Advanced Networking

IPsec Security Architecture for IP

Csaba Kiraly <u>kiraly@disi.unitn.it</u>

based on slides from Prof. Giuseppe Bianchi

1

= csaba.kiraly@disi.unitn.it 💳

→Overview of security services

⇒Based on ISO OSI security reference model

→How some known protocols map to the ISO OSI model?

 \Rightarrow To layers

 \Rightarrow To security model

→IPsec

⇒Introduction (operation modes)

⇒Architecture (much more than a protocol)

⇒protocols (ESP, AH)

⇒Management (SAD, SPD)

⇒Signaling (IKE)

→VPN

= csaba.kiraly@disi.unitn.it □

- →Overview of security services
 ⇒Based on ISO OSI security reference model
- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- →IPsec
 - ⇒Introduction (operation modes)
 - ⇒Architecture (much more than a protocol)
 - ⇒protocols (ESP, AH)
 - ⇒Management (SAD, SPD)
 - ⇒Signaling (IKE)

\rightarrow Overview of security services

⇒Based on ISO OSI security reference model

- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- →IPsec
 - ⇒Introduction (operation modes)
 - ⇒Architecture (much more than a protocol)
 - ⇒protocols (ESP, AH)
 - ⇒Management (SAD, SPD)
 - ⇒Signaling (IKE)

Networking & Security

Security services as defined by ISO

⇒Defined in the same set of standards as the famous ISO OSI 7 layers (ISO 7498-1) (1984)

⇒ISO 7498-2 OSI Basic Reference Model Part 2: Security Architecture (1989)

→Security **services**: what to do

- →Security **mechanism**: how to achieve it
- →Mapping between services and mechanisms
- →Potential **mapping** to 7 layers: where to implement

Further reading: ISO 7498-2 in not free, but you can download free equivalent from ITU as ITU-T X.800

Security Services (what?)

Authentication

⇒ To know who it is: the process of **proving** identity

 \rightarrow Mutual: both parties identified

 \rightarrow One-way: only one side proves identity

Access control

⇒ Control access rights to a resource (communication; read/write/delete of data)
→ Good authentication is a pre-condition!

Data confidentiality

⇒ protection of data from unauthorized disclosure

Data integrity

⇒ Preventing/detecting modification of the data

Non-repudiation

- ⇒ Preventing an individual or entity from denying having performed a particular action
- ⇒ The recipient of data is provided with proof of the origin of data
- \Rightarrow The sender of data is provided with proof of delivery of data.

Security Mechanisms (how?)

Some examples only!

\rightarrow Encryption

⇒ symmetric key cryptography

→knowledge of the encryption key implies knowledge of the decryption key and vice versa;

⇒ asymmetric (or "public") key cryptography

→knowledge of the decryption key (public key) does not imply knowledge of the encryption key (private key).

Used in: mainly in confidentiality, but also in authentication

\rightarrow Digital signatures

Used in: authentication, data integrity, non-repudiation

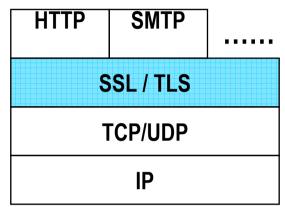
→Overview of security services ⇒Based on ISO OSI security reference model

How some known protocols map to the ISO OSI model?

*⇒*To layers

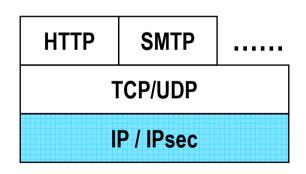
⇒ To security model

- →IPsec
 - ⇒Introduction (operation modes, relation to IPv6, extension headers)


⇒Architecture (much more than a protocol)

- ⇒protocols (ESP, AH)
- ⇒Management (SAD, SPD)
- ⇒Signaling (IKE)

Protocols you might use (or know) layer 3 and above


→SSL/TLS over TCP

- ⇒Layer: 4+ (above TCP)
- \Rightarrow Security services:
 - →Authentication (mutual / one-way)
 - \rightarrow Data confidentiality
 - →Data integrity

→ IPsec

- ⇒Layer: 3
- \Rightarrow Security services:
 - →Authentication (mutual)
 - →Access control
 - \rightarrow Data confidentiality
 - →Data integrity

Protocols you might use (or know) layer 1,2

Wired

 \rightarrow physical protection of the wire!

Wireless

\rightarrow WEP (Wired Equivalent Privacy)

⇒ Layer: 2

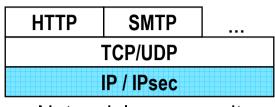
 \Rightarrow Security services:

 \rightarrow Authentication (weak)

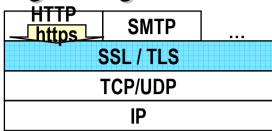
 \rightarrow Data confidentiality (weak)

→Data integrity (weak)

→ 802.1x (port-based Network Access Control)


 \Rightarrow "port" is the LAN port (not the TCP/UDP one)

⇒ Layer: 2


 \Rightarrow Security services:

 \rightarrow Access control

SSL/TLS: why layer 4

Network layer security

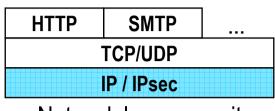
Transport layer security

$\ensuremath{\textcircled{\circ}}$ TLS is transparent for routers

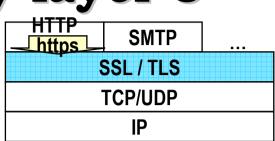
- \Rightarrow It operates over TCP ... well above IP
 - \rightarrow IP header is the same => IP routing is not affected
 - \rightarrow The TCP stream is encrypted, but a router should not look at that
 - → There are some port numbers typically used with TLS, but this is not mandatory (443:https, 993:imaps)

© TLS is implemented above Layer 4, in the application

- \Rightarrow No need to change the OS => fast deployment
 - \rightarrow Early versions (1994) came as part of Netscape browser
- \Rightarrow Easy to come up with new modified versions
 - \rightarrow Dangerous for security protocols!


$\boldsymbol{\boldsymbol{\otimes}}$ TLS relies on TCP's reliable stream delivery service

- \Rightarrow What about security for applications using UDP?
- ⇒ What about other protocols over IP?


$\boldsymbol{\boldsymbol{\Im}}$ Each application should be changed

 \equiv csaba.kiraly@disi.unitn.it \equiv

IPsec: why layer 3

Network layer security

Transport layer security

$\ensuremath{\boxdot}$ IPsec is transparent for routers

- \Rightarrow IPsec operates within (as an upper sub-layer of) layer 3
 - → Uses extension header mechanism: seen by routers as "next protocol" in IP header
 - \rightarrow packets are routed just as plain IP packets

© Applications/terminals unaware of IPsec

- ⇒ IPsec can protect all protocols that rely on IP (but it is hard to differentiate between applications, only TCP/UDP port based differentiation)
- \Rightarrow It can protect the traffic of whole subnets (tunnel mode, VPN)

$\boldsymbol{\boldsymbol{\otimes}}$ Works only if IP routing works

- \Rightarrow Has difficulties passing NAT/NAPT
- ⇒ Not suitable if application level (e.g. HTTP) proxies are used

\otimes Should be implemented in layer 3

 \Rightarrow In the kernel of the operating system, not in the application

Overview of security services
 Based on ISO OSI security reference model
 How some known protocols map to the ISO OSI model?

⇔To layers

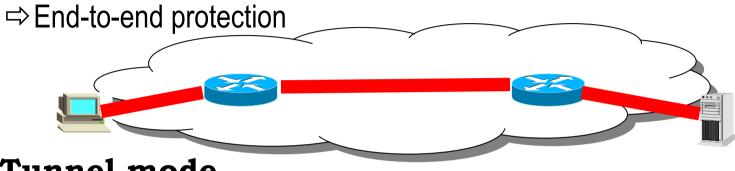
⇒To security model

→ IPsec

⇒ Introduction (operation modes)

⇒Architecture (much more than a protocol)

⇒protocols (ESP, AH)


⇔Management (SAD, SPD)

⇒ Signaling (IKE)

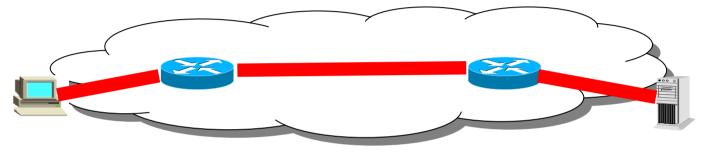
- →Overview of security services
 ⇒Based on ISO OSI security reference model
- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- →IPsec
 - ⇒ Introduction (operation modes)
 - ⇒Architecture (much more than a protocol)
 - ⇒protocols (ESP, AH)
 - ⇒Management (SAD, SPD)
 - ⇒Signaling (IKE)

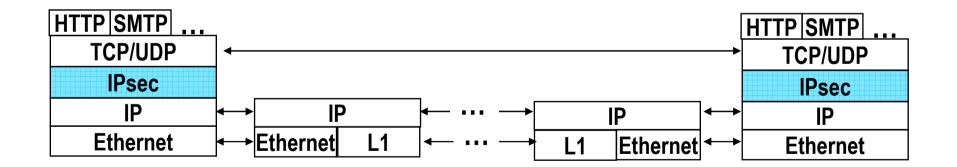
IPsec operation modes

→Transport mode

→Tunnel mode

- ⇒ Security gateway to Security gateway protection
 - \rightarrow E.g. to connect corporate sites
- ⇒ Host to Security gateway protection

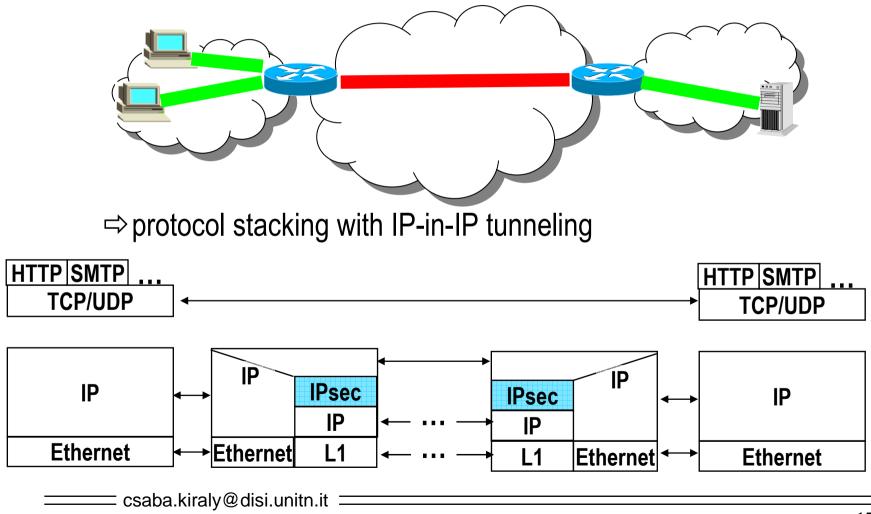

 \rightarrow E.g. roaming users to connec to to home network



IPsec operation modes

→Transport mode

⇒End-to-end protection



IPsec operation modes

→Tunnel mode

⇒ Security gateway to Security gateway protection

IP-in-IP tunneling

outer IP	inner IP	TCP/UDP	Application			
header	header	header	data			
Protocol= 6 (TCP), 17 (UDP), other for other protocols						

Protocol=94 (IPIP)

\rightarrow Encapsulate an IP packet in an IP packet

 \Rightarrow IP can encapsulate other PDUs, not just TCP/UDP/ICMP

 \Rightarrow Why not IP itself?

⇒ the "protocol" field should be filled: 94=IPIP

→ Routing is done based on the outer header's destination IP

⇒ Internal IP header is not checked by routers

⇒ Protocol field not used in routing (firewalls are problematic)

→ Once this IP packet arrives to its destination (outer), the internal IP packet is decapsulated

⇒ Routing can continue based on internal destination IP

- Overview of security services

⇒Based on ISO OSI security reference model

- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- → IPsec

⇒ Introduction (operation modes, relation to IPv6, extension headers)

⇒ Architecture (much more than a protocol)

- ⇒protocols (ESP, AH)
- ⇒Management (SAD, SPD)
- ⇔Signaling (IKE)
- ⇒History (RFC series)

IPsec: Security Architecture for IP

- ➔ IPsec is not a protocol, but a complete architecture! Components:
 - 1. Security Protocols (ESP, AH), each having different
 - \rightarrow Protocol header
 - \rightarrow Implemented security mechanisms
 - \rightarrow Provided security services
 - 2. Cryptographic Algorithms (3DES, etc.)
 - \rightarrow Used by security protocols
 - \rightarrow Each having advantages/disadvantages, e.g.
 - » Computational complexity
 - » Block size
 - 3. Management concepts and local management databases
 - \rightarrow Security Policies (SP):
 - » established and maintained by a user or system administrator
 - » select IP packets where IPsec should be applied
 - \rightarrow Security Associations (SA):
 - » simplex "connection" that affords security services to the traffic carried by it
 - 4. Signaling protocols
 - → Internet Key Exchange (IKEv2)

- Overview of security services

⇒Based on ISO OSI security reference model

- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- → IPsec
 - ⇒ Introduction (operation modes, relation to IPv6, extension headers)
 - ⇒Architecture (much more than a protocol)
 - ⇔ Protocols (ESP, AH)
 - ⇒Management (SAD, SPD)
 - ⇔Signaling (IKE)
 - ⇒History (RFC series)

IPsec Security Protocols AH,ESP (discuss IPv4 only)

Services provided

\rightarrow AH: Authentication Header

⇒ Data integrity protection and data origin authentication

→Covers both payload and parts of IP header that do not modify in transfer

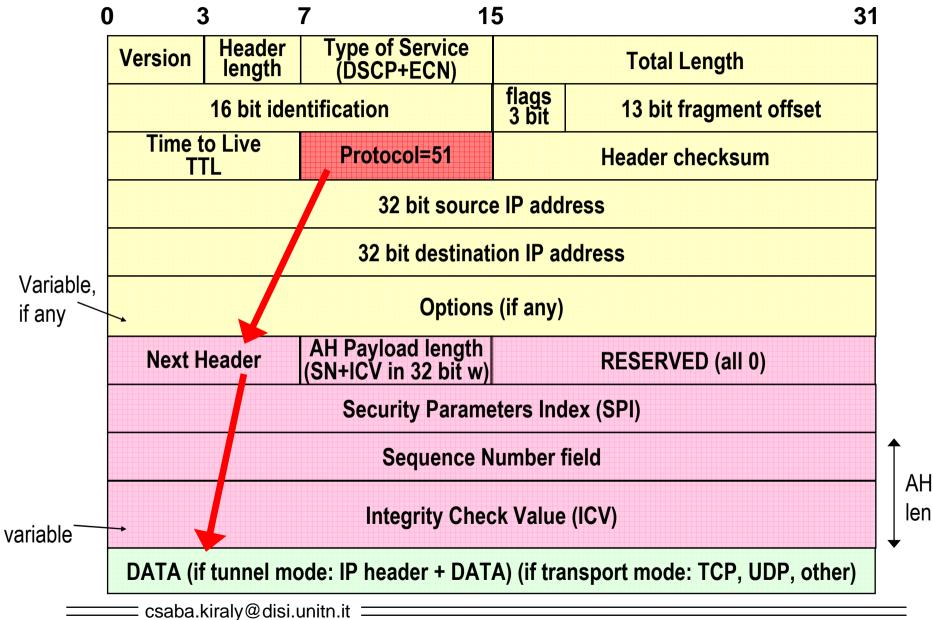
⇒ Protection against replays

 \rightarrow Optional, through extended sequence numbers

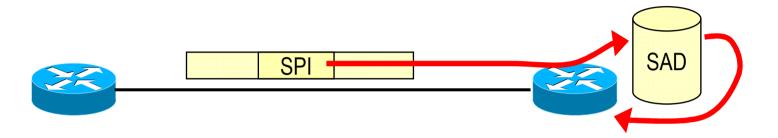
\rightarrow ESP: Encapsulated Security Payload

 \Rightarrow Same services as AH

 \rightarrow authentication limited to IP payload only!


⇒ Confidentiality through encryption

⇒ Traffic flow confidentiality


 \rightarrow Improved privacy against eavesdropping

 \rightarrow Through padding and dummy traffic generation

Authentication Header

Security Parameters Index

→32 bit index

→ Role: like port number in TCP and UDP → Used to lookup the SAD at destination

⇒Lookup also uses

 \rightarrow destination address

 \rightarrow source address

→ security protocol (AH/ESP)

Retrieves algorithms and parameters that allow to process received packet

Integrity Check Value computation

\rightarrow Only on immutable fields in the IP header

⇒ Or mutable but predictable

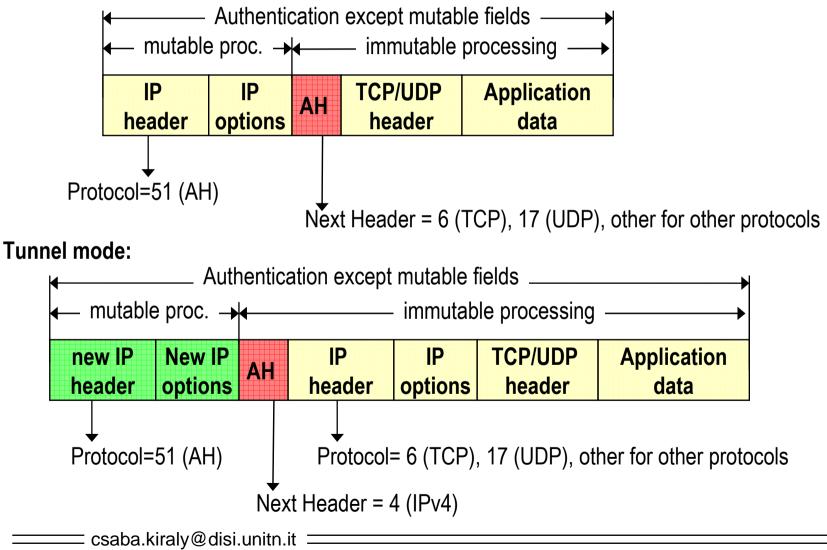
 \rightarrow e.g. destination address with strict/loose source routing option

\rightarrow Mutable fields set to 0 during ICV computation

⇒ Highlighted in red in next figure

 \rightarrow Note: AH apply before fragmentation, and checked after reassembly

\rightarrow Options classified as either mutable or not


→Mutable options: details in appendix A RFC 4302

 \rightarrow mutable options = all zeroed

Version	Header length	Type of Service (DSCP+ECN)		Total Length		
16 bit identification			flags 3 bit	13 bit fragment offset		
Time to Live TTL		Protocol=51 (AH)		Header checksum		
32 bit source IP address						
32 bit destination IP address						
csaba.kiralv@disi.unitn.it						

Transport mode, tunnel mode

Transport mode:

Why sequence number?

→IP header DOES NOT contain a sequence number!

⇒ Hence replay of an authenticated IP packet is possible

→And may alter in an unpredictable manner the overlaying service (e.g. ICMP replies can be dangerous ☉)

→ Sequence number: 32 bit counter

⇒ Initialized to 0 when the Security Association is established

⇒ Increments of 1 per each transmitted packet

→First transmitted packet: SN=1

⇒ Maximum value 2³²-1, afterwards Security Association must be terminated

 \rightarrow No counter cycling allowed when anti-replay service active

 \rightarrow Anti-replay: optional (but default = on)

» Anti-replay typically OFF when manual (static) keys configured

Extended Sequence Number

$\rightarrow 2^{32} \sim 4.3$ billion

 \Rightarrow A lot, but not REALLY al lot!

 \rightarrow Packet size = 1500 (1460 bytes payload)

→ 2^{32} x 1460 bytes = 6270 GB

 \rightarrow About 14 h transmission of a 1 Gbps link

→Extended Sequence Number:

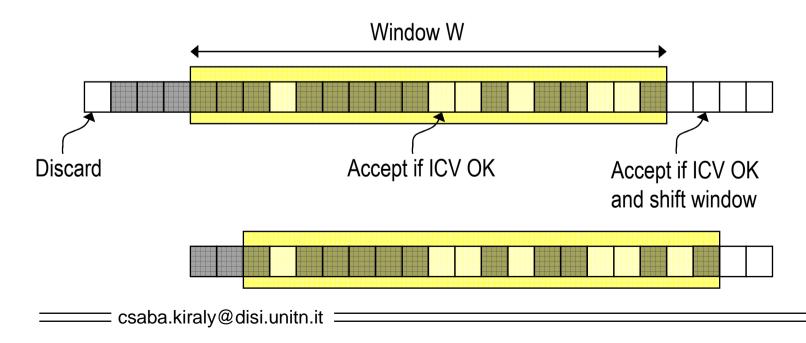
 \Rightarrow 64 bits - this should be enough, now \bigcirc

⇒Transmit only low order 32 bits

⇒But use high order 32 bits in ICV computation!

Anti-replay

→ Sliding Window W


⇒ Size locally decided at receiver

 \rightarrow Minimum = 32; default = 64; higher values recommended for high speed links

 \rightarrow eventually very large: maximum 2³¹-1 with SN and 2³²-1 with ESN

⇒ Window right margin = highest NS packet received

- \rightarrow Duplicates discarded
- → Packets out of left window edge discarded
- → Packets greater than right window margin make W shift

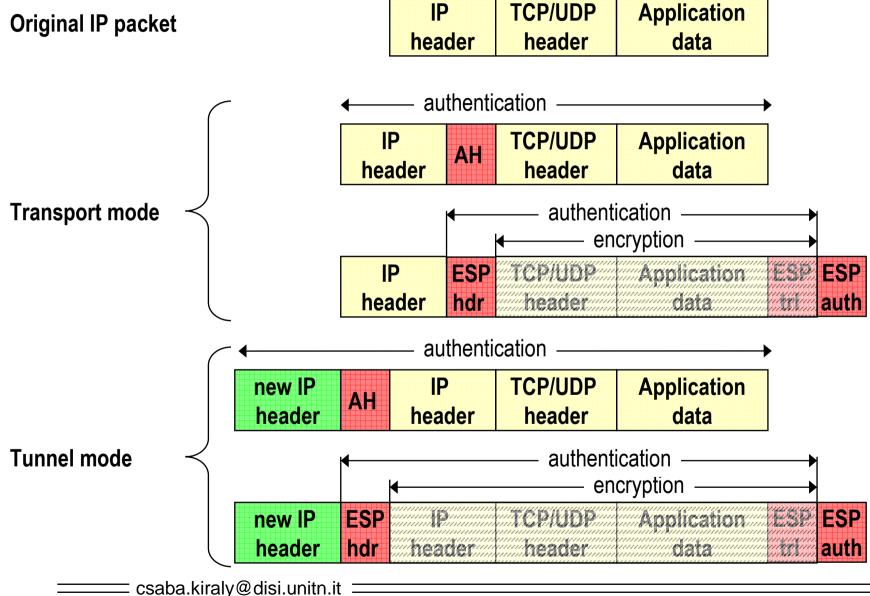
ESP Encapsulated Security Payload

= csaba.kiraly@disi.unitn.it ===

Encapsulated Security Payload →Security services

 \Rightarrow Same services as AH

 \rightarrow authentication limited to IP payload only!


⇒Confidentiality through encryption

⇒ Traffic flow confidentiality

 \rightarrow Improved privacy against eavesdropping

 \rightarrow Through padding and dummy traffic generation

Transport vs Tunnel – AH and ESP

- Overview of security services

⇒Based on ISO OSI security reference model

- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- → IPsec
 - ⇒ Introduction (operation modes, relation to IPv6, extension headers)
 - ⇒Architecture (much more than a protocol)
 - ⇔protocols (ESP, AH)
 - ⇔ Management (SAD, SPD)
 - ⇒Signaling (IKE)
 - ➡ History (RFC series)

IPsec management

SA: Security Association SAD: SA Database

> SP: Security Policy SPD: SP Database

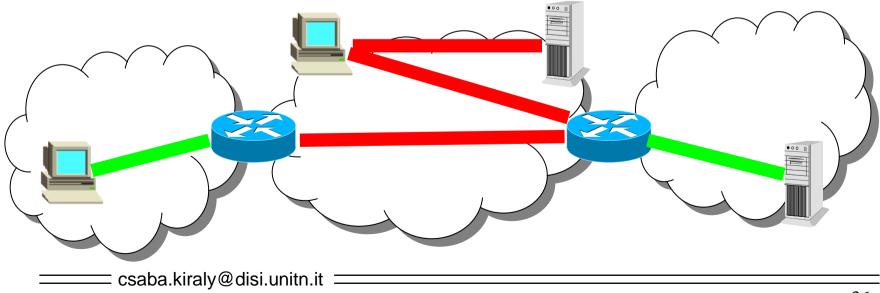
SPI: Security <u>Parameters</u> Index

= csaba.kiraly@disi.unitn.it ====

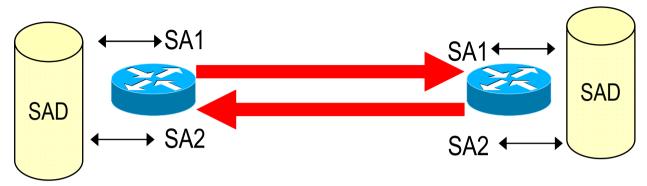
Security Association (SA)

\rightarrow Fundamental concept in IPsec

\rightarrow May involve:


 \Rightarrow Host to host

⇒ Host to intermediate router (security gateways)

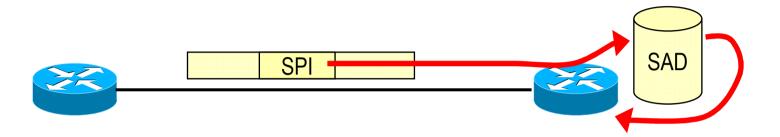

⇒ Security gateway to security gateway

Defines the boundaries for IP packets authentication/encryption

⇒A "connection" with active security services

SA: unidirectional!

\rightarrow SPI = Security Parameters Index


⇒ The (somewhat) unique "name" of an SA

→ SAD = Security Associations Database

- \Rightarrow SPI = search key (at least)
- Stores type of security protocol per each SA, with related parameters
 - →E.g. which encryption algorithm; shared key for encryption, SA lifetime, Sequence number counter, etc.

⇒ SA should be in SAD on both sides, at sender and at receiver!

Security Parameters Index

\rightarrow 32 bit index

\rightarrow Role: like port number in TCP and UDP

⇒ Allows multiple SAs between the same two hosts

\rightarrow Used to lookup the SAD at destination

 \Rightarrow Lookup also uses

 \rightarrow destination address

 \rightarrow source address

→ security protocol (AH/ESP)

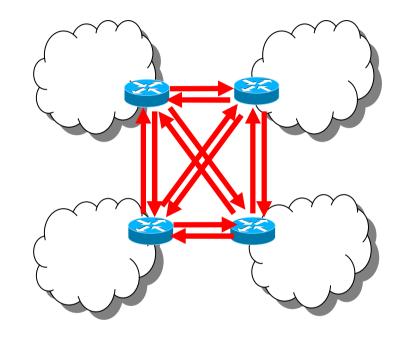
→ Retrieves algorithms and parameters that allow to process received packet

Security Association and Key management

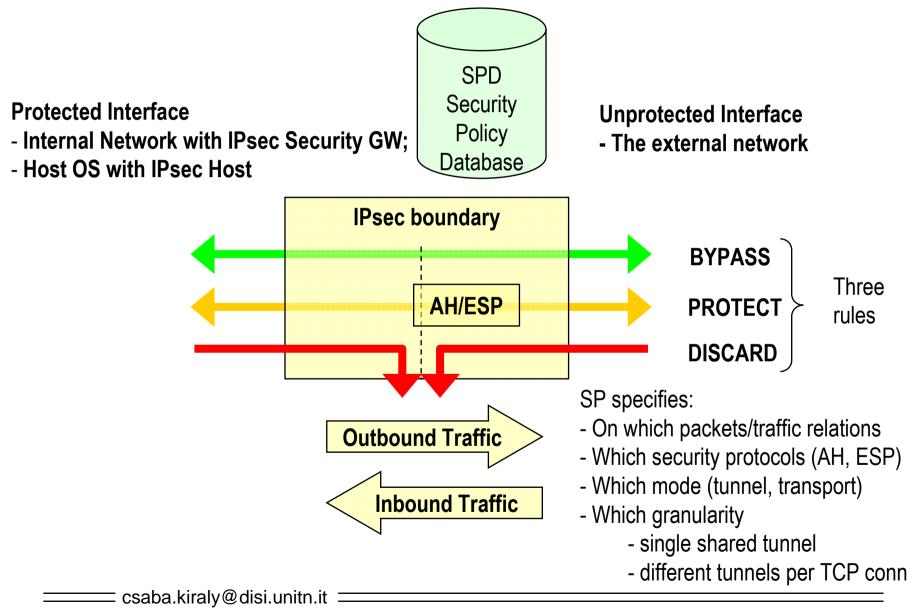
→ Manual

Manually configure each SA and related crypto keys

→static, symmetric


 \Rightarrow Typical in small-scale VPNs

→Few security gateways, e.g. one per site


→Meshed SA connections

\rightarrow Automatic

- ⇒SA management through IKEv2
- \Rightarrow On-demand SA creation
- ⇒ Session-oriented keying/rekeying

IPsec protection & access control

IPsec processing

1. PDU enters IPsec processing: two posibilities

- ⇒ Host: PDU from upper layer arrives, or
- ⇒ Security GW: IP packet arrives

2. SPD searched for matching SP

⇒ Search based on IP addresses, higher layer protocol, port number, etc.

3. If SP found:

- a) If BYPASS: no IPsec processing needed
- b) If DISCARD: PDU dropped (like in a firewall)
- c) If PROTECT: we know that we have to protect, but we don't know how! It is defined in an SA. Search for corresponding SA in SAD

4. If SA found, apply it

- \Rightarrow Encapsulate in ESP or AH, with the parameters of the SA
- ⇒ Encapsulate in IP if tunnel mode

5. Send protected packet

IPsec processing

What happens If SP is not found?

⇒No problem, IPsec treatment not needed⇒PDU goes as it would go otherwise

What happens If SA is not found?

⇒That is a problem: packet must be protected, but we don't know how

⇒SA should be negotiated with other side

⇒Automatic keying is triggered, IKE starts ...

Topics

- →Overview of security services
 ⇒Based on ISO OSI security reference model
- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- →IPsec
 - ⇒Introduction (operation modes, relation to IPv6, extension headers)
 - ⇒Architecture (much more than a protocol)
 - ⇒protocols (ESP, AH)
 - ⇒Management (SAD, SPD)
 - ⇔ Signaling (IKE)

Rationale for IKE

Shared state must be maintained between source and sink

- ⇒ Which security services (AH, ESP)
- ⇒ Which Crypto algorithms
- \Rightarrow Which crypto keys

\rightarrow Manual maintenance not scalable

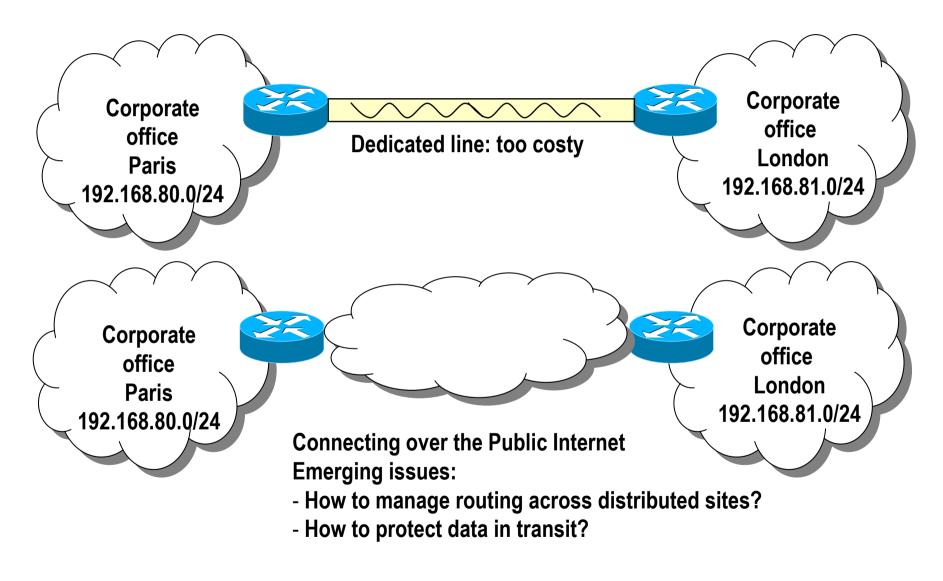
- ⇒ Partially OK only for small scale VPNs
- \Rightarrow In any case, weak approach
 - \rightarrow Infinite lifetime SA \rightarrow no rekeying!

→ IKE = Internet Key Exchange protocol

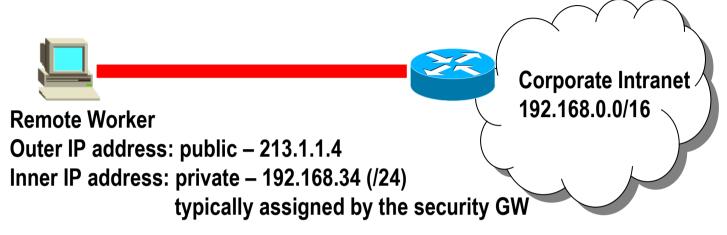
- \Rightarrow Goal: dynamically establish and maintain SA
- ⇒ IKE now (december 2005, RFC 4306) in version 2
 - →Replaces protocols specified in RFCs 2407, 2408, 2409 (IKE, ISAKMP, DOI)
 - \rightarrow IKEv2 quite different (and much cleaner!!) than former specifications

Topics

- →Overview of security services
 ⇒Based on ISO OSI security reference model
- How some known protocols map to the ISO OSI model?
 - ⇒To layers
 - ⇒To security model
- →IPsec
 - ⇒Introduction (operation modes, relation to IPv6, extension headers)
 - ⇒Architecture (much more than a protocol)
 - ⇒protocols (ESP, AH)
 - ⇒Management (SAD, SPD)
 - ⇒Signaling (IKE)


Trying IPsec: StrongSwan virtual laboratories

http://www.strongswan.org/uml/


VPN Virtual Private Network

= csaba.kiraly@disi.unitn.it ====

Virtual Private Networks: why?

Virtual Private Networks: why? host-to-gw tunnels in VPN

Using a private IP address inside the tunnel:

Allows to access to all services provided in the intranet, exactly like in the case the worker is connected inside the corporate

Virtual + Private Networks

→VPN =

⇒ Virtual Networks (tunnels)

+

⇒ Private Networks (authentication, encryption)

\rightarrow IPsec: a POSSIBLE tool for building VPN

⇒ But IPsec and VPNs are NOT synonymous

 \rightarrow VPNs can use other technologies:

» e.g. when non-IP traffic must be transported

 \rightarrow IPsec has other uses:

» e.g. e2e encrypted/authenticated transport

\rightarrow VPN alternatives:

→Layer 2: GRE/PPTP, L2TP

→Layer 3 (actually 3-): MPLS

 \rightarrow Layer 4 (actually between 4 and 7): SSL tunnels

→Layer 7: SSH tunnels

= csaba.kiraly@disi.unitn.it ====