
Advanced Networking

TCP

Renato Lo Cigno

Renato.LoCigno@disi.unitn.it

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 2

Content

• Some details on window protocols

• TCP hearders and formats

• TCP Options

• TCP flow control

• TCP Congestion control (most bulky!)

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 3

Basic Selective Repeat

• Requires 1 ACK per packet
• Positive ACK if the packet is received in order or
it is received out-of-order

• Negative ACK if the packet is missing
– Problem: lost ACKs block the protocol

• Implicit negative ACK by repeating the ACK of
the last in-order packet

• Transmitter builds a local copy of the receiver
window and retransmit only lost packets

• Same effect can be obtained with cumulative
ACKs, with the limit of recovering 1pkt per RTT

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 4

Window relations in SR

• W = size of the counting space
(bytes, packets, ...)

• Wt = Transmitter window size

• Wr = Receiver window size

• Must be Wt+Wr < W to ensure working correctly

• Relation holds for both cumulative and selective
ACKs

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 5

Example: W=4, Wt=3, Wr=2
Cumulative ACKs

TT RR

0
1
2 Ack 1

Ack 2

Ack 3

0
1
2

0
1
2

0
1
2

Ack 3

Ack 3

Ack 3

3
0
1

3
0
1

Error!!! Accepted as

New packet

Error!! Discarded

unecessarily

0… Wr

03 Wr

timeout

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 6

TCP: Bibliography

• Richard Stevens: TCP/IP Illustrated, Vol.1: The Protocols,
1994, Addison Wesley

• William Stallings: Data and Computer Communications,
8/Ed. Prentice Hall

• RFC 793 (1981)
– Transmission Control Protocol

• RFC 1122/1123: (1989)
– Requirements for Internet Hosts

• RFC 1323: (1992)
– TCP Extensions for High Performance

• RFC 2018: (1996)
– TCP Selective Acknowledgment Options

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 7

TCP: riferimenti bibliografici

• RFC 2581:

– TCP Congestion Control (PRP STD)

• RFC 2582:

– The NewReno Modification to TCP's Fast Recovery
Algorithm

• RFC 2883:

– An Extension to the Selective Acknowledgement
(SACK) Option for TCP

• RFC 2988:

– Computing TCP's Retransmission Timer

•

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 8

TCP header (no options)

32 bit

Sequence Number

Acknowledgment Number

0 15 31

Source Port Number Dest Port Number

HLEN Resv. Receiver window

checksum Urgent Pointer

flags

20 byte

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 9

TCP header

Sequence Number

Acknowledgment Number

0 15 31

HLEN Resv. Receiver window

checksum Urgent Pointer

flags

Source Port Number Dest Port Number

Ports: identify sender and
receiver processe, together

with IP addresses identify
univecally a connection

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 10

Acknowledgment Number

0 15 31

HLEN Resv. Receiver window

checksum Urgent Pointer

flags

Source Port Number Dest Port Number

Sequence Number

TCP header

• Identify the position of
the first payload byte
within the stream of
data

• Idependent for the two
directions of the
connection

• The sender decides it
at the beginning of the
connection with the
SYN packet

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 11

TCP header

0 15 31

HLEN Resv. Receiver window

checksum Urgent Pointer

Source Port Number Dest Port Number

Sequence Number

Acknowledgment Number

flags

Seq. number + payload + 1
of the last packet received

correctly and in order

Defines the NEXT byte
the receiver expects

Make sense only if the ACK
flag is set.

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 12

Seq. and ACK
• Numbering on 32 bit
• As a function of link speed we have different wrapping

times ...
• The same application may have problems if the sequence

wrap arounds or if successive connections have
overlapping sequences

Network speed

T1 (1.5Mbps)
Ethernet (10Mbps)
T3 (45Mbps)
FastEth (100Mbps)
STS-3 (155Mbps)
STS-12 (622Mbps)
STS-24 (1.2Gbps)

Wrap Around Time

6.4 h
57 m
13 m
6 m
4 m

55 s
28 s

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 13

TCP header

0 15 31

checksum Urgent Pointer

flags

Source Port Number Dest Port Number

Sequence Number

Header length in 32

bit words, needed with
options

Acknowledgment Number

HLEN Resv. Receiver window

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 14

TCP header

0 15 31

checksum Urgent Pointer

flags

Source Port Number Dest Port Number

Sequence Number

Not yet used,

but reserved

Acknowledgment Number

HLEN Resv. Receiver window

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 15

0 15 31

checksum Urgent Pointer

Source Port Number Dest Port Number

Sequence Number

Acknowledgment Number

HLEN Resv. Receiver windowflags

TCP header

• Connection management
• Six bits of flags, can be set

together (es. ACK+SYN
etc.):
– URG: Urgent pointer is valid

– ACK: ACKing data

– PSH: Forces the data
passage to the application
(e.g. telnet)

– RST: reset connection

– SYN: synchronize seq. No. in
opening connection

– FIN: closing connection

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 16

TCP Header

0 15 31

checksum Urgent Pointer

flags

Source Port Number Dest Port Number

Sequence Number

Number of bytes, starting

and including the one in
the ACK field that the

receiver can accept;

implements flow control.
16 bits, the maximum

value for rwnd is 65535
byte, unless the window

scaling option is enabled

(more later on)

Acknowledgment Number

HLEN Resv. Receiver window

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 17

The receiver window drives throughtput

• Throughput is given by W/RTT
• Maximum data per RTT is max RWND:

– 16-bit rwnd = 64kB max

• Given RTT=100ms the following windows are required to
exploit the relative channels

• These limits can be overcame using the window scale
option

Channel (capacity)

T1 (1.5Mbps)
Ethernet (10Mbps)
T3 (45Mbps)
FastEth (100Mbps)
STS-3 (155Mbps)
STS-12 (622Mbps)
STS-24 (1.2Gbps)

bandwidth x delay

18kB
122kB
549kB
1.2MB
1.8MB
7.4MB

14.8MB

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 18

Sending and Receiving
Flow Control Perspectives

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 19

TCP header

0 15 31

flags

Source Port Number Dest Port Number

Sequence Number

Checksum is compulsory
and is computed on

header and data plus the

pseudo-header including
IP address and protocol

type.
This is a layering violation,

but a useful one!

Acknowledgment Number

HLEN Resv. Receiver window

checksum Urgent Pointer

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 20

0 15 31

flags

Source Port Number Dest Port Number

Sequence Number

Acknowledgment Number

HLEN Resv. Receiver window

checksum Urgent Pointer

• Checksum algorithm
– align header, data and

pseudo-header to 16 bits

– sum every line in 1s
complement algebra

– ther result is a 32 bit
number that is divided in
two 16 bits parts

– sum in 1s complement the
two parts including the
overflow

– The result is the checksum
inserted in the header

TCP header

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 21

Intestazione TCP

0 15 31

flags

Source Port Number Dest Port Number

Sequence Number

Acknowledgment Number

HLEN Resv. Receiver window

checksum Urgent Pointer

It’s the pointer to what is the
“urgent data” in the data field
(e.g. ctrl-C in a telnet session).

It’s expresed as offset
wrt the seq. no.

Valid only if URG is set

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 22

TCP options

• It’s an extension to the header, used to add
features to the protocol, many options exist

• Comes before data and it’s in multiple of four
bytes

• Most used are:
– MSS (Maximum Segment Size), sent in the SYN
segment to define the “optimal” size of segments to
be received, not negotiated; default is 536 byte

– Timestamping of packet to improve RTT calculation
(more when talking about RTT estimation)

– SACK for selective ACKs (more later on discussing
congestion control)

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 23

TCP options

• Window scale
– Included in SYN segment
– Window field gives credit allocation in octets
– With Window Scale value in Window field multiplied by 2F

• F is the value of window scale option

• Sack-permitted
– Selective acknowledgement allowed

• Sack
– Receiver can inform sender of all segments received successfully
– Sender retransmit segments not receivedSACK, to enable

• Both must be issued for successful negotiation
• Result is not many connections use it, and usefulness still

under debate

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 24

State Diagram for TCP connections
Simplified FSM

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 25

TCP Entity
State Diagram

Full FSM

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 26

Operation with
Unreliable Network Service

• Internet using IP

• …

• Segments may get lost

• Segments may arrive out of order

• ... we know this all but

• What are the consequences on a reliable
transport layer?

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 27

Problems

• Connection establishment

• Connection termination

• Ordered Delivery

• Retransmission strategy

• Duplication detection

• Flow control

• Crash recovery

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 28

Connection Establishment Scenarios

Rearely used

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 29

What if a Server is not listening?

• Reject with RST (Reset)

• Queue request until a matching open can be
issued

– complex

– delay, client timeouts

• Notify the Application Protocol (AP) of pending
request

– May replace passive open with accept

– Client must be able to “understand”

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 30

Connection Establishment

• Two way handshake … doesn’t work
– A send SYN, B replies with SYN
– Lost SYN handled by re-transmission

• Can lead to duplicate SYNs

– Ignore duplicate SYNs once connected

• Lost or delayed data segments can cause
connection problems
– Segment from old connections
– Start segment numbers far removed from previous
connection
• Use SYN i
• Need ACK to include i

• Solved using Three Way Handshake

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 31

Two-Way
Handshake

Problem with
Obsolete Data

Segment

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 32

Two-Way Handshake Problem
with Obsolete SYN Segments

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 33

Examples of
Three-Way
Handshake

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 34

Termination

• Can be from one side only of from both sides

• Abrupt termination

• By mutual agreement

• Graceful termination provided

– Close wait state must accept incoming data until FIN
received

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 35

Side Initiating Termination

• AP issue a Close request

• Transport entity sends FIN, requesting
termination

• Connection placed in FIN WAIT state

– Continue to accept data and deliver data to user

– Not send any more data

• When FIN received, inform user and close
connection

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 36

Side Not Initiating Termination

• FIN received

• Inform AP, which place connection in CLOSE WAIT state

– Continue to accept data from AP and transmit it

• AP issues CLOSE primitive

• Transport entity sends FIN

• Connection closed

• All outstanding data is transmitted from both sides

• Both sides agree to terminate

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 37

Connection Termination

• Entity in CLOSE WAIT state sends last data segment,
followed by FIN

• FIN arrives before last data segment

• Receiver accepts FIN
– Closes connection

– Loses last data segment

• Associate sequence number with FIN

• Receiver waits for all segments before FIN sequence
number

• Loss of segments and obsolete segments
– Must explicitly ACK FIN

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 38

Graceful Close

• Composition of the two half close
– Send FIN i and receive AN i

– Receive FIN j and send AN j

• Wait twice maximum expected segment lifetime

• Guarantees that all data in both directions is
correctly sent

• Ensures proper freeing of logical resources on
both sides

• Is slow and requires cooperation ...

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 39

Failure Recovery

• After restart all state info is lost
• Connection is half open

– Side that did not crash still thinks it is connected

• Close connection using persistence timer
– Wait for ACK for (time out) * (number of retries)
– When expired, close connection and inform user

• Send RST i in response to any i segment arriving
• User must decide whether to reconnect

– Problems with lost or duplicate data

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 40

Ordered Delivery

• Segments may arrive out of order

• Number segments sequentially

• TCP numbers each octet sequentially

• Segments are numbered by the first octet
number in the segment

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 41

Retransmission Strategy

• Segment damaged in transit

• Segment fails to arrive

• Transmitter does not know of failure

• Receiver must acknowledge successful receipt

• Use cumulative acknowledgement

• Time out waiting for ACK triggers
re-transmission

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 42

Timer Value

• Fixed timer
– Based on understanding of network behavior
– Can not adapt to changing network conditions
– Too small leads to unnecessary re-transmissions
– Too large and the response to lost segments is slow
– Should be a bit longer than round trip time

• Adaptive scheme
– May not ACK immediately
– Can not distinguish between ACK of original segment
and re-transmitted segment

– Conditions may change suddenly

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 43

Duplication Detection

• If ACK lost, segment is re-transmitted

• Receiver must recognize duplicates

• Duplicate received prior to closing connection
– Receiver assumes ACK lost and ACKs duplicate

– Sender must not get confused with multiple ACKs

– Sequence number space large enough to not cycle
within maximum life of segment

• Duplicate received after closing connection
– Discard

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 44

Flow Control

• Credit allocation

• Problem: if AN=i, W=0, the window closes and
never reopens!!

• Receiver sends AN=i, W=j to reopen
– but if this is lost the sender thinks window is closed,
while the receiver thinks it is open

• Use window timer
– If timer expires, send something

– Could be re-transmission of previous segment

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 45

Data Transport

• Full duplex
• Timely

– Associate timeout with data submitted for transmission
– If data not delivered within timeout, user notified of service

failure and connection abruptly terminates

• Ordered
• Labelled

– Establish connection only if security designations match
– If precedence levels do not match higher level used

• Flow controlled
• Error controlled

– Simple checksum
– Delivers data free of errors within probabilities supported by

checksum

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 46

Special Capabilities

• Data stream push
– TCP decides when enough data available to form segment

– Push flag requires transmission of all outstanding data up to and
including that labelled

– Receiver will deliver data in same way

• Urgent data signalling
– Tells destination user that significant or "urgent" data is in

stream

– Destination user determines appropriate action

• Error Reporting
– TCP will report service failure due to internet conditions TCP

cannot compensate

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 47

TCP Service Primitives

• Services defined in terms of primitives and
parameters

• Primitive specifies function to be performed

• Parameters pass data and control information

• These defines the so-called socket programming

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 48

Use of TCP and IP Service Primitives

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 49

Basic Operation

• Data transmitted in segments
– TCP header and portion of user data
– Some segments carry no data

• For connection management

• Data passed to TCP by user in sequence of Send
primitives

• Buffered in send buffer
• TCP assembles data from buffer into segment and

transmits
• Segment transmitted by IP service
• Delivered to destination TCP entity
• Strips off header and places data in receive buffer
• TCP notifies its user by Deliver primitive that data are

available

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 50

Basic TCP Operation

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 51

Items Passed to IP

• TCP can pass some parameters down to IP
– Precedence

– Normal delay/low delay

– Normal throughput/high throughput

– Normal reliability/high reliability

– Security

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 52

TCP Mechanisms (1)

• Connection establishment
– Three way handshake

– Between pairs of ports

– One port can connect to multiple destinations

• Data transfer
– Logical stream of octets

– Octets numbered modulo 232

– Flow control by credit allocation of number of octets

– Data buffered at transmitter and receiver

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 53

Implementation Policy Options

• Send

• Deliver

• Accept

• Retransmit

• Acknowledge

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 54

Send

• If no push or close TCP entity transmits at its
own convenience

• Data buffered at transmit buffer

• May construct segment per data batch

• May wait for certain amount of data

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 55

Deliver

• In absence of push, deliver data at own
convenience

• May deliver as each in order segment received

• May buffer data from more than one segment

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 56

Accept

• Segments may arrive out of order

• In order

– Only accept segments in order

– Discard out of order segments

• In windows

– Accept all segments within receive window

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 57

Retransmit

• TCP maintains queue of segments transmitted
but not acknowledged

• TCP will retransmit if not ACKed in given time

– First only

– Batch

– Individual

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 58

Acknowledgement

• Cumulative
– Always ACK all the data received in order, allows for
quasi-selective repeat without (almost) any overhead

• Immediate
– send one ACK per packet

• Delayed
– send ACKs with delay to allow data piggibacking or
every 2 segments received

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 59

Silly Window Syndrome

• The unnecessary splitting of the Tx window in
many small segments due to protocol operation

• Caused either by
– the receiver, solved by simple logic

– the sender, solved by Nagle’s Algorithm – RFC 896

• If not prevented it is a normal phenomenon and
“kills” TCP performance

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 60

Receiver

• Avoid setting rcwnd < MSS
1. Try pushing data to the application in

large chunks, this is a matter of socket
management and process speeds

2. If buffer space is < MSS � rcwnd=0

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 61

Sender: Nagle’s Algrithm

• Again it has to do with socket managemnt

• Works well for telnet or file transfers

• Interacts badly with delayed ACK on other
applications (X, Web, ...)

if there is new data to send

if the window size and available data is >= MSS
send complete MSS size segment now

else
if there is unconfirmed data still in the pipe

enqueue data in the buffer until an ack is received

else send data immediately

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 62

Effect of Window Size (reprise)

• W = TCP window size (octets)

• R = Data rate (bps) at TCP source

• D = End-to-End delay (seconds)

• After TCP source begins transmitting, it takes D
seconds for first octet to arrive, and D seconds
for acknowledgement to return

• TCP source should transmit 2RD bits, or RD/4
octets to “fill the pipe”

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 63

Timing of TCP Flow Control

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 64

Normalized Throughput S

S =

1 W > RD 4

4W

RD
W < RD 4





 






Where are stored the

W-RD/4

excessive bytes?

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 65

TCP Flow Control Performance

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 66

Complicating Factors

• Multiple TCP connections multiplexed over same
network interface
– Reducing R and efficiency

• For multi-hop connections, D is sum of delays
across each network plus delays at each router

• If source data rate R exceeds data rate on a
hop, that hop will be bottleneck

• Lost segments retransmitted, reducing
throughput
– Impact depends on retransmission policy

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 67

Retransmission Strategy

• TCP relies on positive acknowledgements

– Retransmission on timeout or duplicated ACKs

• No explicit negative acknowledgement

• Retransmission required when:

– Segment arrives damaged

• Checksum error

• Receiver discards

– Segment fails to arrive

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 68

Timers

• Timer (a single one per each TCP send process)
initialized with each segment as it is sent

• If timer expires before acknowledgement,
sender must retransmit

• Value of retransmission timer is key

– Too small: many unnecessary retransmissions, wasting
network bandwidth

– Too large: delay in handling lost segment

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 69

Two Strategies

• Timer should be longer than round-trip delay

• Delay is variable

• Strategies:

• Fixed timer

• Adaptive

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 70

Problems with Adaptive Scheme

• Peer TCP entity may accumulate
acknowledgements and not acknowledge
immediately

• For retransmitted segments, can’t tell whether
acknowledgement is response to original
transmission or retransmission

• Network conditions may change suddenly

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 71

Average Round-Trip Time (ARTT)

• Take average of observed round-trip times over
number of segments

• If average accurately predicts future delays,
resulting retransmission timer will yield good
performance

• Use this formula to avoid recalculating sum
every time

ARTT(K + 1) =

1

K +1
RTT(i)

i=1

K +1
∑

ARTT(K + 1) =

K

K +1
ARTT(K) +

1

K + 1
RTT(K + 1)

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 72

RFC 793 Exponential Averaging

• Smoothed Round-Trip Time (SRTT)
SRTT(K+1) = α*SRTT(K)+(1–α)*RTT(K+1)

• Gives greater weight to more recent values as shown by
expansion of above:

SRTT(K+1) =(1–α)RTT(K+1)+α(1–α)RTT(K) + α2(1–

α)RTT(K–1) +…+αK(1–α)RTT(1)

• α and 1–α < 1 so successive terms get smaller

• E.g. = 0.8
SRTT(K+1)=0.2 RTT(K+1)+0.16 RTT(K)+ 0.128

RTT(K–1) +…

• Smaller values of α give greater weight to recent values

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 73

Exponential Smoothing Coefficients

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 74

Behavior of
exp. averaging

with varying
RTT values

• Actual RTT increases or
decreases

• Curves show the actual
value and the values
obtained with different
averaging techniques

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 75

RFC 793 Retransmission Timeout

• Equation above used in RFC 793 to estimate current
round-trip time

• Retransmission timer set somewhat greater

• Could use a constant value:

RTO(K+1) = SRTT(K+1) + ∆∆∆∆

• RTO is retransmission timer (or retransmission timeout)

• ∆ is a constant

• ∆ not proportional to SRTT
– Large values of SRTT, ∆ relatively small

– Fluctuations in RTT result in unnecessary retransmissions

– Small values of SRTT, ∆ is relatively large

– Unnecessary delays in retransmitting lost segments

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 76

RFC 793 Retransmission Timeout

• Use of timer value is proportional to SRTT, within limits

RTO(K+1)=MIN(UBOUND,MAX(LBOUND,β*SRTT(K+1)))

• UBOUND and LBOUND pre chosen fixed upper and lower
bounds on timer value and β is a constant

• RFC 793 does not recommend values but gives "example
values"

– α between 0.8 and 0.9 and β between 1.3 and 2.0

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 77

Modern Retransmission Timeout

• Use of timer value is proportional to SRTT, within limits

RTO(K+1)=MIN(UBOUND,MAX(LBOUND,β*SRTT(K+1)))

• UBOUND and LBOUND pre chosen fixed upper and lower
bounds on timer value and β is a constant

• RFC 793 does not recommend values but gives "example
values"

– α between 0.8 and 0.9 and β between 1.3 and 2.0

• More on timeout setting while discussing congestion
control & “modern” RTO setting

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 78

TCP Congestion Control
• Retransmissions are useless if the network is
congested ... but what is congestion?

• Congestion: a state of a network when the
offered load (or traffic) η is larger than the
network capacity C
– normalize ρ = η/C so that ρ >= 1 means congestion

– short term

– long term

• Example: a single bottleneck

100 Mbit/sS2

S3

S50

S1

...
receivers

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 79

TCP Congestion Control
Alternative Options

• Dynamic routing can alleviate congestion by
spreading load more evenly

• But only effective for unbalanced loads and
brief surges in traffic

• Indeed IP routing is dynamic only in face of
failures or topology changes

• Load-dependant, or QoS routing is a topic
discussed, researched-on and tested since 30
years, but never implemented

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 80

TCP Congestion Control
Alternative Options

• Congestion can only be controlled by limiting
total amount of data entering network

– I.E. making ρ < 1

• ICMP source Quench message is crude and not
effective ... and really not implements in hosts

• RSVP may help but not widely implemented

• No other Connection Admission Control
Techniques available in the Internet

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 81

TCP Congestion Control is Difficult

• IP is connectionless and stateless, with no
provision for detecting or controlling congestion

• TCP only provides end-to-end flow control

• No cooperative, distributed algorithm to bind
together various TCP entities

• No cooperation between IP and TCP

– When links/routers are congested IP drops packets

– TCP retransmit them ... increasing the load!!!

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 82

TCP Flow and Congestion Control

• The rate at which a TCP entity can transmit is
determined by rate of incoming ACKs to previous
segments with new credit

• Rate of Ack arrival determined by round-trip
path between source and destination

• Bottleneck may be destination or internet

• Sender cannot tell which

• Only the internet bottleneck can be due to
congestion

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 83

TCP Segment
Pacing

• Congestion in the Internet
and at the receiver cannot
be distinguished
• Both related with
transmission window
• TCP handles both with a
single window, which
creates a lot of
complexities

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 84

Context of TCP Flow
and Congestion Control

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 85

Retransmission Timer Management

• Congestion affects RTT � a technique to
efficiently and reliably compute RTO is needed

• Three Techniques to calculate retransmission
timer (RTO):

• RTT Variance Estimation

• Exponential RTO Backoff

• Karn’s Algorithm

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 86

RTT Variance Estimation
(Jacobson’s Algorithm)

• 3 sources of high variance in RTT

• If data rate relative low, then transmission
delay will be relatively large, with larger variance
due to variance in packet size

• Load may change abruptly due to other sources

• Peer may not acknowledge segments immediately

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 87

Jacobson’s Algorithm

• SRTT(K + 1) = (1 – g) × SRTT(K) + g × RTT(K + 1)

• SERR(K + 1) = RTT(K + 1) – SRTT(K)

• SDEV(K + 1) = (1 – h) × SDEV(K) + h ×|SERR(K + 1)|

• RTO(K + 1) = SRTT(K + 1) + f × SDEV(K + 1)

• g = 0.125
• h = 0.25
• f = 2 or f = 4 (most current implementations use f = 4)

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 88

Jacobson’s
RTO
Calculation

Figures show the behavior
when RTT increase from 0 to 10
or decreases from 20 to 10

The most used implementation
grossly overestimates since
has a large wheight on variance

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 89

Two Other Factors

• Jacobson’s algorithm can significantly improve
TCP performance, but:

• What RTO to use for retransmitted segments?
– ANSWER: exponential RTO backoff algorithm

• Which round-trip samples to use as input to
Jacobson’s algorithm?
– ANSWER: Karn’s algorithm

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 90

Exponential RTO Backoff

• Increase RTO each time the same segment is
retransmitted – backoff process

• Multiply RTO by constant:

– RTO = q × RTO

• q = 2 � binary exponential backoff

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 91

Which Round-trip Samples?

• If an ack is received for retransmitted segment,
there are 2 possibilities:

– Ack is for first transmission

– Ack is for second transmission

• TCP source cannot distinguish 2 cases

• No valid way to calculate RTT:

– From first transmission to ack, or

– From second transmission to ack?

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 92

Karn’s Algorithm

• Do not use measured RTT to update SRTT and
SDEV

• Calculate backoff RTO when a retransmission
occurs

• Use backoff RTO for segments until an ack
arrives for a segment that has not been
retransmitted

• Then use Jacobson’s algorithm to calculate RTO

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 93

Window Management

• Slow start

• Congestion Avoidance

• Dynamic window sizing on congestion

• Fast retransmit

• Fast recovery

• Limited transmit

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 94

Slow Start

• awnd = MIN[credit, cwnd]
– where

– awnd = allowed window in segments

– cwnd = congestion window in segments

– credit = amount of unused credit granted in most
recent ack (rcwn)

• cwnd = 1 for a new connection and increased by 1
for each ack received, up to a maximum

• Most implementations are not compliant and
start from 2 to “counter” delayed ACKs

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 95

Effect of
Slow Start

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 96

Dynamic Window Sizing on
Congestion

• A lost segment indicates congestion

• Prudent to reset cwsd = 1 and begin slow start
process
– The first implementation of TCP with dynamic window

• Highly inefficient since throughput is related to
the integral of the window in time

• The integral of “exponentials” -- indeed
geometrics is small

• Timeouts are normally long w.r.t. RTT

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 97

Dynamic Window Sizing on
Congestion

• One problem is “doubling” of the offered load
each RTT � much better to have a “gentler”
increase when the throughput is “reasonable”

• Linear window growth after a threshold

• Called “congestion avoidance”

• First introduced in 1988/1989 in a TCP version
(BSD 4.3) called Tahoe

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 98

Slow Start
and
Congestion
Avoidance

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 99

Window size during Slow Start and
Congestion Avoidance

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 100

Fast Retransmit

• RTO is generally noticeably longer than actual
RTT

• If a segment is lost, TCP may be slow to
retransmit

• TCP rule: if a segment is received out of order,
an ack must be issued immediately for the last
in-order segment

• Fast Retransmit rule: if 4 acks received for
same segment, highly likely it was lost, so
retransmit immediately, rather than waiting for
timeout

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 101

Fast
Retransmit

SN = 2000

X
SN = 3000

SN = 4000

SN = 10000

SN = 9000

SN = 12000

SN = 5000

SN = 4000

A = 3000

A = 3000

A = 3000

A = 3000

A = 8000

A = 10000

SN = 1000

A = 2000

SN = 6000

SN = 7000

SN = 11000

A = 11000

A = 12000

Fast retransmit works only
for med. to large windows
(cwnd > 4)

In any case transmission is
stopped for 1 RTT and then
restart from scratch

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 102

Fast Recovery

• When TCP retransmits a segment using Fast
Retransmit, a segment was assumed lost

• Congestion avoidance measures are appropriate
at this point
– Slow-start/congestion avoidance procedure

• This may be unnecessarily conservative since
multiple acks indicate segments are getting
through

• Fast Recovery: retransmit lost segment, cut
cwnd in half, go into congestion avoidance

• This avoids initial exponential slow-start

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 103

Fast
Recovery

Window management is quite
difficult with Fast Recovery

First implementations were wrong
(TCP Reno) and went in timeout if
more than one segment was lost
in a window

The correct implementation
(TCP NewReno) requires keeping
additional state

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 104

Fast
Recovery
Example
of window
evolution
(sinmplified)

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 105

Limited Transmit

• If congestion window at sender is small, fast
retransmit may not get triggered,
– e.g., cwnd = 3

• Under what circumstances does sender have
small congestion window?

• Is the problem common?

• If the problem is common, why not reduce
number of duplicate acks needed to trigger
retransmit?

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 106

Limited Transmit Algorithm

• Sender can transmit new segment when 3
conditions are met:
– Two consecutive duplicate acks are received

– Destination advertised window allows transmission of
segment

– Amount of outstanding data after sending is less than
or equal to cwnd + 2 (i.e. the window was exactly 3)

• Rarely implemented, solves just a limited number
of cases

• What about correlated losses?

SACK, RED/ECN and
Throughput Modeling

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 108

TCP Throughput

• What is the throughput achievable by TCP?

• Integral of the window size in time

• Can we predict TCP throughput?

• What are the free parameters
– Loss probability (is it independent from TCP itself?)

– RTT, Number of connections, ...

• Can we decouple flow from congestion control?

• Can we avoid dropping packets due to
congestion?

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 109

SACK Option (RFC 2081)

• Negotiation at startup to verify if both ends are
enabled

• “Holes” in the receiver buffer sent back to the
sender as couple of pointers in ACK optional
fields

• Can improve performance (not much!) with highly
correlated losses

• Can sometimes lead to blocks and timeouts
(implemntation bugs?)

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 110

Timestamp Option

• RFC 1323 (as windowscale)
• “Normal” TCP can only compute one RTT sample
per window since the only timer is overwritten
every new transmission

• With timestamp each segment is stamped with
time, ACKs are stamped too

• There can be 1 RTT sample per segment
• RTT can be computed more precisely and RTO
can be set more accurately

• Additionally can solve window wrap around
problems

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 111

Explicit Congestion Notification (ECN)

• RFC 3168
• Routers alert end systems to growing congestion

– End systems reduce offered load
– With implicit congestion notification, TCP deduces congestion by

noting increasing delays or dropped segments

• Benefits of ECN
– Prevents unnecessary lost segments

• Alert end systems before congestion causes dropped packets
• Retransmissions which add to load avoided

– Sources informed of congestion quickly and unambiguously
• No need to wait for retransmit timeout or three duplicate ACKs

• Disadvantages
– Changes to TCP and IP header
– New information between TCP and IP

• New parameters in IP service primitives

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 112

Changes Required for ECN

• Two new bits added to TCP header
– TCP entity on hosts must recognize and set these bits

• TCP entities exchange ECN information with IP

• TCP entities enable ECN by negotiation at connection
establishment time

• TCP entities respond to receipt of ECN information

• Two new bits added to IP header

– IP entity on hosts and routers must recognize and set these

• IP entities in hosts exchange ECN information with TCP

• IP entities in routers must set ECN bits based on
congestion

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 113

IP Header

• Prior to introduction of differentiated services IPv4
header included 8-bit Type of Service field

• IPv6 header included 8-bit traffic class field
• With DS, these fields reallocated

– Leftmost 6 bits dedicated to DS field,
– Rightmost 2 bits designated currently unused (CU)

• RFC 3260 renames CU bits as ECN field
The ECN field has the following interpretations:
Value Label Meaning

00 Not-ECT Packet is not using ECN

01 ECT (1) ECN-capable transport

10 ECT (0) ECN-capable transport

11 CE Congestion experienced

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 114

TCP Header

• To support ECN, two new flag bits added

• ECN-Echo (ECE) flag

– Used by receiver to inform sender when CE packet
has been received

• Congestion Window Reduced (CWR) flag

– Used by sender to inform receiver that sender's
congestion window has been reduced

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 115

TCP Initialization

• TCP header bits used in connection establishment
to enable end points to agree to use ECN

• A sends SYN segment to B with ECE and CWR set

– A ECN-capable and prepared to use ECN as both sender
and receiver

• If B prepared to use ECN, returns SYN-ACK
segment with ECE set CWR not set

• If B not prepared to use ECN, returns SYN-ACK
segment with ECE and CWR not set

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 116

Basic Operation

• TCP host sending data sets ECT code (10 or 01) in IP
header of every data segment sent

• If sender receives TCP segment with ECE set, sender
adjusts congestion window as for fast recovery from
single lost segment

• Next data segment sent has CWR flag set
– Tells receiver that it has reacted to congestion

• If router begins to experience congestion, may set CE
code (11) in any packet with ECT code set

• When receiver receives packet with CE set it begins to
set ECE flag on all acknowledgments (with or without
data)
– Continues to set ECE flag until it receives segment with CWR set

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 117

Basic ECN Operation

Renato.LoCigno@disi.unitn.it Advanced Networking – TCP 118

Open problems

• How to properly react to multiple ECN
indications so that window is not reduced too
much
– make a single reduction per RTT

– some “complicated” heuristics to achieve that

• When buffers are full, packets are lost in bursts
– problem in general with TCP, also with ECN

• Can we manage buffers to avoid bursty losses?

