#### **Advanced Networking**

# IPsec Security Architecture for IP

Csaba Kiraly <u>kiraly@disi.unitn.it</u>

based on slides from Prof. Giuseppe Bianchi

## Topics

→Overview of security services

⇔Based on ISO OSI security reference model

# →How some known protocols map to the ISO OSI model?

- ⇒To layers
- ⇒To security model

\_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_\_

#### →IPsec

- ⇒Introduction (operation modes)
- ⇒Architecture (much more than a protocol)
- ⇒protocols (ESP, AH)
- ⇒Management (SAD, SPD)
- ⇔Signaling (IKE)

#### →VPN

csaba.kiraly@disi.unitn.it

## Topics

- →Overview of security services
  - ⇒Based on ISO OSI security reference model
- How some known protocols map to the ISO OSI model?
  - ⇔To layers
  - ➡To security model
- →IPsec
  - ⇔Introduction (operation modes)
  - ⇒Architecture (much more than a protocol)
  - ⇔protocols (ESP, AH)

\_\_\_\_ csaba.kiralv@disi.unitn.it \_\_\_\_

- ➡Management (SAD, SPD)
- ⇔Signaling (IKE)

- $\rightarrow$  Overview of security services ⇒Based on ISO OSI security reference model
- How some known protocols map to the **ISO OSI model?** ⇔To layers ⇒To security model →IPsec ⇒Introduction (operation modes) ⇒Architecture (much more than a protocol) ⇒protocols (ESP, AH)
  - ⇒Management (SAD, SPD)
  - ⇔Signaling (IKE)
- csaba.kiraly@disi.unitn.it \_\_\_\_

# **Networking & Security**

#### Security services as defined by ISO

- ⇒Defined in the same set of standards as the famous ISO OSI 7 layers (ISO 7498-1) (1984)
- ⇒ISO 7498-2 OSI Basic Reference Model Part 2: Security Architecture (1989)
  - →Security services: what to do
  - →Security **mechanism**: how to achieve it
  - →Mapping between services and mechanisms
  - →Potential **mapping** to 7 layers: where to implement

Further reading: ISO 7498-2 in not free, but you can download free equivalent from ITU as ITU-T X.800

csaba.kiraly@disi.unitn.it

#### **Security Services** (what?)

#### Authentication

- ⇒ To know who it is: the process of proving identity
   → Mutual: both parties identified
   → One-way: only one side proves identity

#### Access control

⇒ Control access rights to a resource (communication; read/write/delete of data) → Good authentication is a pre-condition!

## Data confidentiality

#### ⇒ protection of data from unauthorized disclosure

- Data integrity
- ⇒ Preventing/detecting modification of the data

#### **Non-repudiation**

- ⇒ Preventing an individual or entity from denying having performed a particular action ⇒ The recipient of data is provided with proof of the origin of data ⇒ The sender of data is provided with proof of delivery of data.
  - \_\_\_\_\_ csaba.kiralv@disi.unitn.it \_\_\_\_

# Security Mechanisms

# (how?)

#### Some examples only!

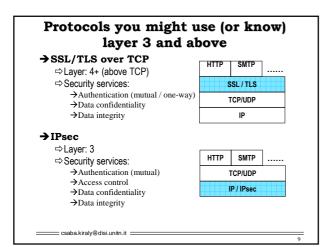
#### $\rightarrow$ Encryption

⇒ symmetric key cryptography
 → knowledge of the encryption key implies knowledge of the decryption key and vice versa;
 ⇒ asymmetric (or "public") key cryptography

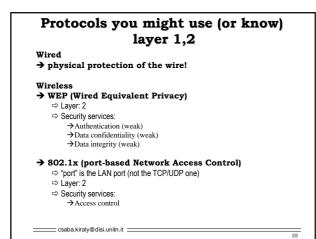
→knowledge of the decryption key (public key) does not imply

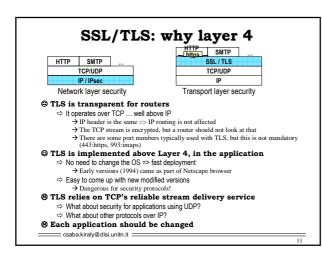
knowledge of the encryption key (private key). Used in: mainly in confidentiality, but also in authentication

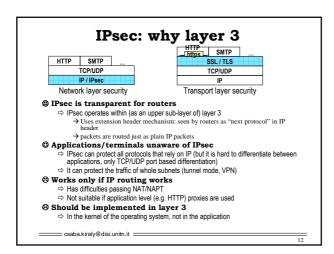
#### → Digital signatures


Used in: authentication, data integrity, non-repudiation

\_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_\_\_


## Topics


- →Overview of security services
  ⇒Based on ISO OSI security reference model
- → How some known protocols map to the ISO OSI model? ⇒ To layers


  - ⇔To security model
- →IPsec
  - ➡Introduction (operation modes, relation to IPv6, extension headers)
  - ⇒Architecture (much more than a protocol)
  - ⇒protocols (ESP, AH)
  - ⇒Management (SAD, SPD)
  - ⇒Signaling (IKE)
- csaba.kiraly@disi.unitn.it









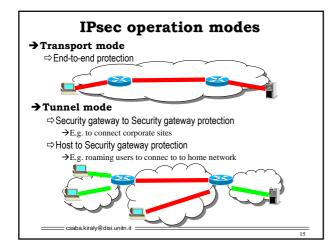




- →Overview of security services
  ⇒Based on ISO OSI security reference model
- How some known protocols map to the ISO OSI model?
  ⇒To layers
  - ⇒To security model

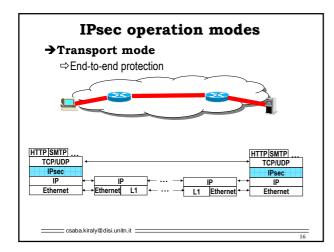
#### →IPsec

- $\Rightarrow$  Introduction (operation modes)
- ⇒Architecture (much more than a protocol)
- ⇒protocols (ESP, AH)
- ⇒Management (SAD, SPD)
- $\Rightarrow$  Signaling (IKE)
- \_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_\_\_

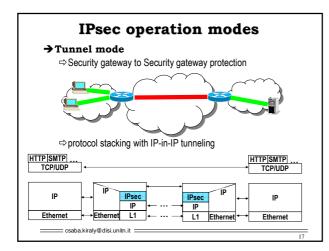

# Topics

- →Overview of security services
  ⇒Based on ISO OSI security reference model
- How some known protocols map to the ISO OSI model?
  - ⇔To layers
  - ⇔To security model
- →IPsec

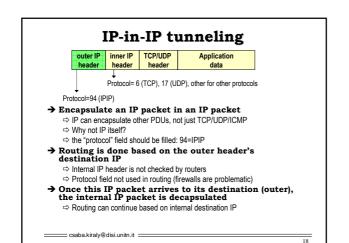
#### ⇒Introduction (operation modes)


- ⇒Architecture (much more than a protocol)
- ⇔protocols (ESP, AH)
- ⇔Management (SAD, SPD)
- ⇔Signaling (IKE)

csaba.kiraly@disi.unitn.it







5











→ Overview of security services ⇒Based on ISO OSI security reference model How some known protocols map to the ISO OSI model?

⇔To layers

⇒To security model

→ IPsec

⇔Introduction (operation modes, relation to IPv6, extension headers) ⇒Architecture (much more than a protocol)

- ⇒protocols (ESP, AH)
- ⇒Management (SAD, SPD)
- ⇔Signaling (IKE)
- ⇒History (RFC series)
- \_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_\_\_

## **IPsec: Security Architecture for IP**

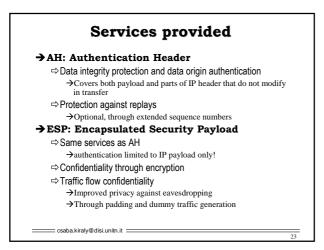
- → IPsec is not a protocol, but a complete architecture! Components:
  - Components:
     Security Protocols (ESP, AH), each having different
     → Protocol header
     → Implemented security mechanisms
     → Provided security services
     Occursersity Alexithers (OEC at a)
  - Frondes security services
     Cryptographic Algorithms (3DES, etc.)
     Used by security protocols
     Each having advantages/disadvantages, e.g.
     Computational complexity
     Block size
     Appreciate and local compensational
  - 3. Management concepts and local management databases
    - → Security Policies (SP):
  - 4. Signaling protocols
     → Internet Key Exchange (IKEv2)
- csaba.kiraly@disi.unitn.it

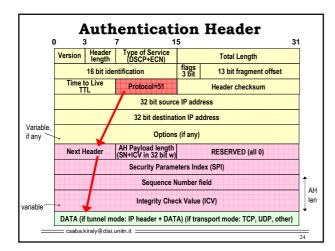
# Topics

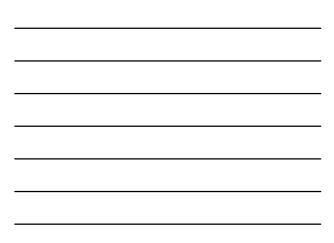
- → Overview of security services
  - ⇒Based on ISO OSI security reference model
- $\rightarrow$  How some known protocols map to the ISO OSI model?
  - ⇔To layers
  - ⇒To security model
- →IPsec

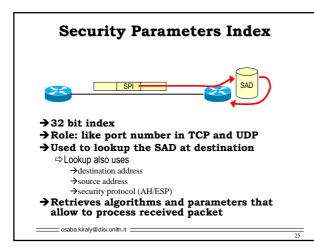
⇒Introduction (operation modes, relation to IPv6, extension headers) ⇒Architecture (much more than a protocol)

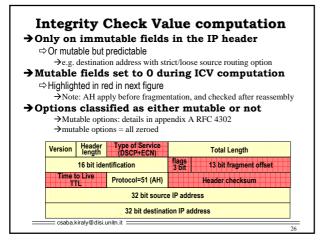
#### ⇒Protocols (ESP, AH)

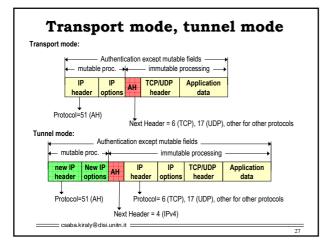

⇒Management (SAD, SPD)


\_\_\_\_\_csaba.kiralv@disi.unitn.it \_\_\_\_


- ⇔Signaling (IKE)
- ⇒History (RFC series)





\_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_
















# Why sequence number?

# →IP header DOES NOT contain a sequence number!

⇒Hence replay of an authenticated IP packet is possible →And may alter in an unpredictable manner the overlaying service (e.g. ICMP replies can be dangerous <sup>(©)</sup>)

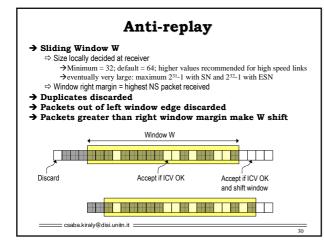
#### → Sequence number: 32 bit counter

- $\Rightarrow$  Initialized to 0 when the Security Association is established  $\Rightarrow$  Increments of 1 per each transmitted packet
- →First transmitted packet: SN=1
- ⇒Maximum value 2<sup>32</sup>-1, afterwards Security Association must be terminated
  - $\rightarrow$ No counter cycling allowed when anti-replay service active
  - →Anti-replay: optional (but default = on) » Anti-replay typically OFF when manual (static) keys configured

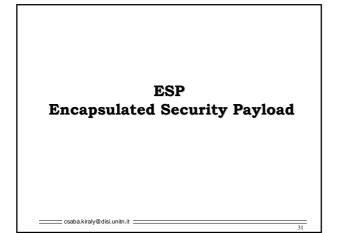
\_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_\_\_\_

# **Extended Sequence Number**

## → $2^{32}$ ~ 4.3 billion


csaba.kiraly@disi.unitn.it \_\_\_\_\_

⇒A lot, but not REALLY al lot!

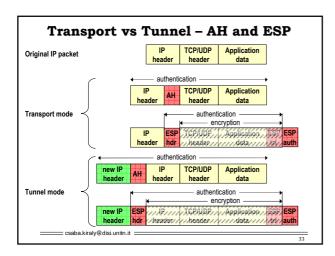

→Packet size = 1500 (1460 bytes payload) → $2^{32}$  x 1460 bytes = 6270 GB →About 14 h transmission of a 1 Gbps link

## →Extended Sequence Number:

- $\Rightarrow$ 64 bits this should be enough, now  $\odot$
- ⇒Transmit only low order 32 bits
- ⇒But use high order 32 bits in ICV computation!








# Encapsulated Security Payload → Security services ⇔ Same services as AH

- $\rightarrow$  authentication limited to IP payload only!
- $\Rightarrow$  Confidentiality through encryption
- ⇒Traffic flow confidentiality

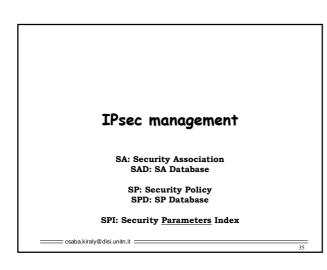
csaba.kiraly@disi.unitn.it ==

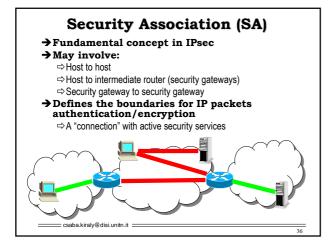
- $\rightarrow$ Improved privacy against eavesdropping
- $\rightarrow$ Through padding and dummy traffic generation



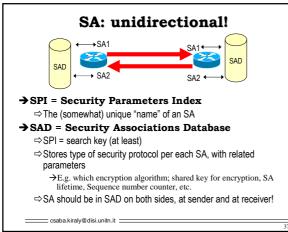


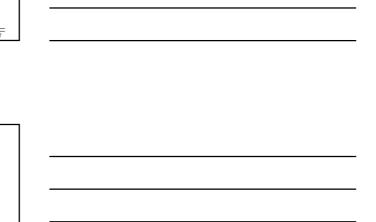
→ Overview of security services
 ⇒ Based on ISO OSI security reference model
 → How some known protocols map to the ISO OSI model?
 ⇒ To layers
 ⇒ To security model
 → IPsec

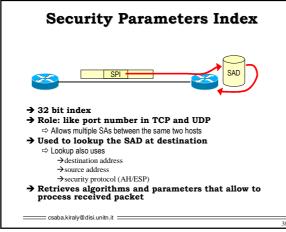

➡Introduction (operation modes, relation to IPv6, extension headers)
 ➡Architecture (much more than a protocol)

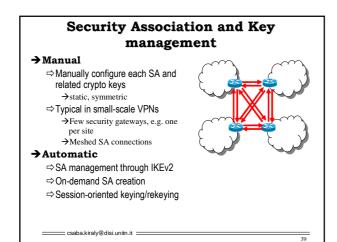

34

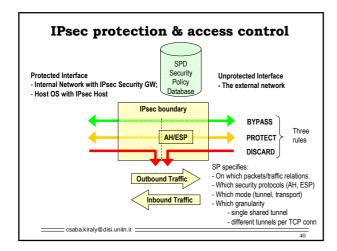
#### ⇔protocols (ESP, AH) ⇔Management (SAD, SPD)


# ⇒ Signaling (IKE)

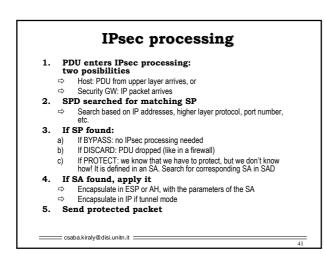

- ⇔History (RFC series)
- \_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_\_\_
















# **IPsec processing**

## What happens If SP is not found?

- ⇒No problem, IPsec treatment not needed
- ⇒PDU goes as it would go otherwise

## What happens If SA is not found?

- ⇒That is a problem: packet must be protected, but we don't know how
- $\Rightarrow$  SA should be negotiated with other side

\_\_\_\_\_csaba.kiralv@disi.unitn.it \_\_\_\_

⇒Automatic keying is triggered, IKE starts ...

- **Overview of security services** ⇒Based on ISO OSI security reference model
- →How some known protocols map to the **ISO OSI model?** ⇔To layers
  - ⇒To security model
- →IPsec
  - ⇒Introduction (operation modes, relation to IPv6, extension

43

45

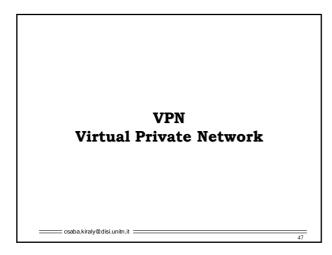
- ⇒Architecture (much more than a protocol)
- ⇔protocols (ESP, AH)
- ⇒Management (SAD, SPD)
- ⇒Signaling (IKE)
- csaba.kiraly@disi.unitn.it =

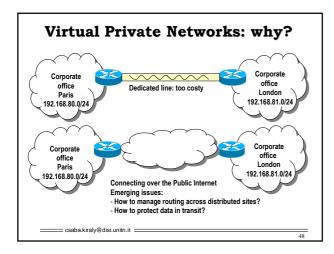
# **Rationale for IKE**

 $\textbf{ \rightarrow }$  shared state must be maintained between source and sink

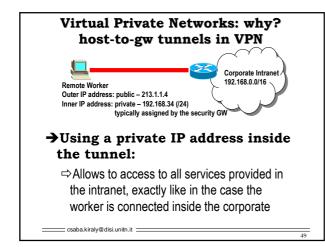
- ⇒ Which security services (AH, ESP)
- ⇒ Which Crypto algorithms
   ⇒ Which crypto keys

csaba.kiraly@disi.unitn.it


- → Manual maintenance not scalable ⇒ Partially OK only for small scale VPNs
   ⇒ In any case, weak approach
   →Infinite lifetime SA → no rekeying!
- → IKE = Internet Key Exchange protocol
  ⇒ Goal: dynamically establish and maintain SA
  - ⇒ IKE now (december 2005, RFC 4306) in version 2
    - →Replaces protocols specified in RFCs 2407, 2408, 2409 (IKE, ISAKMP, DOI)
    - →IKEv2 quite different (and much cleaner!!) than former specifications


## Topics

- →Overview of security services
- ⇒Based on ISO OSI security reference model
- →How some known protocols map to the **ISO OSI model?** 
  - ⇔To layers
  - ⇒To security model
- →IPsec
  - ⇒Introduction (operation modes, relation to IPv6, extension
  - ⇒Architecture (much more than a protocol)
  - ⇒protocols (ESP, AH)
  - ⇒Management (SAD, SPD)
  - ⇒Signaling (IKE) \_\_\_\_ csaba.kiralv@disi.unitn.it \_\_\_


# Trying IPsec: StrongSwan virtual laboratories http://www.strongswan.org/uml/

\_\_\_\_\_ csaba.kiraly@disi.unitn.it \_\_\_









# Virtual + Private Networks

#### →VPN =

\_

⇔Virtual Networks (tunnels)

⇒Private Networks (authentication, encryption)

#### → IPsec: a POSSIBLE tool for building VPN

 $\Rightarrow$  But IPsec and VPNs are NOT synonymous →VPNs can use other technologies: » e.g. when non-IP traffic must be transported

→IPsec has other uses:

» e.g. e2e encrypted/authenticated transport

#### → VPN alternatives:

→Layer 2: GRE/PPTP, L2TP

→Layer 3 (actually 3-): MPLS Hayer 4 (actually between 4 and 7): SSL tunnels
 Hayer 7: SSH tunnels
 csaba.kiraly@disi.unitn.it