Advanced Networking

Routing: RIP, OSPF, Hierarchical routing, BGP

Renato Lo Cigno Renato.LoCigno@disi.unitn.it

Routing Algorithms: One or Many?

- Is there a single routing protocol in the Internet?
- How can different protocols and algorithms coexist
 - Homogeneous results
 - Risk of incosistent routing
- Complexity of routing algorithms/protocols
 - Can they scale?
 - There is a tradeoff between traffic and computation?
- Hierarchical routing
- · Policy routing: what is it, why not "performance"?

Renato.LoCigno@disi.unitn.it

Advanced Networking – Routing

RIP - History

- * Late 1960s: Distance Vector protocols were used in the ARPANET
- * Mid-1970s: XNS (Xerox Network system) routing protocol is the precursor of RIP in IP (and Novell's IPX RIP and Apple's routing protocol)
- * 1982: Release of routing software for BSD Unix
- * 1988: RIPv1 (RFC 1058)
 - classful routing
- * 1993: RIPv2 (RFC 1388)
 - adds subnet masks with each route entry
 - allows classless routing
- * 1998: Current version of RIPv2 (RFC 2453)

Renato.LoCigno@disi.unitn.it

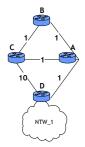
RIP at a glance

- · A simple intradomain protocol
- Straightforward implementation of Distance Vector Routing...
 - Distributed version of Bellman-Ford (DBF)
 - ...with well known issues
 - slow convergence
 - works with limited network size
- · Strengths
 - simple to implement
 - simple management
 - widespread use

Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing

RIP at a glance


- Metric based on hop count
 - maximum hop count is 15, with "16" equal to "∞" · imposed to limit the convergence time
 - the network administrator can also assign values higher than 1 to a single hop
- Each router advertises its distance vector every 30 seconds (or whenever its routing table changes) to all of its neighbors
 - RIP uses UDP, port 520, for sending messages
- · Changes are propagated across network
- Routes are timeout (set to 16) after 3 minutes if they are not updated

Renato.LoCigno@disi.unitn.it

Advanced Networking – Routing 5

Recall: "counting to infinity" problem

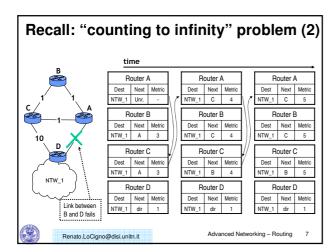
Router A					
Dest Next Metric					
NTW_1	D	2			
Router B					
Dest	Next	Metric			
NTW_1	Α	3			
Router C					
Dest	Next	Metric			

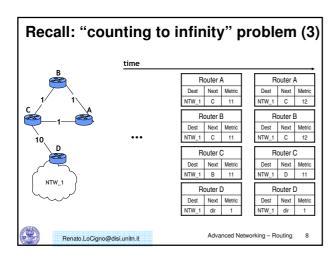
Router D

Dest Next Metric

routing table for network NTW_1

Router D is directly connected to


 Consider the entries in each


	Renato.LoCigno@disi.unitn.it
CARE!	Heriato.EoCigno@disi.driiti1.it

Advanced Networking - Routing

NTW_1

2

RIP: solution to "counting to infinity" • Maximum number of hops bounded to 15 • this limits the convergence time • Split Horizon • simple • each node omits routes learned from one neighbor in update sent to that neighbor • with poisoned reverse • each node include routes learned from one neighbor in update sent to that neighbor, setting their metrics to infinity • drawback: routing message size greater than simple Split Horizon

RIP: solution to "counting to infinity" (cont'd)

- · Triggered updates: nodes send messages as soon as they notice a change in their routing tables
 - only routes that has changed are sent
 - faster reaction...
 - ...but more resources are used (bandwidth, processing) · cascade of triggered updates
 - superposition with regular updates

Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing

RIP-1: Message Format Command: 1=request 2=response RIP Message - Updates are replies whether asked for or not - Initializing node broadcasts ommand Version request Requests are replied to immediately address family 0...0 one route entry (20 bytes) IP address (32-bit) Version: 1 Address family: 2 for IP 0...0 IP address: non-zero network portion, zero host portion s family 0...0 Identifies particular network IP address (32-bit) Metric 0...0 - Path distance from this 0...0 router to network

Typically 1, so metric is hop count metric (up to 25 total route entries) Advanced Networking - Routing

RIP procedures: introduction

RIP routing tables are managed by application-level process

Renato.LoCigno@disi.unitn.it

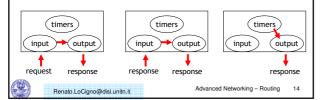
- e.g., routed on UNIX machines
- Advertisements are sent in UDP packets (port 520)
- RIP maintains 3 different timers to support its operations
 - Periodic update timer (25-30 sec)
 - used to sent out update messages
 - Invalid timer (180 sec)
 - If update for a particular entry is not received for 180 sec, route is invalidated
 - Garbage collection timer (120 sec)
 - An invalid route in marked, not immediately
 - For next 120 s. the router advertises this route with distance infinity

Renato.LoCigno@disi.unitn.it

	(route	D
TCP		UDP	
	ΙP		Ý
Dat	a Lir	ık	
Phy	ysica	l	+

RIP procedures: input processing

- Request Messages
 - they may arrive from routers which have just come up
 - action: the router responds directly to the requestor's address and port
 - · request is processed entry by entry
- · Response Messages
 - they may arrive from routers that perform regular updates, triggered updates or respond to a specific auery
 - action: the router updates its routing table
 - in case of new route or changed routes, the router starts a triggered update procedure

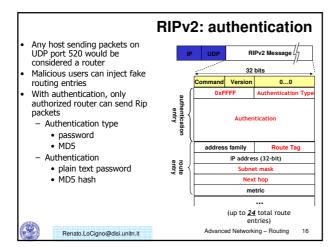


Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing 13

RIP procedures: output processing

- · Output are generated
 - when the router comes up in the network
 - if required by the input processing procedures
 - by regular routing update
- Action: the router generates the messages according to the commands received
 - the messages contain entries from the routing table



RIPv2: Message Format

- Version: 2
- Route Tag: used to carry information from other routing protocols
 - e.g., autonomous system number
- Subnet mask for IP address
- Next hop
 - identifies a better next-hop address on the same subnet than the advertising router, if one exists (otherwise 0....0)

I	P UDP	RIPv2 Message			
	*******	32	bits	\bigcap	
	Comman	d Version	00		
0	addre	ss family	Route Ta	ıg	
one route entry (20 bytes)		IP addres	ss (32-bit)		
byt .	\	Subne	t mask		
ent es)	Next hop				
Ž	metric				
	addre	address family Route Ta			
		IP addre	ss (32-bit)		
		Subne	t mask		
		Nex	t hop		
		metric			
			total route tries)		
	Advanced Networking – Routing 15				

Renato.LoCigno@disi.unitn.it

RIPv2: other aspects

- · Explicit use of subnets
- · Interoperability
 - RIPv1 and RIPv2 can be present in the same network since RIPv1 simply ignores fields not known
 - · RIPv2 responds to RIPv1 Request with a RIPv1 Response
- Multicast
 - instead of broadcasting RIP messages, RIPv2 uses multicast address 224.0.0.9

1	Renato.LoCigno@disi.unitn.it	
CHARLOY.	Y 7	

Advanced Networking – Routing

RIP limitations: the cost of simplicity

- Destinations with metric more than 15 are unreachable
 - If larger metric allowed, convergence becomes lengthy
- Simple metric leads to sub-optimal routing tables
 - Packets sent over slower links
- Accept RIP updates from any device (if no security is implemented)
 - Misconfigured device can disrupt entire configuration

1	2	Ř	g	b	5
ø	ч	u	ÿ	٦	
80	Ā	В	P		ē

Renato.LoCigno@disi.unitn.it

RIP Was the first ... but ...

- · Why is RIP not enough to manage the Internet?
- · Can Link-State protocols perform better?
 - OSPF
 - MOSPF (no MRIP exists!!)
- Inter-AS routing requires an entirely different approach ... if not for else for the sake of competition!

Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing 19

Non-RIP, DV Protocols: EXAMPLE IGRP (Interior Gateway Routing Protocol)

- · CISCO proprietary; builds on RIP (mid 80's)
- · Distance Vector, like RIP
- several cost metrics (delay, bandwidth, reliability, load etc.)
- · uses TCP to exchange routing updates
- $\,\cdot\,$ routing tables exchanged only when costs change
- Loop free routing achieved by using a Distributed Updating Alg. (DUAL) based on *diffused computation*
- In DUAL, after a distance increase, the routing table is frozen until all affected nodes have learned of the change (cfr. split horizon in RIP)

Renato.LoCigno@disi.unitn.it

Advanced Networking – Routing 20

Open Shortest Path First (OSPF)

- · RIP limited in large internets
- OSPF is often preferred interior routing protocol for TCP/IP based internets
- · Uses link state routing
- Floods the messages to all routers in the AS (area)

Renato.LoCigno@disi.unitn.it

OSPF "advanced" features (not in RIP) • Security: all OSPF messages are authenticated (to prevent malicious intrusion); • TCP connections used • Multiple same-cost paths allowed

- Multiple same-cost paths allowed
 only one path in RIP
- For each link, multiple cost metrics for different TOS (eg, satellite link cost set "low" for best effort; high for real time)
- Integrated uni- and multicast support: Multicast (MOSPF) uses same topology data base as OSPF
- · Hierarchical OSPF in large domains

J	d	ಷ	3.	D	h	ı
	r	ĕ	ı	9	٩	
ä	ē	'n	٥	b		Ц
		à	ø	ic.		y

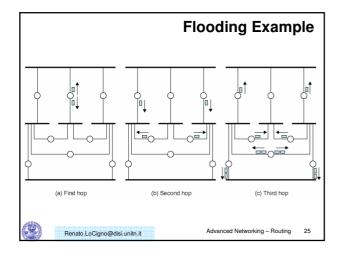
Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing 22

Link State Routing

- When initialized, router determines link cost on each interface
- Router advertises these costs to all other routers in topology
- · Router monitors its costs
 - When changes occurs, costs are re-advertised
- Each router constructs topology and calculates shortest path to each destination network
- · No distributed version of routing algorithm
- · Can use any algorithm
 - Dijkstra is recommended and normally used
 - All routers in AS must use same algorithm

Renato.LoCigno@disi.unitn.it


Advanced Networking - Routing 23

Flooding

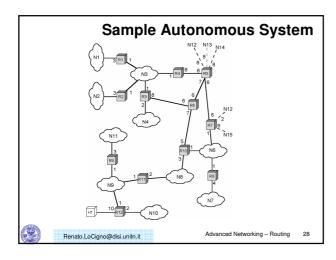
- Packet sent by source router to every neighbor
- Incoming packet resent to all outgoing links except source link
- · Duplicate packets already transmitted are discarded
 - Prevent incessant retransmission
- All possible routes tried so packet will get through if route exists
 - Highly robust
- · At least one packet follows minimum delay route
 - Reach all routers quickly
- · All nodes connected to source are visited
 - All routers get information to build routing table
- · High traffic load

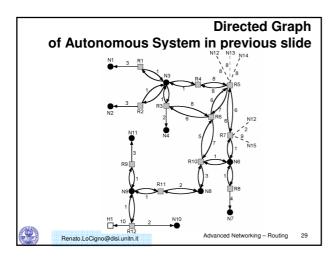
Renato.LoCigno@disi.unitn.it

OSPF Overview

- Router maintains descriptions of state of local links
- Transmits updated state information to all routers it knows about (flooding)
- · Router receiving update must acknowledge
 - Lots of traffic generated
- · Each router maintains database
 - Directed graph

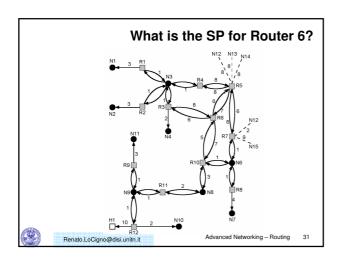
Renato.LoCigno@disi.unitn.it

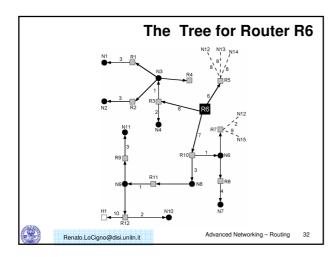

Advanced Networking - Routing

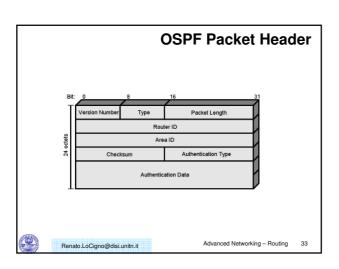

Router Database Graph

- Vertices
 - Router
 - Network
 - TransitStub
- · Edges
 - Connecting two routers
 - Connecting router to network
- Built using link state information from other routers

Renato.LoCigno@disi.unitn.it




Link Costs

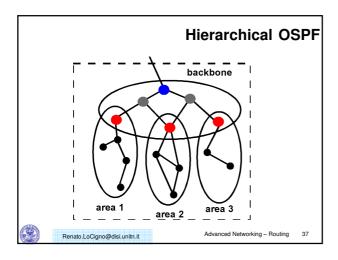

- Cost of each hop in each direction is called routing metric
- \cdot OSPF provides flexible metric scheme based on type of service (TOS)
 - Normal (TOS) 0
 - Minimize monetary cost (TOS 2)

 - Maximize reliability (TOS 4)Maximize throughput (TOS 8)
 - Minimize delay (TOS 16)
- Each router can generate 5 spanning trees (and 5 routing tables) AS decision!

Renato.LoCigno@disi.unitn.it

Packet Format Notes · Version number: 2 is current · Type: one of 5, see next slide · Packet length: in octets including header · Router id: this packet's source, 32 bit · Area id: Area to which source router belongs Authentication type: - Null - Simple password - Encryption · Authentication data: used by authentication procedure Renato.LoCigno@disi.unitn.it Advanced Networking - Routing 34 **OSPF Packet Types** 1. Hello: used in neighbor discovery 2. Database description: Defines set of link state information present in each router's database 3. Link state request 4. Link state update 5. Link state acknowledgement Advanced Networking - Routing Renato.LoCigno@disi.unitn.it **Areas** · Make large internets more manageable · Configure as backbone and multiple areas · Area - Collection of contiguous networks and

hosts plus routers connected to any included


routers belonging to multiple areas

Renato.LoCigno@disi.unitn.it

 Backbone - contiguous collection of networks not contained in any area, their attached routers and

Advanced Networking - Routing

network

Operation of Areas

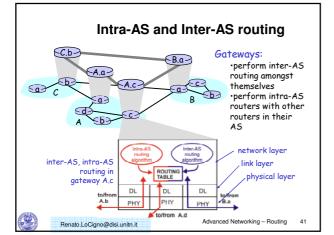
- Each area runs a separate copy of the link state algorithm
 - Topological database and graph of just that area
 - Link state information broadcast to other routers in area
 - Reduces traffic
 - Intra-area routing relies solely on local link state information

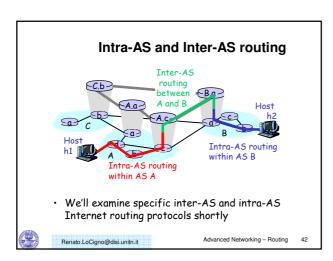
Renato.LoCigno@disi.unitn.it

Advanced Networking – Routing 38

Inter-Area Routing

- · Path consists of three legs
 - Within source area
 - · Intra-area
 - Through backbone
 - · Has properties of an area
 - Uses link state routing algorithm for interarea routing
 - Within destination area
 - · Intra-area




Renato.LoCigno@disi.unitn.it

Hierarchical OSPF

- · Two level hierarchy: local area and backbone
- · Link state advertisements do not leave respective areas
- Nodes in each area have detailed area topology; they only know direction (shortest path) to networks in other areas
- Area Border routers "summarize" distances to networks in the area and advertise them to other Area Border routers
- Backbone routers run an OSPF routing alg limited to the backbone
- Boundary routers connect to other ASs

Renato.LoCigno@disi.unitn.it

1	1

Inter-AS routing

- BGP (Border Gateway Protocol): the de facto standard
- Path Vector protocol an extension of Distance Vector
- Each Border Gateway broadcast to neighbors (peers) the entire path (ie, sequence of AS's) to destination
- For example, Gwy X may store the following path to destination Z:

Path (X,Z) = X,Y1,Y2,Y3,...,Z

Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing 43

Inter-AS routing

- · Now, suppose Gwy X send its path to peer Gwy W
- Gwy W may or may not select the path offered by Gwy X, because of cost, policy or loop prevention reasons
- If Gwy W selects the path advertised by Gwy X, then:

Path (W,Z) = w, Path (X,Z)

Note: path selection based not so much on cost (eg,# of AS hops), but mostly on administrative and policy issues (eg, do not route packets of competitor's AS)

Renato.LoCigno@disi.unitn.it

Advanced Networking – Routing 44

Why different Intra- and Inter-AS routing?

- Policy: Inter is concerned with policies (which provider we must select/avoid, etc). Intra is contained in a single organization, so, no policy decisions necessary
- Scale: Inter provides an extra level of routing table size and routing update traffic reduction above the Intra layer
- Performance: Intra is focused on performance metrics; needs to keep costs low. In Inter it is difficult to propagate performance metrics efficiently (latency, privacy etc). Besides, policy related information is more meaningful.

We need BOTH!

Renato.LoCigno@disi.unitn.it

Boarder Gateway Protocol (BGP)

- Allows routers (gateways) in different ASs to exchange routing information
- · Messages sent over TCP
 - Messages in next slide
- · Three functional procedures
 - Neighbor acquisition
 - Neighbor reachability
 - Network reachability

Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing

BGP Messages

- · Open
 - Start neighbor relationship with another router
- Update
 - Transmit information about single route
 - List multiple routes to be withdrawn
- · Keepalive
 - Acknowledge open message
 - Periodically confirm neighbor relationship
- Notification
 - Send when error condition detected
 - Used for closing connections too

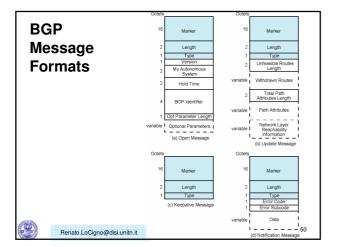
Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing

Neighbor Acquisition

- · Neighbors attach to same subnetwork
- If in different ASs routers may wish to exchange information
- Neighbor acquisition is when two neighboring routers agree to exchange routing information regularly
 - Needed because one router may not wish to take part
- One router sends request, the other acknowledges
 - Knowledge of existence of other routers and need to exchange information established at configuration time or by active intervention

Renato.LoCigno@disi.unitn.it


1	~
1	O

Neighbor Reachability

- Periodic issue of keepalive messages
- · Between all routers that are neighbors
- Each router keeps database of subnetworks it can reach and preferred route
- When change is made, router issues update message (to neighbors only)
- All BGP routers build up and maintain routing information

Renato.LoCigno@disi.unitn.it

Advanced Networking - Routing 49

Neighbor Acquisition Detail

- · Router opens TCP connection with neighbor
- · Sends open message
 - Identifies sender's AS and gives IP address
 - Includes Hold Time
 - · As proposed by sender
- If recipient prepared to open neighbor relationship
 - Calculate hold time
 - · min [own hold time, received hold time]
 - · Max time between keepalive/update messages
 - Reply with keepalive

Renato.LoCigno@disi.unitn.it

Keepalive Detail · Header only · Enough to prevent hold time expiring · If hold time expires a topology change is triggered · 'Marker' is a field that used for authentication purposes Renato.LoCigno@disi.unitn.it Advanced Networking - Routing 52 **Update Detail** · Information about single route through internet - Information to be added to database of any recipient - Network layer reachability information (NLRI) · List of network portions of IP addresses of subnets reached by this route - Total path attributes length field - Path attributes field (next slide)

Path Attributes Field

Advanced Networking - Routing

- Origin
- Interior (e.g. OSPF) or exterior (BGP) protocol

· List of previously advertised routes being

- AS_Path
 - ASs traversed for this route

Renato.LoCigno@disi.unitn.it

- Next_Hop
 - IP address of boarder router for next hop
- Multi_Exit_disc

withdrawnMay contain both

- Information about routers internal to AS
- Local_Pref
 - Tell other routers within AS degree of preference
- · Atomic_Aggregate, Aggregator
 - Uses subnet addresses in tree view of network to reduce information needed in NLRI

SARS.		
	Renato.LoCigno@disi.unitn.it	
1990		

Withdrawal of Route(s) Route identified by IP address of destination subnetwork(s) May be issued because subnets are not reachable or because policies have changed Renato.LoCigno@disi.unitn.it Advanced Networking - Routing 55

• Error notification • Message header error • Includes authentication and syntax errors • Open message error • Syntax errors and option not recognised • Proposed hold time unacceptable • Update message error • Syntax and validity errors • Hold time expired • Finite state machine error • Cease • Close connection in absence of any other error

BGP Routing Information Exchange

- · R1 constructs routing table for AS1 using OSPF
- R1 issues update message to R5 (in AS2)
 - AS_Path: identity of AS1
 - Next_Hop: IP address of R1
 - NLRI: List of all subnets in AS1
- Suppose R5 has neighbor relationship with R9 in AS3 $\,$
- R5 forwards information from R1 to R9 in update message
 - AS_Path: list of ids {AS2,AS1}
 - Next_Hop: IP address of R5
 - NLRI: All subnets in AS1
- R9 decides if this is preferred route and forwards to neighbors

SHARA	
	Renato.LoCigno@disi.ur
(1980)	

Routing Domain Confederations Set of connected AS Appear to outside world as single AS Recursive Effective scaling Advanced Networking - Routing Advanced Networking - Routing