg Cisco 1900 which has a 1 Gbps bus

A STATE OF THE STA			
	Renato.LoCigno@disi.unitn.it	Advanced Networking – Introduction	42

Switching Via An Interconnection Network

- · Used to overcome bus bandwidth limitations
- Banyan networks and other interconnection networks were initially developed to connect processors in a multiprocessor computer system; used in Cisco 12000 switches provide up to 60 Gbps through the interconnection network
- Advanced design incorporates fragmenting a datagram into fixed length cells and switch the cells through the fabric; + better sharing of the switching fabric resulting in higher switching speed

Renato.LoCigno@disi.unitn.it

Advanced Naturarking Introduction

Output Ports switch data link queuing processing line buffer fabrio (protocol. termination management decapsulation) Buffering is required to hold datagrams whenever they arrive from the switching fabric at a rate faster than the transmission rate Advanced Networking – Introduction 44 Renato.LoCigno@disi.unitn.it

Queuing At Input and Output Ports

- Queues build up whenever there is a rate mismatch or blocking.
 Consider the following scenarios:
 - Fabric speed is faster than all input ports combined; more datagrams are destined to an output port than other output ports; queuing occurs at output port
 - Fabric bandwidth is not as fast as all input ports combined; queuing may occur at input queues;
 - HOL blocking: fabric can deliver datagrams from input ports in parallel, except if datagrams are destined to same output port; in this case datagrams are queued at input queues; there may be queued datagrams that are held behind HOL conflict, even when their output port is available

Transport Layer: UDP & TCP

- Recall principles behind transport layer services:
 - multiplexing/ demultiplexing
 - reliable data transfer

 - flow control - congestion control
- instantiation and implementation in the Internet

Overview:

- transport layer services
- multiplexing/demultiplexing
- connectionless transport: UDP
- principles of reliable data transfer
- connection-oriented transport: TCP
 - reliable transfer
 - flow control
 - connection management

Renato.LoCigno@disi.unitn.it

Transport services and protocols

- provide *logical communication* between app' processes running on different hosts
- transport protocols run in end systems (primarily)

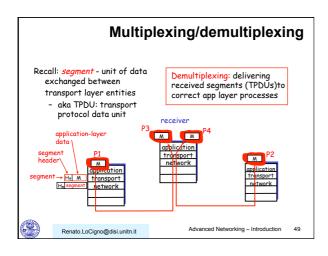
transport vs network layer services:

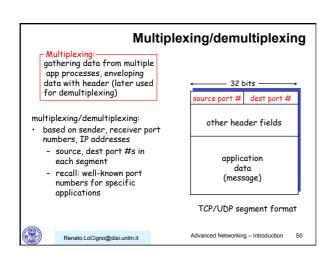
- network layer: data transfer between end systems
- transport layer: data transfer between processes
 - relies on, enhances, network layer services

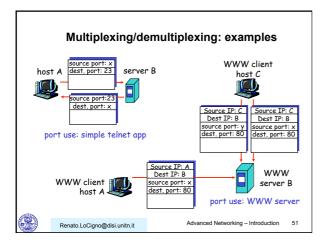
Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction

Transport-layer protocols


Internet transport services:


- reliable, in-order unicast delivery (TCP)
 - congestion
 - flow control
 - connection setup
- · unreliable ("best-effort"), unordered unicast or multicast delivery: UDP
- services not available:
 - real-time
 - bandwidth guarantees
 - reliable multicast



Renato.LoCigno@disi.unitn.it

1	6

UDP: User Datagram Protocol [RFC 768]

- "no frills," "bare bones" Internet transport protocol
- "best effort" service, UDP segments may be:
 - lost
 - delivered out of order to app
- connectionless:
 - no handshaking between UDP sender, receiver
 - each UDP segment handled independently of others

Why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small segment header
- no congestion control: UDP can blast away as fast as desired

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction 52

UDP: more

- often used for streaming multimedia apps
 - loss tolerant
 - rate sensitive
- · other UDP uses (why?):
 - DNS
 - SNMP
- reliable transfer over UDP: add reliability at application layer
 - application-specific error recover!

Renato.LoCigno@disi.unitn.it

source port # dest port # Length, in bytes of UDP *length checksum segment, including header Application

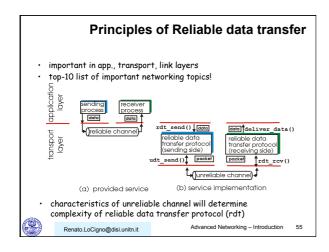
(message)

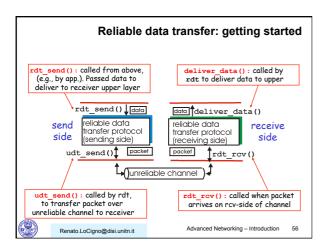
UDP segment format

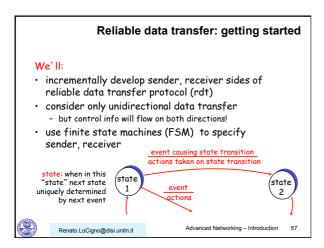
Advanced Networking – Introduction

UDP checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted segment


Sender:

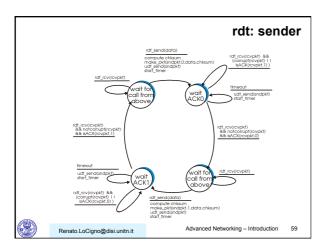

- · treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

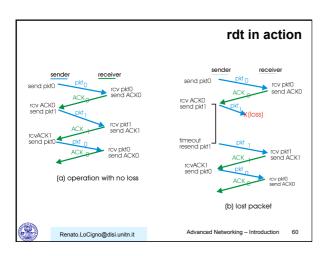

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonethless?

Renato.LoCigno@disi.unitn.it

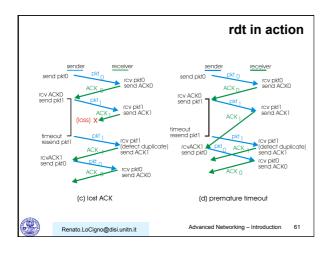
rdt: channels with errors and loss

<u>Assumption:</u> underlying channel can lose packets (data or ACKs)


- checksum, seq. #, ACKs, retransmissions will be of help, but not enough
- Q: how to deal with loss?
 - sender waits until certain data or ACK lost, then retransmits


Renato.LoCigno@disi.unitn.it

- yuck: drawbacks?


Approach: sender waits "reasonable" amount of time for ACK

- retransmits if no ACK received in this time
- if pkt (or ACK) just delayed (not lost):
 - retransmission will be duplicate, but use of seq. #'s already handles this
 - receiver must specify seq # of pkt being ACKed
- requires countdown timer

Performance of rdt

- · rdt works, but performance stinks
- example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

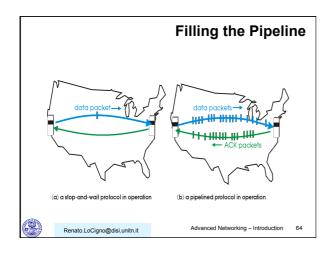
$$T_{transmit} = \frac{8kb/pkt}{10**9 \text{ b/sec}} = 8 \text{ microsec}$$

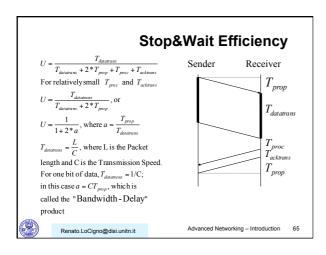
Utilization = U = $\frac{\text{fraction of time}}{\text{sender busy sending}} = \frac{8 \text{ microsec}}{30.016 \text{ msec}} = 0.00015$

- 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
- network protocol limits use of physical resources!

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction


Pipelined Protocols


- Channel utilization under a Stop&Wait protocol is not high when the propagation time is long relative to the transmission time
- Solution: pipelined protocols, where more than one packet can be sent without waiting for feedback, thus filling the 'pipeline'
- · Two major versions (and lots of variations on the theme):
 - Go-Back-N
 - Selective Repeat
- New requirements:
 - Buffering more than one packet at sender, and possibly at receiver too
 - Larger sequence numbers for identifying packets in transit

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction

Go-Back-N Window

· From definitions and figure above:

transmitted and acked [base, nextseqnum-1] transmitted and waiting for feedback, or

'outstanding'

[nextseqnum, base+N-1] numbers that can be used when packets are

provided by higher layer for transmission

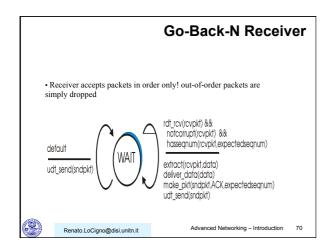
[base+N, maxseqnum] numbers that cannot be used until more packets are acked

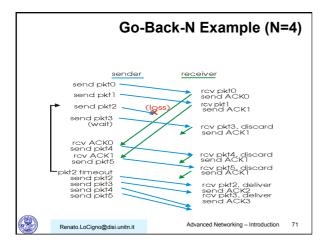
Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction 67

Go-Back-N Window (Cont.)

- · Because of the window metaphor, these protocols are also referred to as sliding window protocols
- · Stop&Wait can be viewed as a sliding window protocol, with window size N = 1, and sequence space = [0,1]
- Sequence number is carried in a fixed length field in the packet header; with k bits in the Sequence number field, the sequence space is
- Since sequence numbers must wrap around, all sequence number arithmetic is modulo




Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction 68

Go-Back-N Sender Window NOT full - No other packets outstanding Acks are cumulative base = getacknum(rvcpkt)+1 if (base == nextseqnum) WAIT No packets Advanced Networking – Introduction Renato.LoCigno@disi.unitn.it

_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

Go-Back-N Performance

- Bandwidth-Delay Product (ie "pipeline size") is defined as the product of the channel transmission speed and the propagation delay
- As transmission speed or propagation delay increases, more packets can be transmitted to "fill the pipeline"
- For channels with high Bandwidth-Delay product, Go-Back-N performance may deteriorate: the number of outstanding packets may be large and all these packets will be unnecessarily retransmitted when an error occurs

1611	unsilli rea when a	Terror occurs	
A 100			
	Renato.LoCigno@disi.unitn.it	Advanced Networking – Introduction	72

Selective Repeat

- Selective Repeat addresses the performance limitation of Go-back-N mentioned above
- Receiver indicates to sender which packet needs to be retransmitted; sender retransmits only that packet
- Receiver accepts and buffers packets received out of order within a limit imposed by a receiver window
- Groups of packets with <u>consecutive sequence numbers</u> (or completed sequences) are delivered to the higher layer at the sender
- A timer must be associated with each packet (but we can use one hardware timer to implement multiple logical timers)

Renato.LoCigno@disi.unitn.it

Advanced Naturarking Introduction

Selective Repeat Sender Event-Driven Algorithms

Higher layer calls to transmit data:

if there are unused sequence numbers
 then packetize and transmit;

· Timeout occurs:

transmit the (single) packet which timed out;

Ack is received:

mark packet acked;

if base can be moved

else reject the data;

then move it to the unacked packet with the lowest sequence number:

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction 75

Selective Repeat Receiver Event-**Driven Algorithms**

· Packet received, not corrupted, within current receive window:

Ack the received packet;

if not previously received

then buffer the packet;

deliver consectively sequenced received packets to higher layer; move window forward;

Packet received, not corrupt, sequence number below window base:

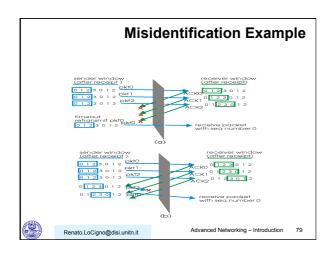
Ack the received packet; /* packet previously acked and already delivered to higher layer*/

Packet received, corrupt, or sequence number beyond window:

Ignore the packet

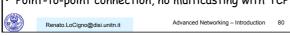
Renato.LoCigno@disi.unitn.it

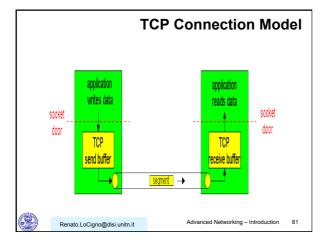
Advanced Networking – Introduction 76


Selective Repeat Example pkt0 sent 0 1 2 3 4 5 6 7 8 9 pkt0 rcvd, delivered, ACK0 sent 0 1 2 3 4 5 6 7 8 9 pkt1 rcvd, delivered, ACK1 sent 0 1 2 3 4 5 6 7 8 9 pkt3 sent, window full 0 1 2 3 4 5 6 7 8 9 pkt3 rcvd, buffered, ACK3 sent 0 1 2 3 4 5 6 7 8 9 ACK0 rcvd, pkt4 sent 0 1 2 3 4 5 6 7 8 9 pkt4 rcvd, buffered, ACK4 sent 0 1 2 3 4 5 6 7 8 9 pkt2 rcvd, deliver pkts 2, 3, 4 ACK2 sent 0 1 2 3 4 5 6 7 8 9 pkt2 timeout, pkt2 resent 0 1 2 3 4 5 6 7 8 9 = ACK1 rcvd, pkt5 sent 0 1 2 3 4 5 6 7 8 9 pkt5 rcvd, delivered, ACK5 sent 0 1 2 3 4 5 6 7 8 9 Advanced Networking – Introduction 77 Renato.LoCigno@disi.unitn.it

Setting The Window Size

- · The window size N is an important parameter
- · N should be large enough to allow filling the pipeline, thus making better utilization of the
- · On the other hand, N is limited by the protocols (ensure receiver correctly identifies packets)
- · It was found that N cannot be larger than half the sequence space length


Ô	7.	B
ŧ.	No.	B
V	and.	<u>y</u>


Renato.LoCigno@disi.unitn.it

Reliable Transport Layer: TCP

- · Full-duplex
- End-to-end protocol, transparent to network and lower layers in routers
- Connection-oriented, connection established through "three way handshake" protocol
- Byte Stream transfer, stream is divided into segments with a maximum segment size (MSS)
- · Reliability through an ARQ type protocol
- Flow Control: receiver controls the amount of <u>bytes</u> a sender is allowed to send
- Point-to-point connection, no multicasting with TCP

Flow/Congestion Control

- Flow Control (strict definition): regulate TCP flow so as to prevent receive buffer overflow at destination
- Flow Control (more general definition): regulate TCP flow so as to prevent buffer overflow anywhere along the path
- Congestion Control: regulate TCP flow(s) so as to avoid congestion in the entire network and to achieve efficient, fair sharing of resources.
- Key TCP flow/congestion mechanism: adjustable sender window

Renato.LoCigno@disi.unitn.it

Advanced Networking – Introduction 82

TCP Connection Management

- TCP connection is set up using the three way handshake protocol
- Special segments (SYN segment, SYNACK segment) exchange initial client and server sequence numbers and allocate buffers
- Three Way Handshake protocol allows to detect and eliminate "old" connection requests (more robust than two separate handshakes)
- Another Three Way Handshake (with FIN flag turned on) is used to close the connection, releasing all resources

Renato.LoCigno@disi.unitn.it