

Advanced Networking: Network Address Translation (NAT)

Renato Lo Cigno Renato.LoCigno@disi.unitn.it

4

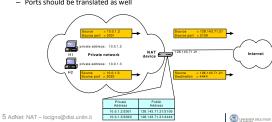
UNIVERSITÀ DEGLI STUE DI TRENTO

Network Address Translation

- Originally (RFC 1631 obsolete) a "simple" method for connecting a private network to the public Internet
 - Also called network or IP masquerading
- Now (Traditional NAT, RFC 3022) includes also port translation and is more correctly called NAPT: Network Address and Port Translation
 Payload (application) independent and almost transparent
- NAT evolved and evolves highly intertwined with Firewalls, Routing (a NAT is always also a Router), Traffic Monitoring, and Proxy
 - Often NAT techniques and implementations go beyond RFCs ... which follow
- NAT and NAT traversal evolves in parallel and are intertwined

2 AdNet: NAT – locigno@disi.unitn.it

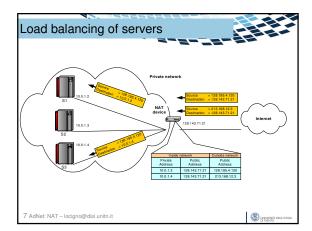
Private Internet Inte


One use of Basic NAT

- · Supporting migration between network service providers
- Scenario: IP addresses are obtained from the service provider. Changing the service provider requires changing all IP addresses in the network. \\
- NAT solution:
- Assign private addresses to the hosts of the corporate network
- NAT device has static address translation entries which bind the private address of a host to the public address
- Migration to a new network service provider merely requires an update of the NAT device. The migration is not noticeable to the hosts on the network
- The same can be done with properly configured DHCP: obsolete use!!

IP masquerading or NAPT

- A single (or few) public IP address is mapped to multiple hosts in a private network
 - Assign private addresses to the hosts of the corporate network
 - NAT device modifies the port numbers for outgoing traffic
 - Ports should be translated as well



Load balancing of servers

- Balance the load on a set of identical servers, which are accessible from a single IP address
- servers are assigned private addresses
- NAT device is a front-end for requests to the server from the public network
- The NAT device changes the destination IP address of arriving packets to one of the private addresses for a server
- Many strategies for assignment
 - Simple round-robin
 - Weighted round robin
 - With feedback from servers on the actual load

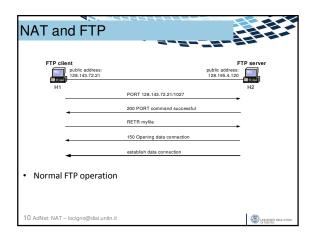
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

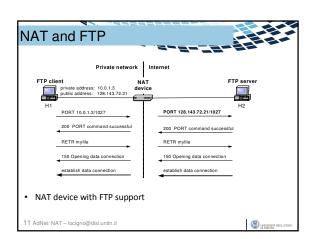
Concerns about NAT

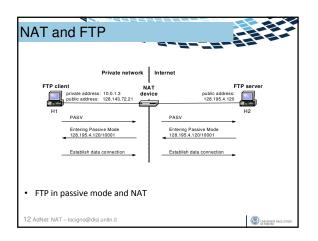


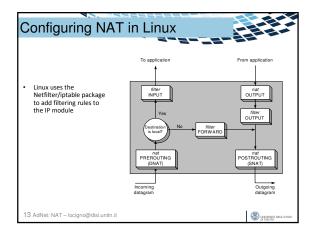
- Changing the IP address requires that NAT boxes recalculate the IP header checksum
- Modifying port number requires that NAT boxes recalculate TCP checksum
- Additional care is needed if a fragmented datagram reaches a NAT device to avoid inconsistent assignments to pieces of the same packet
- End-to-end connectivity:
 - NAT destroys universal end-to-end reachability of hosts on the Internet
 - A host in the public Internet often cannot initiate communication to a host in a private network
 - The problem is worse, when two hosts that are in a private network need to communicate with each other

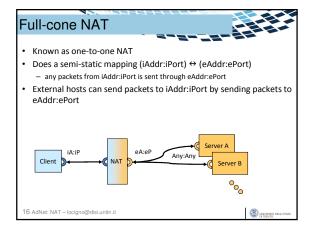
8 AdNet: NAT – locigno@disi.unitn.it

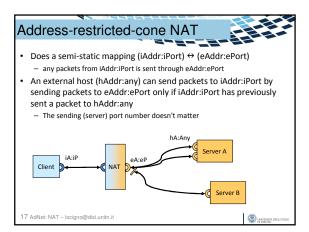


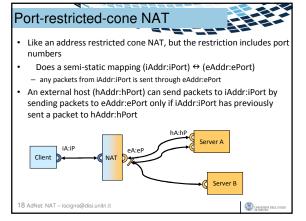

Further concerns about NAT

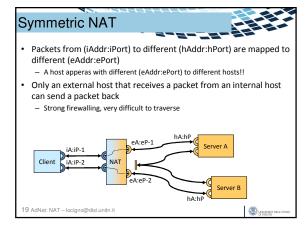


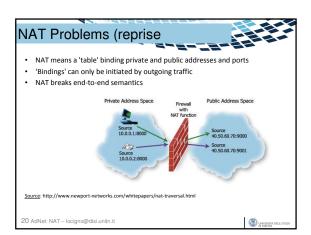

- Some NAT boxes inspect the payload of widely used application layer protocols and, if an IP address is detected in the payload, translate these addresses too
- Typical example is ftp
- Further problems with sftp because the payload is encripted

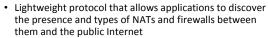

	W. Address and the second							
Iptable based NAT: examples								
۳.	ipiable bacca in it. examples							
•	First example	::						
	iptables ·	-t nat -A POSTROUTING -s 10.0.1.2						
		-j SNATto-source 128.143.71.21						
•	Pooling of IP addresses:							
	iptables ·	-t nat -A POSTROUTING -s 10.0.1.0/24						
		-j SNATto-source 128.128.71.0-128.	143.71.30					
•	ISP migration	:						
	iptables ·	-t nat -R POSTROUTING -s 10.0.1.0/24						
	-	-j SNATto-source 128.195.4.0-128.1	95.4.254					
IP masquerading:								
	iptables ·	-t nat -A POSTROUTING -s 10.0.1.0/24						
	-	-o eth1 -j MASQUERADE						
•	Load balancir	ng:						
	iptables	-t nat -A PREROUTING -i eth1 -j DNAT	to-					
	destinati	on 10.0.1.2-10.0.1.4						
14	AdNet: NAT – loci	gno@disi.unitn.it	UNIVERSITÀ DECLI STUDI					


NAT traversal and classification

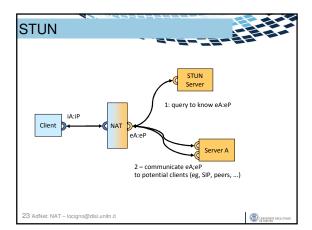



- Classification of NAT techniques come with methods to traverse NAT boxes
- STUN (Simple Traversal Utility for NAT RFC3489)
- Same acronym modified to Session Traversal Utilities for NAT in RFC5389
- Universally supports traversal for UDP only
 - RFC5389 supports (with some limits) also TCP and TLC
- STUN is a client-server protocol, with the server on the public side
- STUN servers are identifies via srv records of DNS
 - stun for UDP
 - stuns for TCP/TLC





Methods of solving the 'NAT Problem' Some proposals for solving NAT traversal are: • Simple Traversal of UDP Through Network Address Translation devices (STUN) • Traversal Using Relay NAT (TURN) • Universal Plug and Play (UPnP) • Tunnel Techniques


STUN

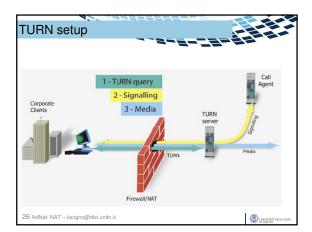
- Provides the ability for applications to determine the public Internet Protocol (IP) addresses allocated to them by the NAT
- STUN works with many existing NATs, and does not require any special behavior from them
- A STUN server in the public address space informs STUNenabled clients of the Public NAT IP address and port being used for that particular session

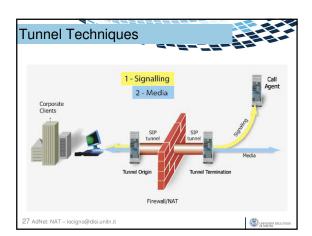
22 AdNet: NAT - locigno@disi.unitn.it

Operation of STUN

- STUN identifies eA;eP by inspecting STUN messages that arrive at the STUN server
- STUN-enabled hosts send an exploratory message to the external STUN server to determine the transmit and receive ports to use
- The STUN server examines the incoming message and informs the client which public IP address and ports were used by the NAT
- · These are communicated to e.g.
 - SIP proxies/buddies in the call establishment

24 AdNet: NMessages:i.unitn.it




TURN - Traversal Using Relay NAT

- TURN relies on a "counter" middlebox that is inserted in the communication path
- A TURN server is located
 - in the campus DMZ
- in the Service Provider network
- A TURN-enabled client sends initial messages to the TURN server
- The TURN server will forward the traffic reverting the NAT operation
- This information is used e.g.
 - in the SIP call establishment messages and for subsequent media streams
 in P2P gossipping messages
- Works with symmetric NAT
 - No change in the destination address seen by the NAT
 Heavy protocol!!

 - Can be used as a second resort
 See also ICE (Interactive Connectivity Establishment)

Tunnel Techniques

- A tunnel can be used to cross any Firewall/NAT
- The tunnel termination can be anywhere
- The Tunnel can be also secure (see IPSec)
- Can even be used to anonymize communications (see Onion Routing and Tor)
- Blocking tunnels is diffcult
 - impossible if they are TLS

ı	(2)	UNIVERSITÀ DEGLI STI
	100	DI TRENTO