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Abstract

We address the problem of multiple people tracking
under non-homogenous and time-varying illumination
conditions. We propose a unified framework for jointly
estimating the position of the targets and their illumi-
nation conditions. For each target multiple templates
are considered to model appearance variations due to
lighting changes. The template choice is driven by an
illumination map which describes the light conditions
in different areas of the scene. This map is computed
with a novel algorithm for efficient inference in a hier-
archical Markov Random Field (MRF) and is updated
online to adapt to slow lighting changes. Experimental
results demonstrate the effectiveness of our approach.

1 Introduction

Robust visual object tracking in an illumination-
varying environment is a classical task in computer vi-
sion. Many approaches [1, 2, 6] have been proposed
but the problem is still far from being solved. Some
methods simply discard the illumination-sensitive in-
formation and employ other features considered invari-
ant to illumination (e.g. motion or edges) [2] or use
color spaces different from RGB (e.g. YUV or HSI)
[6]. However by eliminating the color or the intensity
component the ability of the tracker to discriminate the
object w.r.t. the background is reduced.

A radically different strategy, which we also adopt
in this paper, consists in explicitly modeling target ap-
pearance variations due to lighting conditions [1, 4]. We
focus our attention on video surveillance single-camera
applications and we propose to use particle filters (PFs)
for jointly estimating the positions of the targets and
their illumination conditions. However differently from
[4] where the analysis is limited to a single target, we
study the more challenging task of multi-person track-
ing and we adopt the Hybrid Joint Separable (HJS) PF
[5] instead of a MCMC PF as in [1]. We model target
appearance variations due to light changes by introduc-
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Figure 1. An example of (a) a possible sce-
nario (b) a hierarchical MRF. (c) A plot il-
lustrating the idea of illumination map.

ing multiple templates into the HJS algorithm. Roughly
inspired by color constancy approaches [3, 7], we com-
pute the templates by applying to a reference image a
finite set of diagonal transforms. Interestingly in the
PF the template sampling process is constrained by in-
corporating a prior which allows to choose only among
suitable templates. The prior is obtained from the illu-
mination map of the scene which we define as the set of
beliefs of the nodes in a hierarchical MRF. A main nov-
elty of the paper concerns the inference in the MRF: to
perform fast computations we developed a novel mes-
sage passing scheme extending the work in [8].

2 Background

HJS PF. In PFs the goal is to approximate the poste-
rior distribution p(st|o1:t) where st denotes the hidden
state which represents the objects configuration and ot
the associated measurements extracted from the image.
The approximation is made by a set of samples (the par-
ticles) {sit, wit} each one associated with a weight wit
which indicates its ”quality”. Let st = {s1, .., sQ} de-
notes the joint state and sq the state of the q-th object.
Among several methods for multi-person tracking, the
HJS algorithm represents a theoretically founded while
computationally efficient approach. The main idea of
the HJS is to approximate the joint posterior by the outer
product of its marginals, i.e. p(st|o1:t) ≈

∏
q p(s

q
t |o1:t).

Then the prediction step is performed independently for
each target p(st|st−1) =

∏
q p(s

q
t |s

q
t−1) (thus with lin-

ear cost in the number of targets) while in the update
step a joint likelihood p(ot|st) is considered explicitly
taking into account occlusions. Due to lack of space we
remind the reader to [5] for details.



Modeling the illumination changes. Light re-
flected by an object entering a camera is a product
of the object reflectance and the illuminant spectrum.
In a Lambertian model, the color ρ = (ρ0, ρ1, ρ2)
for a point reflectance S(λ) with illumination spec-
trum E(λ), illuminated from direction a, is given by
ρc = n · a

∫
E(λ)S(λ)Qc(λ)dλ where λ is the light

wavelength. In this paper we assume that ρ = Σκ with
[Σ]ck = n · a

∫
E(λ)Sk(λ)Qc(λ)dλ, κ = (κ0, κ1, κ2)

i.e. that the reflectance can be expressed by a linear
combination of three basis functions Sk(λ) [7]. There-
fore the function which transforms an image ρ taken
under an illuminant with spectrum E(λ) to an image
ρ′ taken under a different illuminant with spectrum
E′(λ) is ρ′ = Σ−1Σρ. We also suppose narrowband
camera sensors to be approximately spike sensitivities
Qc(λ) = δ(λ − λc), c = 0, 1, 2. The results is that
ρ′ = Dβρ where Dβ = diag(β) and β = (β0, β1, β2)
with βc = E(λc)/E′(λc). Thus color change under
changing illumination can be described by the so-called
diagonal (or von Kries) model [3] according to which
each color channel is multiplied by a single factor βc.

3 Tracking with Illumination Templates

This Section describes the main features of our PF.
Target representation. We modify the HJS algorithm
introducing for each target multiple templates [9] repre-
senting its appearance under different illumination. To
construct the templates set Rq = {rq1, . . . r

q
L} we con-

sider an RGB image P1 ∈ R3×N extracted from the
silhouette of the target q at a specific position xq in
the scene and we compute the associated histogram rq1.
The other exemplars are obtained applying L diagonal
transforms to P1 according to von Kries hypothesis, i.e.
Pβ = DβP1, with β = (βr, βg, βb). From Pβ we com-
pute the histograms rqβ . In practice for each βc we con-
sider ` possible values i.e. βc ∈ {β̄c1, . . . β̄c`}, β̄ci ∈ R
for a total of L = `3 templates.
State space. We model a person appearance dividing
the body in three parts: head, torso and legs. Each tar-
get q is described by the state vector sq = (xq,ωq,βq)
where xq indicates its position on the floor, ωq the
shape of the body and βq = (βr,q, βg,q, βb,q) describes
its illumination conditions.
Observation model. For each body part we extract a
3D color histogram: this guarantees a more robust rep-
resentation w.r.t. three separate histograms. The like-
lihood p(ot|st) is computed modeling occlusions as in
[5] and evaluating the Bhattacharya distance between
the observed histograms and the current references rqβt .
Dynamical model. We define p(sqt |s

q
t−1) = ΨI(x

q
t )

p(xqt |x
q
t−1)p(ωqt |ω

q
t−1)p(βqt |β

q
t−1,x

q
t ). The MRF

prior ΨI(x
q
t ) =

∏
i 6=q ψI(x

i
t,x

q
t ) penalizes object

overlapping with ψI(xit,x
q
t ) = e−λI(IMAX−‖xit−x

q
t‖).

We define p(βqt |β
q
t−1,x

q
t ) = p(βqt |β

q
t−1)p(βqt |x

q
t )

where p(βqt |x
q
t ) models the likelihood of certain light

conditions given a location in the scene. As stated above
we assume each color channel to be independent from
the others i.e. p(βqt |β

q
t−1) =

∏
c∈{r,g,b} p(β

c,q
t |β

c,q
t−1)

and p(βqt |x
q
t ) =

∏
c∈{r,g,b} p(β

c,q
t |x

q
t ). The terms

p(xqt |x
q
t−1), p(ωqt |ω

q
t−1) and p(βc,qt |β

c,q
t−1) are modeled

as gaussian noise, while p(βc,qt |x
q
t ) is defined in the fol-

lowing section. The term p(βqt |x
q
t ) does not depend on

the previous target state sqt−1 and we treat it as an addi-
tional function in the importance weight (i.e. as multi-
plicative factors of the likelihood).

4 Creating an Illumination Map

Motivation. We assume that under von Kries hy-
pothesis and on a sufficiently small time interval ∆t the
illumination conditions of two targets in the same loca-
tion of the scene can be described by the same β. This
assumption is reasonable in our video surveillance ap-
plications where targets of small-medium resolution can
be sufficiently described by a global model of the illu-
minant and the reflectance properties of the materials
(i.e. the clothes of people) are about the same. Under
this premise, the idea is to use the information collected
from a set of targets to build an illumination map which
aids the PF to track other targets. To this aim we con-
struct a MRF where each observed node contains the
information about the illumination condition of a spe-
cific region in the scene and we define the PF priors
p(βc,qt |x

q
t ) from the beliefs of the MRF. We call the set

of beliefs the illumination map. In the following we
describe the MRF we used and the inference approach
we developed to compute its beliefs. To our knowledge
the concept of a global illumination map has never been
investigated before for visual object tracking.

The hierarchical MRF. We consider a grid dis-
cretizing all possible locations in the scene of interest
(Fig.1.a) and we construct a hierarchical MRF (Fig.1.b)
where each hidden node of level 0 corresponds to a cell
in the grid. Each hidden node of level l is connected
with P nodes at level l − 1 (we choose P = 4). La-
tent variables are represented by the illumination coef-
ficients β. Hidden nodes of level 0 may or not be con-
nected with an observation node. For an observation
node i and a target uwe collect several color histograms
zi,u extracted from the target silhouettes associated to
positions xu inside the i-th cell. Histograms are first
collected offline assuming that in this preliminary phase
lighting conditions are static. It is worth noting that the
targets used in this phase are not necessarily the ones
we want to track. To adapt to time-varying illumination
we take at each frame the color histograms correspond-



ing to the MMSE tracking estimates and progressively
discard older histograms. We also discard histograms
if an occlusion has been detected. In practice for each
node i we build a buffer of histograms zi,u collected in
the temporal interval ∆t. Then for each target u and
each node i we used K-means to compute the cluster
centroids hki,u and define the set {h1

i,u . . . h
Ku
i,u } as the

observation ηi for node i.
Let G = (V,E) be an undirected graph with a node
set V and an edge set E. Let L be the cardinality of
the label set and H = {η1, .., ηn}. The joint probabil-
ity function over the entire graph is: p(β1, ..,βn|H) =
1
Z

∏
i φi(βi, ηi)

∏
i,j ψij(βi,βj) where φi(βi, ηi) is

the likelihood for node i, ψij(βi,βj) is the pair-
wise potential between nodes i and j and Z is a
normalization constant. We define φi(βi, ηi) =
e−λB

∑U
u=1

∑Ku
k=1 π

k
i,uDB(hki,u,r

u
βi

) and ψij(βi,βj) =
e−λEDE(βi,βj)e−λn(l)DE(ni,nj) where DB and DE de-
notes the Bhattacharya and the Euclidean distance re-
spectively, ni indicates the coordinates of node i and
πki,u = T ki,u/Ti,u where T ki,u is the cardinality of the set
of histograms represented by hki,u while Ti,u is the to-
tal number of histograms for the u-th target in the cell
i. Pairwise potentials ψij(βi,βj) enforce the fact that
neighboring nodes should have similar latent variables
and, together with K-means, alleviate the effect of noise
due to the use of tracking estimates in the observations
ηi. The parameter λn(l) depends on the level l in the hi-
erarchy: it is set to a higher value for potentials connect-
ing leaf nodes with level 1 and decreases going up to the
hierarchy. Note that instead of a hierarchical structure
we could have adopted a grid graph. However we found
the hierarchy sufficiently accurate for our purposes with
the advantage of allowing a faster inference. Moreover
it naturally deals with nodes with missing observations
interpolating between the observed data.

A semi-joint approach for efficient inference. We
use sum-product belief propagation (BP) to compute
the beliefs of the MRF. Since the set H is updated
online as new tracking estimates are available the be-
liefs must be efficiently recomputed. While updating
the observation potentials is relatively simple (it usu-
ally implies running K-means in few nodes and with
few data), the computational cost of BP (O(|V |L2) =
O(|V |`6)) is prohibitive in our case since we ob-
served that we typically need large graphs (|V | ≈
100) and ` > 10. To overcome this difficulty we
propose to modify the structure of our graph. We
decompose each node i into three nodes ri, gi, bi
and modify ψij(βi,βj) defining three separate pair-
wise potentials ψri,j(β

r
i , β

r
j ), ψgi,j(β

g
i , β

g
j ), ψbi,j(β

b
i , β

b
j )

with ψri,j(β
r
i , β

r
j ) = e−λβDE(βri ,β

r
j )e−λn(l)DE(ni,nj).

The likelihood is defined as above (φi(βri , β
g
i , β

b
i ) =

Table 1. Tracking accuracy (F-measure).
s1 s2 s3 s4 s5 s6

notargets 1 1 2 2 3 3
HJS [5] 0.35 0.58 0.62 0.68 0.55 0.36

β-HJS Eqn.1 0.60 0.67 0.70 0.73 0.74 0.76
β-HJS Eqn.2 0.58 0.67 0.69 0.72 0.72 0.77

φi(βi, ηi)) but in the decomposed graph is a clique po-
tential of size 3. The new MRF is a graph with an in-
creased number of nodes but where inference is done
more efficiently (O(3|V |`3)). In fact in this semi-joint
model the message passing consists in inter-node pair-
wise messages and intra-node triwise messages1:

mr
Ψij→j(β

r
j )α

∑
βri

ψrij(β
r
i , β

r
j )mr

i→Ψij (β
r
i )

mi
Φ→r(β

r
i )α

∑
βgi

∑
βbi

φi(βri , β
g
i , β

b
i ) (1)

mi
g→Φ(βgi )mi

b→Φ(βbi )

This model extends the one in [8] where each node in
the original graph is decomposed in two nodes. Our
decomposition maintains the theoretical properties of
the one in [8] (the solution space of the decomposed
graph contains that of the original graph) but introduces
a main difficulty: the triwise potentials imply comput-
ing Eqn.1 that is still demanding (O(`3)). To effectively
address this problem we introduce the following result:

Theorem 1 Let φ(βr, βg, βb) be a real-valued func-
tion having continuous partial derivatives and letR (the
remainder term of its first-order Taylor series expan-
sion) be ≈ 0, then Eqn.1 can be computed as:

mi
Φ→r(β

r
i ) ≈ φi(βri , β̃

g
i , β̃

b
i ) (2)

where β̃ci =
∑
βci
βcim

i
c→Φ(βci ) and mi

c→Φ(βci ) =∏
k∈N (i)m

c
Ψki→i(β

c
i ).

Proof. See Supplementary material.2

Using Eqn.2 instead of Eqn.1 the computational cost
of message passing is reduced from O(3|V |`3) to
O(3|V |`2). Regarding the accuracy of the approxima-
tion, we must say that despite it is difficult to assess it
a-priori since it depends on the nature of φ(βr, βg, βb),
our experiments (Table 1) demonstrate its validity.

The illumination map. We used the computed be-
liefs bi(βci ) = mi

Φ→c(β
c
i )

∏
k∈N (i)m

c
Ψki→i(β

c
i ) to de-

fine p(βc,qt |x
q
t ) =

∏
i∈B(xqt )

bi(βci ) with B(xqt ) = {i ∈
V, i : l(i) = 0, ‖ni − xqt‖2 ≤ T} and T a user de-
fined threshold. They represent the illumination map of

1We reported the expressions of the messages from factor to vari-
able nodes for the equivalent factor graph representation and for the
red channel. Similar results apply to the other channels. Φ and Ψ
indicate the factor nodes.

2http://tev.fbk.eu/people/zen/illumination map.html



Figure 2. Tracking results without (top)
and with the illumination map (bottom).

the scene since they contain information about the most
likely βci in the i-th cell of the grid. This concept is ex-
emplified in Fig.1.c where the expected values of bi(βri )
corresponding to Fig.1.a are plotted. Fig.1.c clearly
shows that illuminated regions correspond to higher val-
ues of βr w.r.t. dark areas.

5 Results and Discussion

We first evaluate the performance of our algorithm
on video sequences recorded in our laboratory with non-
homogeneous illumination conditions. We build up an
illumination map with a set of histograms collected of-
fline in a fully automatic way: we track separately 3
targets freely moving around the room, never occluded
by other objects and dressed with colors well discrim-
inative w.r.t. the background. We used the learned
map in more challenging situations (6 sequences with
multiple targets or targets similar to the background).
Despite the illumination conditions are static we also
update the map running BP every 50 frames: this al-
lows the tracking to better adapt to the current targets
appearance. In Table 1 we compare the performance
of: HJS without the illumination model, HJS with the
illumination map and inference computed with Eqn.1
and HJS with the map and using Eqn.2. We mea-
sure tracking accuracy in terms of average F-measure
F = (2PR)/(P+R) where P = (TS∩GS)/TS is the
precision and R = (TS ∩GS)/GS the recall (GS and
TS denote the ground truth and the tracking estimate
windows). The performance of the PF improve signif-
icantly with the proposed illumination model since the
targets are tracked even when subject to strong appear-
ance changes. Moreover the results obtained with Eqn.2
are almost as accurate than the ones of Eqn.1 at a much
reduced computational cost. For example in our exper-
iments with |V | = 96 and ` = 26 Theorem 1 leads to a
speed up of about a factor of 1.5. This implies that each
iteration of BP is performed in about 100 msecs rather
than in 140 msecs.

Fig.2 clearly demonstrates the importance of the
map. We consider a sequence with three targets. When

Figure 3. A sequence from PETS 2007.
the HJS is used without an illumination model two
of the three targets are lost since their appearances
change substantially (see supplementary material2). On
the other hand, the adoption of the illumination tem-
plates without a learned map (i.e. p(βc,qt |x

q
t ) are uni-

form distributions) causes the tracker drift (Fig.2(top)).
The best results are obtained with the illumination
map (Fig.2(bottom)), where all targets are successfully
tracked during the entire sequence.

A second series of experiments have been conducted
on the public dataset PETS 20073. We selected some
sequences with non-homogeneous and time-varying il-
lumination conditions. Fig.3 depicts a challenging sce-
nario with a strong light edge and a target whose color
appearance is very similar to the background. In this
case it is possible to reduce the risk of drifting by
exploiting the information collected by other targets
which are tracked correctly. For example in this case
we compute the illumination map from the observations
collected from one target (the man in white) walking in
the room. This map is used successively to track more
challenging targets such as the one in Fig. 3 which was
not possible to track without.
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