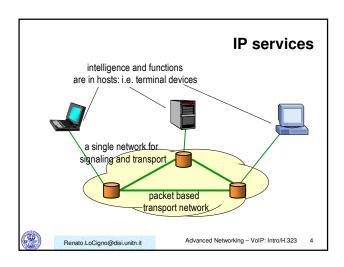
Advanced Networking

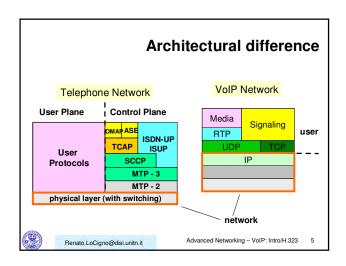
Voice over IP: Introduction and H.323 standard

Renato Lo Cigno Renato.LoCigno@disi.unitn.it

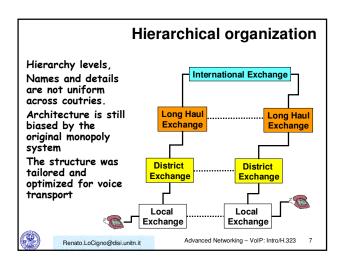
VoIP: Integrating Services

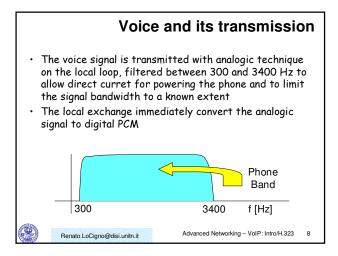
- Voice on IP Networks is just "another application"
- Nothing "special" or "specialized" as traditional telephony, where the network and the service are joint, coupled and sinergic
- VoIP is realized through end-to-end application level protocols, normally not strictly tailored for voice
- · Is Qo5 required?

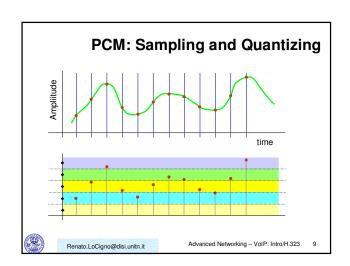


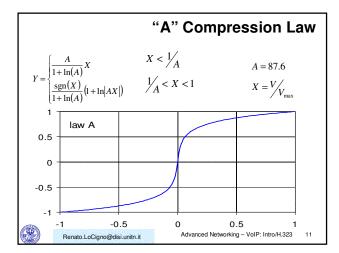

Renato.LoCigno@disi.unitn.it

Advanced Networking - VolP: Intro/H.323


Plain Old Telephone Service (POTS) functional intelligence signaling network SS7 silly user terminals Advanced Networking - VoIP: Intro/H.323 3


-			
-			
•			
_			
-			
•			
_			
-			
•			
-			
•			
-			
-			
-			
-			
-			




PCM

- · PCM (Pulse Code Modulation) encoding is nothing else than sampling and quantizing (with non-linear quantization for telephone networks)
- · Linear quantizing means equal intervals; non linear (companding) means different intervals as a function of amplitude
 - Linear PCM: CD (~44 kHz, 16 bit =~ 1.5 Mbit/s)
 - Companding PCM: telephones (8kHz, 8 bit = 64kbit/s). Based on the fact that human ear sensitivity is logaritmic

Renato.LoCigno@disi.unitn.it

Advanced Networking - VolP: Intro/H.323 10

Service-specific problems

- · Voice is "just another service", but ...
- · Is it possible to realize e-t-e conversational services without involving the network layer?
- Signaling in telephony has application-level functionalities
 - access
 - callee identification
 - negotiation of characteristics and quality
 - billing and accounting ...
- But also control function on the transport channel
 - routing and setup
 - resource finding and reservation

Renato.LoCigno@disi.unitn.it

Advanced Networking - VolP: Intro/H.323 12

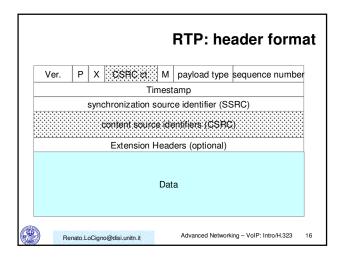
Service-specific problems Application level signaling are simplified by the IP e-t-e approach Network services for the control of the channel (e.g. QoS) simply do not exist in IP Routing is not controllable (no alternate routing), hot-swap reliability is not present, QoS control is almost impossible unless by "circuit-like" dimensioning.

Advanced Networking - VolP: Intro/H.323

Real-Time Transport in IP · Real Time (Transport) Protocol Developed by Audio Video Transport Working Group of IETF **RTP** • RFC 1889 obsoleted by 3550/3551 · It is an add-on to UDP building a connection-oriented unreliable **UDP** channel Adds and header with information for: - Multimedia data management (coding, IP timestamping, etc.) Error and QoS control (feedback on the reverse channel) Advanced Networking - VoIP: Intro/H.323 Renato.LoCigno@disi.unitn.it

RTP: characteristics and functionalities

- · Independent from the PHY (obvious!!!)
- Scalable
 - Unicast e multicast


Renato.LoCigno@disi.unitn.it

- · Defines separate logical channels for data and control
 - indeed a "pair" of protocols RTP-RTControlP
- Packet reordering at destination
- Delay jitter equalization with buffers (in addition to the playout buffer of the application)
- · Sender identification
- · Intra-media synchronization
- · No predefined Port, but must be even

Renato.LoCigno@disi.unitn.it

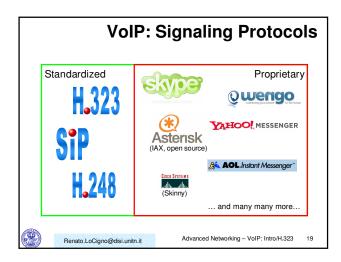
Advanced Networking - VoIP: Intro/H.323

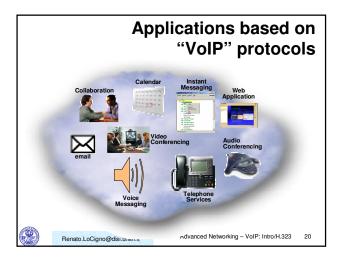
The RTP header (12 bytes)

- Ver.(2 bits): Version of the protocol. Current is 2
- P (1 bit): Indicate if there are extra padding bytes at the end of the RTP packet.
- · X (1 bit): Extensions to the protocol used (ELH present)
- CC (4 bits): Number of CSRC identifiers that follow the fixed header
- M (1 bit): If set means that the current data has some special relevance for the application defined in a profile (external to the protocol)
- PT (7 bits): Format of the payload and its interpretation by the application
- SSRC: Indicates the synchronization source and timing
- Extension header: Length of the extension (EHL=extension header length) in 32bit units, excluding the 32bits of the extension header

Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323


RTCP


- · Real Time Control Protocol
- · Functionalities:
 - Data Distribution Control
 - Session information advertisement (during the session, not for setup)
 - QoS feedback
 - Error reporting
 - ...
- RTCP messages are sent on RTP-port+1

Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323

Brief History of VoIP (1)

- Sharing expensive lines (end of '90)
 - VoIP enters the enterprise market as a way to save telecom (transmission) cost by using excess data capacity for Voice
 - using the same lines for data and voice communication
 - utilizing existing Local Area Networks (LANs) and WAN connectivity for voice communication, i.e. reduce enterprises' bill from PSTN operator
 - ITU-T promotes H.323 as protocol (ISDN-style VoIP protocol)

	Renato.LoCigno@disi.unitn.it
OBM	

Advanced Networking – VoIP: Intro/H.323 21

Brief History of VoIP (2)

- Network Convergence (beginning of '00)
 - network convergence:
 - · data over ISDN was initially successful in some countries (Ger, J) but usage price was high and bandwidth was soon too limited
 - when Internet bandwidth became abundant VoIP success started
 - IETF completes standardization of an Internet-style VoIP signaling protocol: Session Initiation Protocol (SIP) and media transport protocol (RTP)
 - Internet (IP) becomes the new Integrated Services Digital Network
 - Operator's convergence began with VoIP in the backbone
 - only lately moving to the access (2005+)

Renato.LoCigno@disi.unitn.it

Advanced Networking - VolP: Intro/H.323 22

Brief History of VolP (3)

- SIP becomes the dominant VoIP protocol ('00 until now)
 - H.323 had the earlier start, but more oriented towards local networks
 - ISDN-style H.323 was more liked by traditional operators
 - SIP is a text-based protocol on to of IP, much like HTTP and XML
 - >therefore easy to understand for IP and/or web experts
 - ➤ SIP better suited for large scale application
 - >efficiency is poor
 - > security threats
 - but SIP became the choice of Internet community
 - · Standardized by IETF

Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323

Brief History of VolP (4)

- breakthrough: SIP chosen by 3GPP as basis for IMS, i.e., all multimedia services (including VoIP) in 3G
- · The consumer segment becomes aware of VoIP
 - Skype clients are widespread
 - using proprietary protocols
 - consumer market is not interested in standards -
 - the business model of Skype owned by ebay is "the whole world can talk for free" - revenue is made through arbitrage:
 - Skype out / Skype in Gateway to PSTN
 - advertising
 - advertisements, lack of privacy/security, quality are the price consumers pay

Renato.LoCigno@disi.unitn.it

Advanced Networking - Vol P: Intro/H.323 24

Today's Situation

Three VoIP market segments

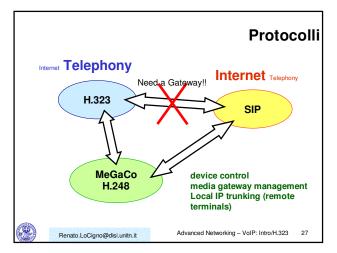
- 1. enterprise
- 2. public operators
- 3. consumer

What about protocols?

- H.323 is still in the market but will probably die sooner or later
 ⇒ no point to get into H.323 market in 2006/7/8/9/....
- SIP is already dominating
 - · today new investments are based on SIP
 - SIP large scale deployment still in the beginning
 - · already dominating the corporate market
- entering the operator market
- Proprietary protocols, e.g. Skype, are competing in consumer market only

Renato.LoCigno@disi.unitn.it

Advanced Networking - VolP: Intro/H.323 25


Signaling and Service Protocols

- · H.323
 - Vertical, Hierarchic, Complex, Rigid, Omnicomprehensive "LAN oriented", not easy to integrate with PSTN
- STF
 - Horizontale, Flat, Simple, "WAN oriented", impossible to integrate with PSTN
- MeGaCo (H.248)
 - Vertical, Hierarchical, Complementary to H.323/SIP, Separates data and signaling for management, easy support for soft-switches PSTN-oriented, used locally to control mediagateways, not ment as "entire system"

Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323

Protocols "philosophy"

Internet Telephony

- voice oriented, try to emulate POTS on top of IP
- "ISDN-like" signaling, protocol piles separated for signaling and data
- aims at the integration with SS7

Internet Telephony

- VoIP ⇒ Y.A.I.S. (Yet Another Internet Service) like -casting, conferencing, ...
- voice will be a tiny fraction of the traffic
- integrates voice with mail, web, etc.
- telephone is just a particular case of voice, which is a particular case of media, and sessions can be multimedia

Advanced Networking – VolP: Intro/H.323 28

Protocols & Relations

Asterisk
Corporate
H.323
island
Internet
SIP

MeGaCo
island
island
island

Standard protocols: H.323

H.323: "Packet-based multimedia communications systems"

H₋323

- recommendation from ITU-T

Renato.LoCigno@disi.unitn.it

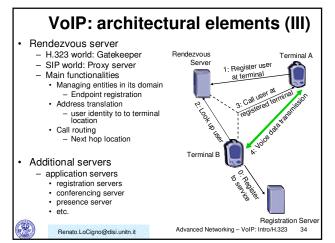
- used to establish, modify, terminate multimedia sessions (e.g. VoIP calls)
- it is based on H.320 (ISDN Videoconferencing)
 - · multistage signaling
 - good interoperability with PSTN
 - · it inherits its complexity
 - · recent recommendations extend it to wide deployments
- some operators deployments are still H.323-based
 - many operators have already SIP in their core network

Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323

Standard protocols: SIP

- · SIP: Session Initiation Protocol
 - IETF standard
 - used to establish, modify, terminate multimedia sessions (e.g. VoIP calls)
 - it is based on HTTP (light protocol)
 - it inherits its vulnerabilities
 - easily extensible
- It supports name mapping and redirection services transparently
 - personal mobility: one single externally visible identifier regardless of the network location
- · Where is SIP used?
 - corporate deployments
 - 3GPP IMS (PS signaling protocol)
 - TISPAN NGN will be based on core IMS and thus on SIP as well


Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323 31

VoIP: architectural elements (I) · Terminals (end-points) - hardware clients - software clients - optional · video codec · data transmission · instant message presence Renato.LoCigno@disi.unitn.it

VoIP: architectural elements (II) Gateway - generic: an interface between two worlds - specific: interface between packet-based networks and circuit switched networks or between different architectures in packet-based networks (e.g. SIP—Skype) PSTN-IP Renato.LoCigno@disi.unitn.it

-	
-	
-	
-	
-	
•	
-	
•	
-	
•	
•	
-	
-	

H.323: Delving deeper

- It's the first architecture developed fo audio/video services on packet (not necessarily IP!!) networks
- Is has been defined in the "telco" (ITU-T) world, it's probably still the most diffused protocol for VoIP
- but just because it was the first one

Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323

H.323

- The architecture is derived from videoconferencing in LANs services defined in the '80s and early '90s
 - · Version 1 (1996) Multimedia over LAN
 - · Version 2 (1998) Telephony over IP
 - Version 3 (1999) + Communications across administrative domains
 - Version 4 (2000) + Supplemental services + webbased service creation
 - Version 5 (2003) + Use of URLs and DNS + Video conferencing support + ...
 - Version 6 (2006) + Security +

Renato.LoCigno@disi.unitn.it

Advanced Networking - VoIP: Intro/H.323

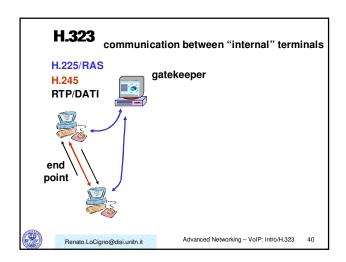
H.323 architecture • Enables direct end-to-end signaling • terminal interconnection • logical channels (for the media) set up • Uses directly the IP address and the TCP/UDP ports Advanced Networking - VoIP: Intro/H.323 37

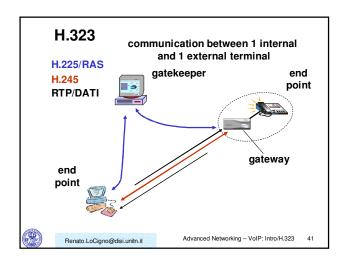
H.323 elements (logical devices)

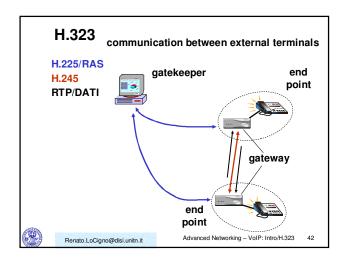
- End-point: terminals enabled for communications
- Gateway: inter-working unit with other networks (PSTN/ISDN and SIP in particular)
- Gatekeeper: controls communications (central office)
- MCU (Multipoint Control Unit): multicast communications (conferencing) and supplemental services

Advanced Networking - VolP: Intro/H.323

H.323: compulsory components


- H.225 (connection and status control):
 - Q.931 user signaling
 - RAS (Registration, Authentication and Status) endpoint to gatekeeper signaling
- H.245: e-t-e signaling on terminal capabilities and "media" that support information
- RTP/RTCP: transport and flow control
- G.711: mandatory coding (64 kbps) all other codecs are optional!!


	33		
B	U	9	0
糠	Ä	ż	É


Renato.LoCigno@disi.unitn.it

Advanced Networking - VolP: Intro/H.323

1	3

H.323 architecture

- A H.323 network is composed by one or more "zones"
- One zone is a logical ensable of H.323 devicews managed by a single gatekeeper
- Zone boundaries can be based on administrative limits, addressing structures, geography, etc.
- Calls involving more zones are managed involving more gatekeepers, a working mode defined in Version 3 and available in devices 2001-02

Renato.LoCigno@disi.unitn.it

Advanced Networking - VolP: Intro/H.323

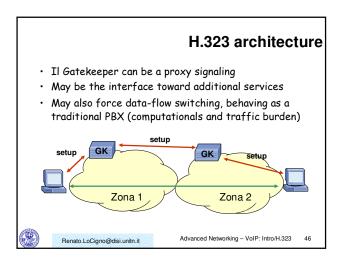
Gatekeeper

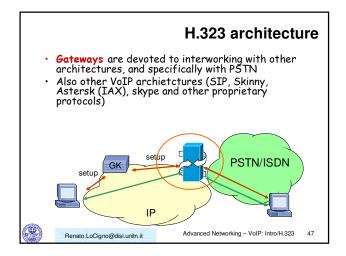
- It's the "intelligent" device of H.323 architecture and services
- Each gatekeeper manages a "zone" (a collection of end-points, gateways, MCUs)
- It has the following compulsory functionalities:
 - Admission Control (verification of end-points authrization to place and receive calls)
 - Address translation (telephone alias <-> IP)
 - Bandwidth control (if required by the call)
 - Zone management

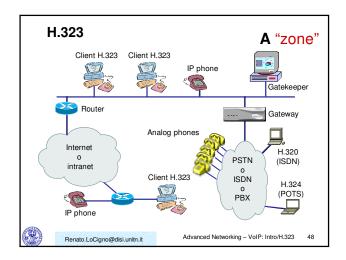
Renato.LoCigno@disi.unitn.it

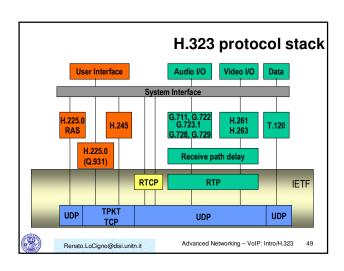
Advanced Networking - VoIP: Intro/H.323

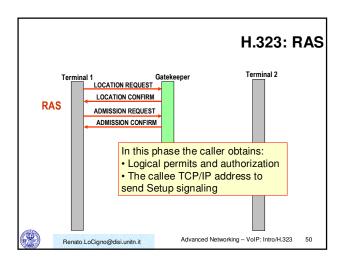
Gatekeeper

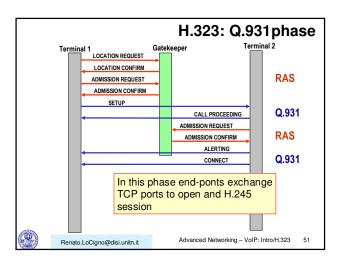

- May implmenen optional functions and features
 - Autorization
 - Resource Management
 - Call control signalling (act as randevouz point also for terminal-to-terminal signaling -H.245)
 - Resource Reservation (for end-point not able to run reservation protocols like RSVP)
 - Call management (multimedia calls and complex services)
 - Gatekeeper management information (remote management via SNMP on standard MIBs)
 - Directory services

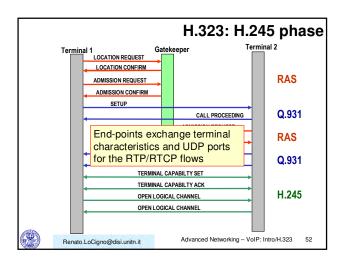


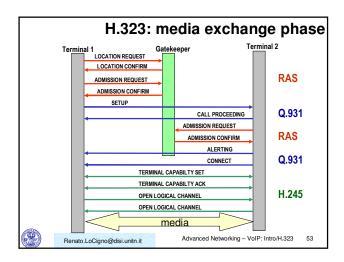

Renato.LoCigno@disi.unitn.it

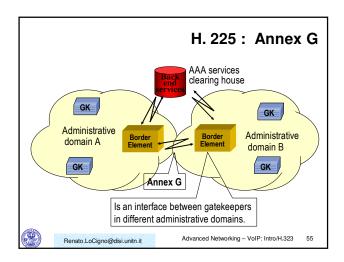

Advanced Networking - VoIP: Intro/H.323


	-		







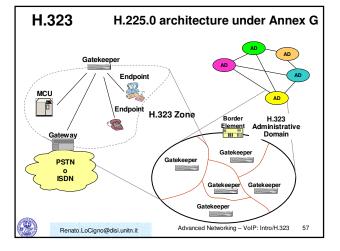


H.225: Annex G

- Introduces methods to implement fundamental services when a call is setup across multiple administrative domains
 - global address resolution
 - access authorization
 - usage reporting
- Introduces a new netwokr element: the Border Element

	Renato.LoCigno@disi.unitn.it
C/Allico	

Advanced Networking - VoIP: Intro/H.323



H. 225: Annex G

- Border Elements (and Clearing Houses) exchange information on:
 - reachability
 - · cost
- "I'll route calls to 1303*, and I'll charge 8 cents a minute peak, 5 cents a minute off peak"
- "I can resolve everything for 33*"
- "I can resolve everything for *@cisco.com

Advanced Networking - VolP: Intro/H.323

