
Learning Pedestrian Trajectories with Kernels

Elisa Ricci, Francesco Tobia, Gloria Zen
Fondazione Bruno Kessler, FBK-irst, via Sommarive 18, Povo, 38100 Trento, Italy

{eliricci,tobia,gzen}@fbk.eu

Abstract

We present a novel method for learning pedestrian
trajectories which is able to describe complex motion
patterns such as multiple crossing paths. This approach
adopts Kernel Canonical Correlation Analysis (KCCA)
to build a mapping between the physical location space
and the trajectory patterns space. To model crossing
paths we rely on a clustering algorithm based on Ker-
nel K-means with a Dynamic Time Warping (DTW) ker-
nel. We demonstrate the effectiveness of our method
incorporating the learned motion model into a multi-
person tracking algorithm and testing it on several
video surveillance sequences.

1. Introduction

Being able to automatically extract recurrent patterns
is of crucial importance for many video surveillance
applications such as visual object tracking or anomaly
detection. An example of recurrent patterns is repre-
sented by pedestrian trajectories. Usually pedestrians
tend to follow only few common trajectories while other
paths are infrequent or never observed. Previous works
have shown how motion patterns can be described with
parametric models learned from a typical set of trajec-
tories collected offline. For example in [3, 9] splines
are used to represent human paths: the resulting al-
gorithms are simple and computationally efficient but
fail to model complex situations of multiple intersect-
ing paths. Other approaches [1] consider a single crowd
motion model. However these methods are more suited
to describe crowded scenes and are not appropriate in a
scenario as the one considered in this work where only
few people are moving around following multiple paths.

In this paper we propose a novel approach to learn
typical pedestrian paths. We first cluster trajectories us-
ing Kernel K-means equipped a DTW kernel [4] to ef-
fectively compare paths of different length. Then we
learn a function which allows to estimate the instanta-
neous velocity of a target given its current position and

Figure 1. Typical paths in our scenario.

the cluster membership. To this aim we propose a novel
algorithm based on Kernel Canonical Correlation Anal-
ysis (KCCA) [6]: the idea is that in this way we im-
pose points that are close together in the input space to
have highly correlated outputs. This is meant to model
the fact that usually neighboring points along similar
trajectories correspond to movements in similar direc-
tions. The proposed approach has several advantages.
First of all, the instantaneous velocity can be treated as
a continuous valued vector allowing more accurate esti-
mates w.r.t. previous methods which adopt discrete rep-
resentations [2]. Second, by the kernels, both K-means
and KCCA effectively capture the nonlinear structure
of the data. Finally by first clustering trajectories and
then incorporating the cluster membership in the algo-
rithm which predicts the trajectory patterns we are able
to model complex situations such as crossing paths.

The contribution of this paper are threefold. (i) We
show that the problem of learning motion patterns can
be modeled as a multivariate regression task (i.e. we
predict multiple outputs - the components of the in-
stantaneous velocity vector- together) and that (ii) the
learned motion model can be successfully incorporated
into a multi-person tracking algorithm. (iii) We demon-
strate that the DTW kernel previously proposed in [4] in
the contest of speech recognition can be used effectively
for pedestrian trajectory analysis.

2. Kernel Canonical Correlation Analysis

KCCA [6] has been proposed as the nonlinear ex-
tension of Canonical Correlation Analysis (CCA) by

the use of kernels. CCA [7] is a powerful statistical
tool well suited to address tasks where we need to es-
tablish a relation between two sets of measurements.
More specifically, given two matrices S ∈ RN×M and
T ∈ RN×Q representing two sets of measurements,
CCA finds directions (the canonical vectors) ws and wt
such that the projections wTs S and wTt T are maximally
correlated. While in CCA only linear projections are
considered, KCCA account for nonlinear mappings. In
analogy with other kernel methods (e.g. Support Vector
Machines), KCCA implicitly maps vectors s and t into
an high-dimensional feature space through the transfor-
mations φ(s) and ψ(t), and then performs traditional
CCA in the two feature spaces. Considering the cen-
tered feature matrices Φs and Φt and the dual repre-
sentations for the projection directions ws = ΦT

s σ and
wt = ΦT

t τ the problem of KCCA reduces to find σ and
τ . It can be shown [6] that σ can be computed solving
the generalized eigenproblem:

(Ks + γI)−1Kt(Ks + γI)−1Ktσ = λ2σ (1)

where Ks and Kt denote the two centered kernel ma-
trices with [Ks]i,j = ks(si, sj) and [Kt]i,j = kt(ti, tj),
I is the identity matrix and γ is a user-defined regu-
larization parameter. Regularization is introduced to
avoid overfitting penalizing the norms of the weight
vectors. A typical choice for k(·) is the gaussian ker-

nel k(x, y) = e
−‖x−y‖2

σ2 . Then τ can be obtained as:

τ =
1
λ

(Ks + γI)−1Ktσ (2)

Given any new datapoint s̃, its projection π(s̃) on ws is
given by π(s̃) = kTs̃ σ with [ks̃]i = k(si, s̃). Similarly,
the projection of any t̃ onto wt is kTt̃ τ .

3. Learning Typical Pedestrian Paths

Our approach consists in three main phases. In the
fist step (preprocessing) we automatically collect a set
of trajectories and filter out noisy data. In the sec-
ond phase (clustering) the paths are grouped accord-
ing to their similarity. Finally during modeling a com-
pact representation of all observed trajectory patterns is
learned. In the following we describe the three phases.

Preprocessing. We consider the scenario depicted
in Fig.1 and we use a color-based particle filter [8]
to track several people and automatically extract their
paths. Since this phase is fully automatic the data tend
to be noisy due to situations of tracking instability or
failure. Therefore we manually discard outliers and we
further remove noise from each trajectory by smooth-
ing it using a moving average filter. We end up with a
dataset of 80 different paths.

(a) (b)
Figure 2. (a) Clustered trajectories. (b)
Paths extracted tracking with (red) and
without (blue) the learned motion model
Clustering. We represent a trajectory as a se-

quence of flow vectors F = {f1, . . . fM} where ft =
[xt, yt, δxt, δyt] contains the position and the velocity
of the target at time t. Then we group the flow vec-
tors Fi according to their similarity. To be able to de-
tect nonlinear clusters we resort on kernel methods and
specifically on Kernel K-means (KK-means) [11]. In
KK-means points are mapped to a higher-dimensional
feature space using a nonlinear function, and then clas-
sical K-means partitions them by linear separators in the
feature space. Due to lack of space we remind the reader
to [11] for details about KK-means.

A main difficulty when clustering trajectories is that
different paths have unequal length due to their time
varying nature. To address this issue many approaches
rely on a procedure of length normalization or dimen-
sionality reduction, while other methods use size inde-
pendent distance measures [10]. However normaliza-
tion techniques result suboptimal since they often im-
ply some loss of information, while size independent
distances introduce the problem that in many cases they
cannot be trivially transformed into a positive semidef-
inite kernel function as required by KK-means. To
circumvent these problems in this paper we adopt the
DTW kernel originally proposed in [4]:

KDTW (Fa, Fb) =
∑

ρ∈A(Fa,Fb)

|ρ|∏
i=1

κ(Fa(ρ(i)), Fb(ρ(i)))

which is a positive definite kernel under weak assump-
tions on κ(·). The idea behind this kernel is to com-
pare two trajectories Fa and Fb considering the set A
of all possible alignments ρ between them and use dy-
namic programming to compute the sum of all align-
ments scores. Note that this concept is different from
the idea of standard DTW distance where only the op-
timal alignment is computed. Up to our knowledge this
kernel, originally proposed for speech applications, has
never been employed in the context of trajectories anal-
ysis. Our experiments demonstrate that it can be used
to accurately cluster pedestrians paths. An example of
clustering results is shown in Fig.2.a. Due to visual-
ization purposes only a subset of the original set of
80 trajectories is depicted. In our experiments we set

κ(x, y) = e
−‖x−y‖2

σ2 .

Table 1. Average cross-validation error
(a) (b) (c)

δx δy δx δy δx δy
Synthetic 3.6 4.1 4.6 4.7 6.3 5.1
Real 5.9 6.1 7.6 8.9 6.7 8.6

Modeling. We use all the clustered sequences
Fi of flow vectors to construct a training set
D = {(s1, t1), . . . , (sN , tN)}. Here si = (xi, yi, ci)
indicates the position of the target and the associated
cluster while ti = (δxi, δyi). The goal is to use training
data D to learn a mapping f between the location
space S = {si ∈ R3} and the trajectory patterns
space T = {ti ∈ R2} which allows to predict the
instantaneous velocity vector t̃ for a new input data-
point s̃. To this aim we propose the following algorithm:

Training phase
Input: Training set D, parameters σs, σt, γ

1. Set ks(x, y) = e
−‖x−y‖2

σ2
s and kt(x, y) = e

−‖x−y‖2

σ2
t .

2. Compute λ, σ and τ solving (1) and (2).
3. For each training pair (si, ti) compute π(si).
Output: Π = {π(s1), . . . ,π(sN)}, λ, σ, τ

Test phase
Input: A new input point s̃, λ, σ, τ , the parameter P .
1. Compute π(s̃).
2. ∀π(si) ∈ Π, compute wi = ‖π(s̃)− π(si)‖2.
3. Create the set ΥP = {(tp, wp) : tp ∈ D} of the P
output vectors corresponding to the si associated to the
P neighbors π(si) closest to π(s̃) according to wi.
4. ∀tp ∈ ΥP compute w̃p = 1− wp∑

ΥP
wp

.

5. Compute t̃ = 1
P

∑
ΥP

w̃ptp.
Output: t̃

Among previous works in the context of trajectory
patterns learning the most similar to our algorithm is
perhaps the one proposed in [5]. However in [5] δx
and δy are considered separately and two independent
regression functions are learned. Thus the underlying
structure of the output space is completely ignored. On
the contrary with KCCA we consider the output space
T globally and we emphasize the correlations between
the locations and the motion patterns space. The advan-
tage of considering a unique model rather than two sep-
arate ones is confirmed by our experiments (Table 1).
Note that incorporating the cluster membership c in the
input vector is crucial since we circumvent the problem
of predicting multiple outputs from a single input point:
a situation that occur in case of multiple crossing paths
where the same location can be associated with differ-
ent velocity vectors. On the other hand, with KK-means
and specifying a sufficient number of clusters we avoid
this difficulty.

4. Motion Aware Multi-Person Tracking

To demonstrate the effectiveness of the learned mo-
tion model we use it to improve the performance of a
people tracker. To this purpose, we resort on the multi-
person tracking algorithm proposed by [8]. This ap-
proach is based on particle filters.

Let st = {s1t . . . sJt } denotes the hidden state which
represents the spatial configuration of J different targets
and ot be the associated observations extracted from the
image at time t. In Bayesian tracking the sequence of
hidden states s1:t is estimated based on the observed
data o1:t. All Bayesian estimates of st follow from
the posterior distribution p(st|o1:t). In particle filters
p(st|o1:t) is approximated by a set of samples (the par-
ticles) {sit,wit} each one associated with a weight wit
which indicates its ”quality”. In [8] the joint poste-
rior distribution is approximated by the outer product
of its marginals p(st|o1:t) ≈ p(sjt |o1:t). According to
this approximation the dynamical model p(st|st−1) =∏
j p(s

j
t |s

j
t−1) accounts for the motion of the targets

separately while the observation model p(ot|st) con-
sider the joint objects configuration and involves the
computation of a joint likelihood function which takes
explicitly into account occlusions.

We modify the original tracking algorithm by in-
corporating the learned motion model into p(st|st−1).
More specifically for each target we replace the origi-
nal uniform isotropic motion model with: p(st|st−1) =
p(xt, ct|xt−1, ct−1) = p(ct|xt−1, ct−1)p(xt|xt−1, ct−1)
i.e. we assume the current location and cluster indi-
cator being conditionally independent from the loca-
tion and the cluster indicator at time t − 1. We fur-
ther define p(ct|xt−1, ct−1) ≈ p(ct|lt−1, ct−1), where
p(ct|lt−1, ct−1) is a probability table learned from train-
ing data and obtained discretizing the space of all pos-
sible locations x into a finite set of points li, li ∈ L =
{1...L}. In practice we construct a regular grid on the
floor and for each cell in the grid lt−1 we compute a ta-
ble of co-occurrencies p(ct|ct−1). The assumption be-
hind this approximation is that the transition between
clusters is smooth w.r.t. location changes. We also
define p(xt|xt−1, ct−1) = N (xt; xt−1 + ∆xt−1,Σx).
Here ∆xt−1 = (δxt−1, δyt−1) = t̃ is computed from
s̃ = (xt−1, yt−1, ct−1) as indicated in the test phase of
the algorithm in Section 3 while Σx = diag(σx, σy)
with σx, σy user defined parameters.

5. Experimental Results

We first evaluate the performance of the modeling al-
gorithm on static data. The goal is to learn the mapping
function f from a training set and use it to compute the
instantaneous velocity on test data. We consider both

Table 2. Tracking results (F-measure)
s1 s2 s3 s4 s5

no targets 2 2 3 3 3
Isotropic motion 0.63 0.94 0.60 0.86 0.58
Our approach 0.83 0.95 0.65 0.86 0.84

synthetic and real data. Synthetic data are represented
by colored balls moving on a black background and fol-
lowing user defined trajectories. The trajectories were
created generating δx and δy according to a Gaussian
distribution. The real data consist of the 80 collected
paths. We run a 5-fold crossvalidation experiment. Re-
sults are reported on Table 1 (we measure the error as
100 × |δqGT − δqOUT |/δqGT , q = x, y). We com-
pare: (a) our approach, (b) linear KCCA (KCCA with
linear kernels in the input and output space), (c) Sepa-
rate KCCA i.e. KCCA with correlations between the in-
put space vector and δx modeled separately from those
between the input space and δy. Table 1 clearly shows
how modeling nonlinearity and jointly considering δx
and δy produces more accurate estimates.

A second series of experiments aims to quantify the
effectiveness of our approach in the contest of tracking.
We focus our attention on video surveillance single-
camera data. We first run the tracking algorithm with
the isotropic motion model on several sequences. Then
we consider the motion aware particle filter on the same
sequences. A ground truth used to evaluate the results
was derived by manually marking the body area on the
image plane and annotating the identity of each per-
son present every 5 frames. From the ground truth GS
and the tracking estimate TS windows we measure the
performance of both algorithms in terms of average F-
measure F = (2PR)/(P + R) where P = (TS ∩
GS)/TS is the precision and R = (TS ∩ GS)/GS
the recall. This measure not only detects tracking fail-
ures situations such as target lost or change of identity
but also indicates tracking quality. Table 2 shows the
results on 5 sequences: it is clear that the learned dy-
namical model greatly improves tracking accuracy. The
advantage of the proposed method can be observed also
in Fig.2.b where the trajectories extracted during track-
ing are depicted. It is evident that paths corresponding
to the learned motion model (red) are more stable than
those obtained with the isotropic motion model (blue).
Similar conclusions can be drawn from Fig.3. Without
a learned motion model the target on the left is lost af-
ter the occlusion due to the presence of the column. On
the contrary the motion aware particle filter successfully
tracks both targets for the entire sequence. It is worth
noting that the results presented in this Section also in-
directly confirm the effectiveness of the proposed clus-
tering approach. We encourage the reader to look at the
supplementary material for further results1.

1tev.fbk.eu/people/zen/trajectories hall.html

Figure 3. Tracking results without (top)
and with (bottom) learned motion model

6. Conclusions

We presented a new approach for learning pedes-
trian trajectories from real data. The proposed method
which mainly relies on kernels has been successfully in-
corporated into a multi-person tracker. Its effectiveness
has been shown through extensive tests on many video
surveillance sequences. Due to its flexibility in the fu-
ture we plan to extend the modeling algorithm augment-
ing the size of the input space trying to capture other
patterns such as people interactions.

References

[1] S. Ali and M. Shah. Floor fields for tracking in high
density crowd scenes. In ECCV, pages 1–14, 2008.

[2] G. Antonini, S. Martinez, M. Bierlaire, and J. Thiran.
Behavioral priors for detection and tracking of pedestri-
ans in video sequences. IJCV, 2006.

[3] P. Baiget, E. Sommerlade, I. Reid, and J. Gonzalez.
Finding prototypes to estimate trajectory development
in outdoor scenarios. In THEMIS, 2008.

[4] M. Cuturi, J.-P. Vert, O. Birkenes, and T. Matsui. A ker-
nel for time series based on global alignments. ICASSP,
2007.

[5] D. Ellis, E. Sommerlade, and I. Reid. Modelling pedes-
trian trajectories with gaussian processes. In Ninth In-
ternational Workshop on Visual Surveillance, 2009.

[6] D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canoni-
cal correlation analysis; an overview with application to
learning methods. Neural Computation, 16:2639–2664,
2004.

[7] H. Hotelling. Relations between two sets of variates.
Biometrika, 28:312–377, 1936.

[8] O. Lanz. Approximate bayesian multibody tracking.
IEEE Trans. PAMI, 28(9):1436–1449, 2006.

[9] D. Makris and T. Ellis. Path detection in video surveil-
lance. Image and Vision Computing, 20:895–903, 2002.

[10] B. Morris and M. M. Trivedi. Learning trajectory pat-
terns by clustering: Experimental studies and compara-
tive evaluation. CVPR, 2009.

[11] B. Scholkopf, A. Smola, and K.-R. Muller. Nonlin-
ear component analysis as a kernel eigenvalue problem.
Neural Computation, 1998.

