Advanced Networking

Voice over IP: RTP/RTCP – The transport layer

Renato Lo Cigno Renato.LoCigno@disi.unitn.it

Requirements For Real-Time Transmission

- Need to emulate conventional telephone system
 - *Isochronous* output timing same with input timing
- IP Internet is **not** isochronous!
- Additional protocol support is required:
 - sequence information that allows detection of duplicate or reordered packets
 - each packet (indeed sub-part of it) must carry a separate *timestamp* that tells the receiver the exact time at which the data in the packet should be played
- Playback
 - Internet introduces burstiness
 - Jitter buffer used to smooth bursts
 - Protocol support needed

Illustration Of Jitter Buffer

- Data arrives in bursts
- Receiver *delays* playback until certain threshold,
 k playback point
 - k too small, still have jitter and freeze of info flow
 - k too large, extra delay noticeable to users
- Data leaves at steady rate

RTP: characteristics and functionalities

- Independent from the PHY (obvious!!!)
- Scalable
 - Unicast e multicast
- Defines separate logical channels for data and control
 - indeed a "pair" of protocols RTP-RTControlP
- Packet reordering at destination
- Delay jitter equalization with buffers (in addition to the playout buffer of the application)
- Sender identification
- Intra-media synchronization
- No predefined Port, but must be even

RTP: header format

The RTP header (12 bytes)

- Ver.(2 bits): Version of the protocol. Current is 2
- P (1 bit): Indicate if there are extra padding bytes at the end of the RTP packet.
- X (1 bit): Extensions to the protocol used (ELH present)
- CC (4 bits): Number of CSRC identifiers that follow the fixed header
- M (1 bit): If set means that the current data has some special relevance for the application defined in a profile (external to the protocol)
- PT (7 bits): Format of the payload and its interpretation by the application
- SSRC: Indicates the synchronization source and timing
- Extension header: Length of the extension (EHL=extension header length) in 32bit units, excluding the 32bits of the extension header

RTCP

- Real Time Control Protocol
- Functionalities:
 - Data Distribution Control
 - Session information advertisement (during the session, not for setup)
 - Distribute information about participants
 - Who is participating in session
 - Who is speaking now
 - QoS feedback
 - Error reporting
 - .

RTCP messages are sent on RTP-port+1

RTP Application Programming

Integrated Layer Processing

RTP sending process

- Sending a packet, RTP adds:
 - A timestamp per Application Data Unit (not per packet)
 - A Synchronisation Source Identifier (SSRC)
 - Randomly generated
 - Conflicts resolved
 - $\boldsymbol{\cdot}$ Uniquely identifies flows to receivers

Why is a flow identifier needed?

Multiple flows may come from the same process (audio and video), the receiver has to separate them (same IP and port)

Translation & Mixing

- Supports changing stream encoding during a session translation
- RTP can coordinate multiple data streams
- Up to 15 sources (c.f. 4-bit CC field)
- Header specifies mixing
 - Contributing source id SSRC of streams that were mixed
- Performed through relays, which also provides for multicast

RTP Relays

- relay (or application level routing)
 - operate on intermediary system
 - acts as both destination and source
 - relay data between systems
- mixer
 - combines streams from multiple sources
 - forwards new stream to one or more dests (multicast)
 - may change data format if needed
- translator
 - simpler, sends 1+ RTP packets for each one received

RTP Relays: Further functions

- Mixer
 - New Synchronisation Source Identifier
 - Add old SSRC as Contributing Source
 Identifiers
- Translator, manipulates the content, e.g. a transcoder

RTCP Packet Types

- have multiple RTCP packets in datagram
- Sender Report (SR)
- Receiver Report (RR)
- Source Description (SDES)
- Goodbye (BYE)
- Application Specific

RCTP Packets

neader	Length f sender	PRC PT = 200 SSRC o
-	(most sig. word)	NTP timestamp
-	(least sig. word)	NTP timestamp
sender	estamp	RTP tim
SC	acket count	Sender's p
	ctet count	Sender's o
	of first source)	
1	number of packets lost	Fraction lost Cumulative
report block 1	ence number received	Extended highest sequ
art b	val jitter	Interarri
cepc	sender report	Time of last
	t sender report	Delay since las
	C of nth source)	SSRC n (SSR)
E	number of packets lost	Fraction Cumulation
report block n		Extended highest segu
rt bl	val jitter	
c po	sender report	
-		Delay since las

(a) RTCP Sender Report

4	RC PT = 201 Length	V P RC
	SSRC of sender	
1	SRC_1 (SSRC of first source)	SSRO
	Cumulative sumber of packate last	Fraction
3	nded highest sequence number received	Extended
amost block	Interarrival jitter	
	Time of last sender report	Tir
	time of last serioer report	
	Delay since last sender report	Dela
	SRC_n (SSRC of nth source)	
	SRC_n (SSRC of nth source)	SSR(Fraction lost
	SRC_n (SSRC of nth source)	SSR(Fraction lost
something a second s	SRC_n (SSRC of nth source)	SSR(Fraction lost Extended

Receiver Repon

V P sub- type PT = 204	Length
SSRC	CSRC
name ((ASCII)
Application-de	ependent data

(c) RTCP Application-defined packet

VP SC	PT = 202	Length	
	SSRC/CS	SRC_1	
	SDES in	tems	chunk
	SSRC/CS	SRC_n	- - -
	SDES if	tems	chunk

(d) RTCP Source Description

V SC PT = 203	Length
SSRC/CS	RC_1
SSRC/CS	RC_n
SSRC/CS	RC_n

(e) RTCP BYE

Renato.LoCigno@disi.unitn.it

16 Advanced Networking - VOIP: RTP/RTCP

RTCP: generation of reports

- Frequency inv. Proportional to the number of members
 - Excellent scalability (BW limited)
 - Initial "storm"

Report calculations

- Estimate total bandwidth of session
- Sender period T:
- Receiver period T:
- Next packet = last packet + Max(5s, T) + random
 (0.5-1.5)
- Random prevents synchronization and storms

$$T = \frac{\#Participants}{0.25 \times 0.05 \times SessionBW} \times avg._RTCP_packet_siz$$

RTCP Packets

Receiver report packets:

 fraction of packets lost, last sequence number, average interarrival jitter

Sender report packets:

 SSRC of the RTP stream, the current time, the number of packets sent, and the number of bytes sent

RTCP Bandwidth Scaling

 RTCP attempts to limit its traffic to 5% of the session bandwidth.

<u>Example</u>

- Suppose one sender, sending video at a rate of 2 Mbps. Then RTCP attempts to limit its traffic to 100 Kbps.
- RTCP gives 75% of this rate to the receivers, remaining 25% to the sender

- The 75 Kbps is equally shared among receivers:
 - With R receivers, each receiver gets to send RTCP traffic at 75/R Kbps
- Sender gets to send RTCP traffic at 25 Kbps
- Participant determines RTCP packet transmission period by calculating avg RTCP packet size (across the entire session) and dividing by allocated rate

