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Abstract

We present a novel approach for automatically discov-
ering spatio-temporal patterns in complex dynamic scenes.
Similarly to recent non-object centric methods, we use low
level visual cues to detect atomic activities and then con-
struct clip histograms. Differently from previous works, we
formulate the task of discovering high level activity pat-
terns as a prototype learning problem where the correla-
tion among atomic activities is explicitly taken into account
when grouping clip histograms. Interestingly at the core of
our approach there is a convex optimization problem which
allows us to efficiently extract patterns at multiple levels of
detail. The effectiveness of our method is demonstrated on
publicly available datasets.

1. Introduction

Complex and crowded scenes depicting public spaces
(e.g. city roads, subway stations) are especially challeng-
ing for video surveillance systems based on the traditional
detection/tracking paradigm. This is mainly due to the pres-
ence of frequent occlusions in the scene and to the lack of
appropriate models taking into account the spatial and tem-
poral correlations between multiple objects. To face these
difficulties, in the last few years there has been a growing
interest in developing non-object centric methods for dy-
namic scene understanding [3, 12, 4, 13, 14].

Following this trend, we propose a novel approach for
extracting spatio-temporal patterns in complex scenes. As
in previous works [3, 4, 14], we use simple features com-
puted from moving foreground pixels to locate atomic
events and we cluster them into atomic activities. Then,
given a video stream we divide it into short clips and for
each clip we compute a histogram by summing up the oc-
currences of atomic activities. Previous works [3, 4, 14]
adopting this ‘word-document’ representation assume that
words do not follow a specific order into documents, thus

ignoring that atomic activities are not independent. This
implies an information loss since it is not possible to dis-
tinguish among groups of atomic activities corresponding
to similar motion patterns (e.g. cars moving in the same di-
rection in the same lane) and those representing objects of
different size/speed in faraway regions of the scene.

In this paper, we propose to overcome this drawback
by taking into account the similarity between atomic activ-
ities whilst learning the underlying behavioral patterns of
the scene. We present a novel algorithm which adopts the
Earth Mover’s Distance (EMD) [9] in the objective func-
tion of the learning problem and outputs a set of histograms
prototypes representing the discovered patterns. The main
contributions of this paper are the following:

1. We formulate the task of mining typical behaviors in
dynamic scenes as a prototype learning problem. Our ap-
proach is based on a convex optimization problem, specif-
ically a Linear Program (LP), thus, it is not prone to local
minima, it is rather scalable and it is easy to implement. To
run experiments on medium-large scale datasets, following
the idea in [7], we also develop a variant of our algorithm
drastically reducing its computational cost.

2. We show how, with the proposed approach, salient
patterns at multiple scales can be discovered. Differently
from previous works and thanks to the theory of Paramet-
ric LP [1, 8], our algorithm performs a multiscale temporal
segmentation of the video scene in one shot.

3. Comparing salient aspects extracted at multiple scales
can also be useful in individuating anomalous patterns. To
this aim we propose a Multiscale Anomaly Score (MAS).

We evaluate extensively our approach on four datasets
(three of which are publicly available), showing that it of-
fers competitive performance w.r.t. state-of-the-art meth-
ods. To our knowledge few resources (annotated video se-
quences, source codes) are publicly available for complex
scenes analysis. To help filling this gap our code and the
results from our experiments are made available to the com-
munity (http://disi.unitn.it/∼zen).

Related Works. Among previous works on complex
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Our [6] [3] [14] [4] [12]
atom. activities correlation

√
× × × × ×

multiscale analysis
√

× ×
√

× ×
convexity

√
× × × × ×

learning temporal rules × ∠
√

×
√ √

anomaly detection
√ √ √

×
√ √

Table 1. Qualitative comparison of the proposed and previous
works: (

√
=yes, ×=no, ∠=partially).

scene analysis, those based on Probabilistic Topic Mod-
els (PTMs) [3, 12, 4, 6] have shown great potential. Re-
cent works on hierarchical PTMs [3, 4] focus mainly on
modeling the behaviors’correlation over time and inferring
global rules. In this paper, we address different aspects try-
ing to overcome some drawbacks of PTMs. First, we go
beyond the usual word-document paradigm by taking into
account the similarities among words during learning. Sec-
ond, as our learning algorithm is based on a LP problem,
we avoid the risk of being stacked into bad local minima
typical of EM-like procedures. Third, by parametric LP,
spatio-temporal activity patterns at multiple scales can be
discovered efficiently and, under special conditions, with-
out retraining from scratch. Another work similar to ours
is [14], where a multiscale scene analysis is performed us-
ing diffusion maps in a preprocessing step before cluster-
ing. Differently, our multi-resolution analysis takes place in
the clustering phase and it is also used for individuating un-
usual behaviors. Table 1 resumes the main features of our
approach compared to previous works.

2. Preliminaries

LP and Parametric LP. Given A ∈ IRn×m, c,a ∈
IRm, b ∈ IRn, a LP in standard form [1, 8] is:

minx≥0 c′x s.t. Ax = b

If the matrix A is of full rank and the polyhedron D = {x :
Ax = b,x ≥ 0} is bounded and non-empty, the LP has
a bounded optimal solution. Let B ∈ I = {1, ...,m} be
an ordered set of n column indexes. Let AB be the n × n
sub-matrix of A whose i-th column is Ai. The set B is
called a feasible basis if AB is of full-rank and A−1

B b ≥ 0.
A column Ai, i ∈ B is called a basic column, otherwise
it is a non-basic column and belongs to the set N = I −
B. A basic feasible solution (bfs) x̂ associated to a feasible
basis B is obtained by x̂B = A−1

B b and x̂N = 0. A bfs
is optimal if it corresponds to a solution of the LP. There
is a bijection between bfs and vertices of D. The simplex
method systematically explores the extreme points (bfs) of
D starting from an initial extreme, until an optimal one is
found. Given λ ∈ R a parametric LP has the form:

min
x≥0

(c + λa)′x s.t. Ax = b (1)

Earth Mover’s Distance. When comparing histograms,
standard bin-to-bin distance functions (e.g. Lp distances, KL
divergence) assume that the domains of the histograms are
aligned, an assumption that is often violated due to noise.
On the contrary EMD [9] addresses the alignment problem
being a cross-bin distance function. The EMD(h,k) be-
tween two histograms h and k is obtained as the solution of
the transportation problem:

min
fqt≥0

D∑
q,t=1

dqtfqt s.t.
D∑
q=1

fqt = ht,

D∑
t=1

fqt = kq (2)

provided that the histograms are normalized to unit mass,
i.e.
∑
q k

q = 1 and
∑
t h

t = 1. The variable fqt denotes
a flow representing the amount transported from the q-th
supply to the t-th demand and dqt the ground distance.

3. Discovering Patterns in Complex Scenes
3.1. Overview

In this Subsection we describe the proposed approach
for discovering spatio-temporal patterns in dynamic scenes.
Fig. 1 illustrates the main steps of our method.

In the first phase low level features are extracted from
the video and are used to define atomic events. We first ap-
ply a background subtraction algorithm to extract pixels of
foreground. We found a simple dynamic Gaussian-Mixture
background model [11] sufficient in our scenarios. We also
compute the optical flow vector using the Lucas-Kanade al-
gorithm. By thresholding the magnitude of the optical flow
vectors we classify foreground pixels into static and moving
pixels. We further differentiate among moving pixels quan-
tizing the optical flow into 8 directions. Then we divide
the scene into p × q patches. For each patch we consider
the foreground pixels and their optical flow vectors and we
build a patch descriptor vector v = [x y fg d̄of m̄of ] where
(x, y) denotes the coordinates of the patch center in the im-
age plane, fg represents the percentage of foreground pixels
in the patch and d̄of and m̄of are respectively the mode of
the orientations distribution and the average magnitude of
optical flow vectors in the patch. For patches of static pix-
els we set d̄of = m̄of = 0. We define an atomic event as
a patch descriptor v such that fg ≥ Tfg , i.e. we exclude
patches with few pixels of foreground.

In the second phase we group atomic events with K-
medoids clustering, rather than with K-means due to its
increased robustness to noise and outliers. Each cluster rep-
resents an atomic activity. Then, we divide the video into
short clips and for each clip we construct an activity his-
togram hc representing the distribution of atomic activities
in the c-th clip. Finally, the clips are grouped according to
their similarity. To this aim we propose a novel algorithm
which given a set of clips histograms identifies a smaller
set of histogram prototypes representing the salient activi-
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Figure 1. Flowchart of the proposed approach (best viewed in color)

ties occurring in the scene. In the following we describe the
prototype learning algorithm.

3.2. Convex Prototype Learning

Suppose a set of histograms H = {h1, . . . ,hN}, hi
∈ IRD is given. We aim to learn N representative proto-
types P = {p1, . . . ,pN}, pi ∈ IRD, each one associated
to the original hi, such that their similarity with respect
to the original data is maximized. Moreover, we want the
set of prototypes to be a sparse representation of the origi-
nal dataset H, i.e. the number of different prototypes to be
small. This can be obtained by minimizing their reciprocal
differences. The overall task can be formalized as follows:

min
pi∈Ω

N∑
i=1

L(hi,pi) + λ
∑
i 6=j

ηijJ (pi,pj) (3)

The feasible region Ω = {p : ∀t pt ≥ 0,
∑
t pt = 1} is

meant to ensure that the prototypes are histograms normal-
ized to unit mass. The objective function consists of two
terms. The first term or loss should penalize the difference
between the given histograms and the associated prototypes.
The second term or regularization term must enforce the
smoothness among related prototypes. Their relative im-
portance is controlled by the positive coefficient λ. When
λ = 0 all prototypes pi must be equal to their correspond-
ing histograms hi while for λ → ∞ all prototypes should
be equal to each others. For 0 ≤ λ < ∞ a number of
different prototypes between N and 1 can be obtained.

Learning Prototypes with EMD. In this paper we focus
our attention on the cases where L(·) and J (·) are convex
functions and specifically we present a formulation of (3)
where the EMD is adopted as loss function:

min
pi∈Ω

N∑
i=1

EMD(hi,pi) + λ
∑
i 6=j

ηij max
q=1...D

|pqi − p
q
j | (4)

The advantage of using EMD is motivated by the fact that
the ground distances dqt can encode information about the
similarity of atomic activities. To this aim, since each
atomic activity q is represented by the associated exemplar
mq computed by K-medoids, we set dqt = ‖mq −mt‖2.

As stated above the rightmost term in (4) is meant to
minimize the number of different prototypes. The adop-
tion of the L1 norm induces sparsity, thus producing a small
number of prototypes. Generally a comparison among all

possible pairs pi,pj , i 6= j, is required imposing all pro-
totypes to be close to each other. However this implies an
increased computational cost when solving (4). To alleviate
this fact we introduce the binary coefficients ηij ∈ {0, 1}
in order to select only a subset of pairs of histograms which
must be merged. In the absence of prior knowledge, we
can simply identify for each histogram hi a set of P nearest
neighbors and set ηij = 1 if hj is a neighbor of hi. Al-
ternatively, temporal dependencies can be encoded: if his-
tograms represent temporally adjacent clips we set ηij = 1
if i = j − 1,∀j = 2 . . . N , ηij = 0 otherwise. As shown in
the experimental section, we tested both approaches: in the
following we refer to them respectively as nearest neigh-
bors clustering and temporal segmentation. Note that the
coefficients ηij are fixed and do not change during learning.
To compute histogram prototypes we substitute the EMD
definition (2) in the loss in (4) we get the following LP:

minpqi ,fi
qt,ζij≥0

N∑
i=1

D∑
q,t=1

dqtf
i
qt + λ

∑
i 6=j

ηijζij (5)

s.t. −ζij ≤ pqi − p
q
j ≤ ζij , ∀q,∀i, j

D∑
q=1

f iqt = hti, ∀t
D∑
t=1

f iqt = pqi , ∀q,∀i

where we introduced the slack variables ζij . Note that the
constraints

∑
t p
t
i = 1 are removed since they are automati-

cally satisfied. It is worth noting that at the coordinate level
we adopt the L∞ norm rather than the L1 norm. This does
not promote sparsity but it produces the effects that all co-
ordinates of a prototype go to zero together and it reduces
significantly the computational cost of solving (5), limiting
the number of slack variables.

Learning Prototypes with EMD-L1. For large N and
D solving (5) is still time consuming even for today’s so-
phisticated LP solvers. The computational cost is espe-
cially high due to the large number of flow variables f iqt.
Actually, we do not specifically need them since we are
only interested in computing the prototypes pi. To speed
up calculations we propose a modification of (5) which
adopts EMD with L1 distance over bins as ground distance,
i.e. dqt = |q − t|. The idea is that similar atomic activi-
ties should correspond to neighboring bins in activities his-
tograms. To this aim we sort the cluster medoids computed
with K-medoid according to the associated motion informa-
tion from exemplars corresponding to static events to those
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associated with optical flows with large magnitude. The ori-
entation is also taken into account in this phase.

In case of EMD-L1 every positive flow between faraway
histogram bins can be replaced by a sequence of flows be-
tween neighbor bins [7]. Thus (2) can be simplified as:

min
gq,q+1,gq,q−1≥0

D−1∑
q=1

gq,q+1 +

D∑
q=2

gq,q−1 (6)

s.t. gq,q+1 − gq+1,q + gq,q−1 − gq−1,q = hq − pq ∀q

With (6) the number of variables and constraints decreases
significantly. In particular the number of flow variables in-
volved reduces from O(D2) to O(D). This is greatly ben-
eficial in terms of computational cost since the number of
variables is a dominant factor in the time complexity of all
LP algorithms. With these premises, we simplify (5) by
substituting the EMD-L1 definition (6) in the loss:

min

N∑
i=1

D−1∑
q=1

giq,q+1 +

N∑
i=1

D∑
q=2

giq,q−1 + λ
∑
i 6=j

ηijζij (7)

s.t. −ζij ≤ pqi − p
q
j ≤ ζij , ∀q, ∀i, j, i 6= j

giq,q+1 − giq+1,q + giq,q−1 − giq−1,q = hqi − p
q
i , ∀q, i

pqi , g
i
q,q+1, g

i
q,q−1, ζij ≥ 0

The resulting optimization problem is a LP with nvar =
2N(D − 1) + ND + 1

2N(N − 1) variables if we impose
each prototype to be close to each other, i.e. ηij = 1 ∀i 6= j.
In this case for large datasets (N � D) the computational
cost of (7) is dominated by the number of slack variables
that is quadratic w.r.t. the number of datapoints. However,
as we discussed above, by setting some of the ηij = 0, (7)
can be solved efficiently even in case of large datasets.

Learning Prototypes with Bin-to-bin Distances. To
demonstrate the advantages of considering cross-bin dis-
tances when learning prototypes, we briefly discuss the
form that (3) assumes when bin-to-bin distances are consid-
ered as loss functions. When L(·) is the square loss, J (·)
is a sum of L1 norms and ηij = 1 if i = j − 1 and ηij = 0
otherwise, we get something very close to the “total varia-
tion denoising” [10] or to the fused lasso1 [2]. When the L1

norm is chosen as loss and a combination of L1-L∞ norms
is used for J (·), (3) assumes the form of the following LP:

min
pi∈Ω

N∑
i=1

D∑
q=1

|hqi − p
q
i |+ λ

∑
i 6=j

ηij max
q=1...D

|pqi − p
q
j | (8)

In the experimental section we show that bin-to-bin dis-
tances are less effective than EMD when learning proto-
types for dynamic scene understanding.

1Note also that in the fused lasso formulation [2] the feasible region is
slightly different from Ω since the pi are not specifically constrained to be
normalized histograms.

Algorithm 1 One shot temporal segmentation
1: Input: H = (h′1 . . .h

′
N )′, i = 0, Ip = {ND2 + N + k :

k = 0, . . . , ND}.
2: Set (5) in standard form (1) according to Proposition 1.
3: Find an optimal bfs B0 for λ0 =∞.
4: while λi ≥ 0
5: Compute xi, with xi

Bi = A−1
Bi b and xi

Ni
= 0.

6: c̄j = cj − cBiA
−1
Bi Aj with j ∈ Ni.

7: āj = aj − aBiA
−1
Bi Aj with j ∈ Ni.

8: m = arg maxj{−c̄j/āj : āj > 0} (entry index)
9: λi+1 = −c̄m/ām

10: u = A−1
Bi Am.

11: if the support I(u) is empty then return
12: ` = arglexico-mint{Ai

t/ut : t ∈ I(u)} (exit index)
13: Update Bi+1 = Bi ∪ {m}\{`}
14: Set Pi = xi

Ip
15: i← i+ 1
16: end
17: Output: The set {P1, ...PN}

3.3. Multiscale Analysis and MAS

A crucial property of (5) and (7) is that the sparsity
achieved is controlled by a single parameter, i.e. the reg-
ularization constant λ. For λ varying between ∞ and 0 a
different number of prototypes M(λ̄) between 1 and N is
obtained. Instead of trying to find the value of λ which pro-
vides the best prototype representation we propose to ex-
ploit the solutions of (5) and (7) for different values of λ.
This corresponds to discover different salient activities at
multiple scales. For example, in case of temporal segmen-
tation in a traffic scene, for large values of λ we can obtain
two prototypes, corresponding to a rough description of the
scene, distinguishing among clips with moving vehicles and
with vehicles stopped at the traffic lights. As λ decreases we
gradually enhance the level of detail differentiating among
vehicles flows of different intensity.

Comparing clustering results at multiple scales we can
detect unusual behaviors corresponding to atypical his-
tograms. To this aim we define for each hk an associated
anomaly score. The idea is to monitor how the clusters size
changes for decreasing values of λ. From λ = ∞ (where
all the histograms are represented by a single prototype) to
λ = 0 (where each hk corresponds to a different pk), the
anomaly score of hk is computed as the sum of the ratios
of the clusters size containing hk at two subsequent scales.
Formally we first introduce the notion of sets of fused his-
tograms as they are generated by our algorithms.

Definition 1. (Sets of Fused Histograms) Let λ be a
fixed value λ̄ and Hλ̄k be a set of histograms with k =

1, . . . ,M(λ̄). Then a valid set of fused histograms Hλ̄k sat-
isfies the following properties:
� the collection of the setsHλ̄k is a partition of H
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� ∀ h`,hm ∈ Hλ̄k we have pq` = pqm ∀ q = 1 . . . D

� ∀ h` ∈ Hλ̄k and hm ∈ Hλ̄m ∃q : pq` 6= pqm
In a nutshell a set of fused histograms corresponds to his-

tograms associated to the same prototype. Different sets of
fused histograms are generated for different λ. By looking
at the sets of fused histograms we can define the MAS.

Definition 2. (MAS) Let hk ∈ Hλi

k , hk ∈ Hλi−1

k′ with
λi−1 > λi.We define the Multiscale Anomaly Score of hk:

MAS = 1− 1

NL

L∑
i=1

|Hλi−1

k′ |
|Hλi

k |
(9)

Thus analyzing multiple scales we can distinguish between
cases where a cluster with a single histogram is merged at
higher level with a small cluster and situations where it be-
longs to a big cluster: in the first case its MAS is higher.
Note that MAS definition is possible since with our ap-
proach if two histograms belong to the same fused set for
λ = λ̄ they will generally remain fused for any λ ≥ λ̄. As
a final remark we should say that while large values of L
usually result in more accurate estimates of MAS, this also
increases the computational cost since (5) must be solved
L times. In the following we show how in some cases all
possible sets of fused histograms can be obtained with com-
putational cost comparable with that of solving (5) once.

3.4. Multiscale Analysis in One Shot

In this section we focus our attention on EMD prototype
learning, and we show that since (5) is a parametric LP an
algorithm based on a variant of the revised simplex method
[8] can be used to compute all possible sets of prototypes
for increasing values of λ. We consider the specific case of
temporal segmentation i.e. we set ηij = 1 for i = j−1, j =
2 . . . N and ηij = 0 otherwise.

Let H′ = (h′1 . . .h
′
N ), P′ = (p′1 . . .p

′
N ), H,P ∈ IRND.

Let 1 ∈ IRD denote the vector 1 = (1 . . . 1), I be the iden-
tity matrix and 0 be the zero matrix of appropriate dimen-
sion. We first define the following block diagonal matrices
D ∈ IR(N−1)D×(N−1), D = diag(1), F,G ∈ IRND×ND2

,
F = diag(Q),G = diag(T),Q ∈ IRD×D2

, Q = diag(1′),
the block Toeplitz matrix Σ ∈ IR(N−1)D×ND, and the ma-
trix T ∈ IRD×D2

such that:

Σ =


I -I 0 . . . 0
0 I -I . . . 0
...

. . .
...

0 0 . . . I -I

 , T =


E1

E2

...
ED

 ,

where I, 0 and −I ∈ IRD×D and Ei = (e′i e′i . . . e′i), e′i ∈
IRD, e′i = (0 . . . 0 1 0 . . . 0) with a 1 in the i-th position.

Proposition 1. Let f ∈ IRND
2

be the vector of flow
variables, δ+, δ− ∈ IRND, ζ ∈ IRN−1 be slack vari-
ables. Let ω ∈ IRND

2

be the vector containing the

ground distance values i.e. ω = (d . . . d), d ∈ IRD
2

,
d = (d11, . . . d1D d21 . . . dDD). The following elements:
x′ =

(
f ′ ζ′ P′ δ+

′ δ−
′), a′ =

(
ω′ 0′ 0′ 0′ 0′

)
, c′ =(

0′ 1′ 0′ 0′ 0′
)
,

A =


0 -D Σ I 0
0 -D -Σ 0 I
F 0 0 0 0
G 0 -I 0 0

 , b =


0
0
H
0


define (5) in the standard form (1) of a parametric LP.

In [15] Yao and Lee showed that many algorithms in ma-
chine learning and specifically the family of regularization
problems with piecewise linear loss and L1 penalties (such
asL1 SVM) can be written in the form of (1) and the tableau
simplex method can be used for solving (1) for all possi-
ble values of λ simultaneously. In this paper we propose
to solve (5) using a variation of the algorithm proposed in
[15] by considering rather than the tableau simplex method,
the revised simplex with the lexico-min rule since it offers
computational advantages for sparse LPs and avoid situa-
tions of degeneracy. The resulting algorithm is presented in
Algorithm 1. The main difficulty when applying Algorithm
1 is how to individuate an optimal bfs B0. An optimal bfs
B0 can be obtained using any feasible basic index set B̄0

and running the standard simplex algorithm for the associ-
ated LP problem i.e. for a = 0. The following proposition
shows an example of a bfs B̄0 for (5).

Proposition 2. The set of indices B̄0 = I1 ∪ I2 with
I1 = {kD+1 : k = 0, . . . , ND−1}, I2 = {ND2+N+k :
k = 0, . . . , 3ND − 2D − 1} individuates a bfs for (5).
Similar results can be obtained for (7) and (8) in case of
temporal segmentation. When the coefficients ηij assume
arbitrary values, (5), (7) and (8) are also parametric LP
problems and Algorithm 1 can be used for computing the
entire solution path. However, in this cases (e.g. for nearest
neighbor clustering) determining a suitable bfs B0 is more
complex and we leave it to further works.

4. Experimental results
We tested our method on four datasets. Due to lack of

space we encourage the reader to look at the supplemen-
tary material submitted with this paper to see the videos
associated to our results. The proposed approach is fully
implemented in C++ using the publicly available libraries
OpenCV and GLPK 4.2.1 (GNU Linear Programming Kit).

The first dataset consists of a traffic scene sequence de-
picting a crossroads. In this scenario different events occur
at regular periods as the vehicles flow is controlled by traffic
lights. The second dataset is publicly available and is taken
from APIDIS2. Here players involved in a basketball match

2http://www.apidis.org/Dataset/
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Traffic Basket Junction Roundabout
no frames 6000 6000 90000 93500
fps 12 23 25 25
no clips 300 100 240 311
frame size 276×336 320×368 288×360 288×360
patch size 23×21 16×16 12×12 12×12
D 8 16 16 16

Table 2. Details of the setting used in our experiments.

(a) (b)
Figure 2. Traffic dataset: (a) K-medoids results (b) Example of
atomic activities.

are depicted. In detail we pick the sequence of camera 5
from 20080409T184900 to 20080409T185400. The images
are resized and cropped in a way to include only the basket-
ball court. The third and forth datasets [3] are also publicly
available3,4. They depict two complex traffic scenes in Lon-
don (Junction and Roundabout) and they both correspond
to a video of about 1 hour duration. More details about the
datasets and the experimental setup are reported in Table 2.
We chose the first dataset since it is suitable for testing our
temporal segmentation approach, as it corresponds to few
cycles of the traffic lights status and it contains some inter-
esting anomalous events. The nearest neighbor clustering is
adopted for experiments on the other datasets.

Traffic dataset. We report some results from the first
phase of our analysis, which aims to classify the atomic
events according to their position and motion. Labeled
atomic events as they are obtained with K-medoids are de-
picted in Fig.2.a, where each color corresponds to a specific
atomic activity (note that for visualization purposes we plot
only a small subset of collected events and we add a small
random shift to their position (x, y) in the image plane).
It is easy to observe that neighboring events belong to the
same group and where the same region contains two clus-
ters, the clusters correspond to activities with different mo-
tions. Fig.2.b shows this situation: the orange activity cor-
responds to vehicles stopped due to red traffic light, while
the white one shows moving vehicles in the same area when
the traffic lights are on green.

We further show the effectiveness of our approach in
segmenting scene activities in time. Figure 4 shows the
results on 100 clips that we obtained by solving (7) with
λ = 5. From each of the 10 clusters obtained we extract
one frame, representative for the salient activities (due to
lack of space we just show 9 of them). The orange, yellow,
and red clusters correspond to the activity of parallel vehi-
cle flows (green traffic light), while the light blue, white and

3http://www.eecs.qmul.ac.uk/ jianli/Junction.html
4http://www.eecs.qmul.ac.uk/ jianli/Roundabout.html

Figure 3. Traffic dataset: comparison of temporal segmentation re-
sults obtained with (a) EMD-L1(5), (b) L1(8) and (c) Fused lasso.
(d) Human annotation at different levels of detail. The red rectan-
gle indicates the segmentation corresponding to Fig.4.

cyan clusters are associated to stationary vehicles (red traf-
fic light). The green, violet and pink clusters are still associ-
ated to red traffic lights and, in particular, they represent the
phase when the traffic queue begins, hence the traffic flow
is characterized by low density. Fig.3.a shows the multi-
scale segmentation obtained on the same sequence solving
(7) for different values of λ. It is interesting to analyze the
way clusters merge as λ increases. For example, the clus-
ters associated to the same traffic light status but with differ-
ent traffic density (i.e. pink and cyan, green and light blue),
merge at the superior level. The violet cluster, instead, “sur-
vives” for several levels. This is an expected result because
the clip is associated to an anomalous activity (a jaywalker).
We also compare the multiscale temporal segmentation ob-
tained with (7) with the ones we get by solving (8) (Fig.3.b)
and with the fused lasso method (Fig.3.c). A visual inspec-
tion confirms that the temporal segmentation obtained with
EMD distance is more consistent with the results provided
by a human annotator (Fig.3.d). This demonstrates that bin-
to-bin distances are less powerful as they do not take into
account correlations among atomic activities.

A quantitative comparison of the proposed methods ((5)
and (7)) and bin-to-bin approaches (Fused lasso and (8))
for the entire sequence is shown in Table 3. The segmen-
tation provided by a human annotator is used as a ground
truth. The performance is measured in terms of percentage
of break points correctly individuated. It is worth noting
that (7) can be considered as a good approximation of (5)
as confirmed by the first two columns of the table. By com-
puting the MAS on the entire sequence we detected some
anomalous activities (persistent clusters of small size). An
example of an unusual pattern is the violet cluster shown in
Fig.4 corresponding to the jaywalker. Another example is
shown in Fig.5 where a motorbike makes a U-turn.

An important observation concerns the computational
cost of our multiscale analysis. As (5) is a parametric LP,
this allows us to find all solutions (i.e. all possible proto-
types) with a slightly increased computational cost w.r.t.
computing just one solution (corresponding to a fixed value
of λ). Therefore, the speedup is huge. For example all pos-
sible prototypes associated to the 100 clips in Fig.4 can be
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Figure 4. Traffic dataset: (top) salient activities and (bottom)
EMD-L1(7) results.

Figure 5. Anomaly: U-turn of a motorbike.

EMD (5) EMD-L1(7) L1(8) Fused Lasso
83.2 82.4 72.5 68.7

Table 3. Temporal segmentation accuracy for the traffic dataset

computed in approximately 5 minutes whilst the solution
for just one value of λ takes about 1 minute.

Basket dataset. We chose this dataset to demonstrate
that the proposed approach can be used for applications
other than traffic scene analysis, such as to obtain a rough
synthesis and useful statistics of a sport match. In par-
ticular in the APIDIS sequence five main activities can
be identified: (A) when the yellow team is on defence
and the blue team is trying to shot, (B) when the players
are moving from the yellow team’s court side to the blue
team’s side, (C) when the yellow team is on the defence,
(D) when the players are moving back towards the yellow
team’s side. Moreover, due to the asymmetric disposition
of the camera w.r.t. the basketball court, different phases of
the match can be observed when players are in the yellow
team’s side, such as the case of free throws (E). A repre-
sentative frame for each of the five activities as they are
automatically extracted by our algorithm (7) is shown in
Fig.6(top). Furthermore, Fig.6(bottom) compares the re-
sults (i.e. cluster assignments) for 100 clips obtained with
(7) and the ground truth. The ground truth is taken from
the APIDIS website. In detail, we select the timestamps of
annotated events (e.g. ‘Ball possession’, ‘Lost-ball’, ‘Free-
throw’,‘Rebound’, etc.) and consider them as breakpoints.
We also added some missing breakpoints, e.g. the ones rep-
resenting a switch from events B to C or from D to A.

Table 4 shows the results of a quantitative evaluation of

Figure 6. Basket dataset: (top) salient activities and (bottom) (a)
EMD-L1(7) results, (b) ground truth.

no clusters EMD-L1(7) L1(8) pLSA pLSA-bin
5 90.84 75.17 83.5 77.5
2 98.42 98.42 94.15 92.25

Table 4. Clustering accuracy (percentage of correctly labeled clips)
for the basket dataset

our method (7) compared to (8) and to probabilistic Latent
Semantic Analysis (pLSA) with binary and tf-idf features
representation. PLSA has been chosen as a baseline since
it has been extensively used in previous works [12, 6]. We
consider the results for 2 and 5 clusters. In case of the 2
clusters the ground truth is created by merging the activi-
ties A and E on one side, fusing B, C and D on the other.
Table 4 confirms the advantages of EMD-L1 w.r.t. com-
peting methods. For example, in case of the 5 clusters (7)
outperforms the best competing method with 7% more of
accuracy. Moreover it is worth noting that pLSA results de-
pends upon initialization conditions, as training relies on a
non-convex problem.

London’s traffic datasets. We chose these datasets
since they have been extensively used in previous works
[3, 4, 5, 6]. However few of them provide the ground truth
annotations and quantitative results. One of the few excep-
tions is [5]. Table 5 compares the results in [5] with those
we get on the same data (and same clip size) by applying
(7) with P = 3. On both datasets the proposed algorithm
outperforms both pLSA and hierarchical pLSA used in [5].
It is interesting to observe that choosing a suitable order
of atomic activities when constructing histograms is cru-
cial: using a random order the performance decreases sig-
nificantly. These results refer to the situation where only
two salient activities are considered. Fig.7 shows an exam-
ple of the typical activities for the dataset Roundabout.

We also apply (7) for individuating more than two salient
activities. In this case we only provide a qualitative evalua-
tion since quantitative results are not available in literature.
For the Junction dataset (Fig.8, top) we discover three main
activities which correspond to different phases of the traffic
flow: A) vertical flow and B) and C) respectively horizontal
traffic flow from right to left and from left to right. These
activities are also found in [3, 4], with the difference that in
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Figure 7. Roundabout dataset: example of typical activities.
EMD-L1(7) L1(8) EMD-L1(7) Standard Hierarchical

random pLSA [5] pLSA [5]
J 92.36 89.74 86.7 89.74 76.92
R 86.40 86.40 72.3 84.46 72.30

Table 5. Clustering accuracy (%) for Junction (J) and Roundabout
(R) datasets

[3, 4] the cluster A is split in two different activities, corre-
sponding to vertical flow with and without interleaved turn-
ing traffic. This division is less evident as it is confirmed by
the transition behavior matrix in Fig.3.e in [3]. In fact, with
our algorithm these patterns emerge when refining the anal-
ysis with more than three clusters. Finally we show some
examples of anomalous activities (Fig.8, middle) found by
MAS analysis (Fig.8, bottom). Anomalous activities corre-
sponding to persistent small size clusters show the moments
where the traffic lights are on green and vehicles have to
stop as a pedestrian is crossing the street (clip 27) and a fire-
man truck is passing (clip 83). The last case (clip 98) corre-
sponds to a rare event where two large vehicles are passing
at the same time. These results, similar to those in [5, 6],
confirm the validity of MAS analysis in finding anomalous
events. In our experiments the MAS is computed consider-
ing L = 9 subsequent levels of segmentation. However,
with large values of L, more accurate MAS profiles can
be obtained, at the expenses of an increased computational
cost. How the anomaly detection performance is affected
by L will be investigated in future works.

5. Conclusions
We proposed a novel multiscale approach for discov-

ering activity patterns in complex scenes. By taking into
account correlations amongst atomic activities, typical pat-
terns can be extracted with improved accuracy w.r.t. pre-
vious methods. Moreover, if we also learn the temporal
dependencies among behaviors, as other state-of-the-art ap-
proaches do, we believe that the potential of our method
will be even better exploited. We leave this to future works.

The main novelty of this paper is the EMD prototype
learning algorithm: we used for dynamic scene understand-
ing, but we believe that it could be deployed in other tasks,
such as facial expression analysis or action recognition.

References
[1] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear opti-

mization. 1997. Athena Scientific. 3225, 3226

Figure 8. Junction dataset. Three salient activities (top), detected
anomalies (middle) and the associated MAS plot and EMD-L1

clustering results (bottom).

[2] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani. Path-
wise coordinate optimization. Annals of Applied Statistics,
1:302–332, 2007. 3228

[3] T. Hospedales, S. Gong, and T. Xiang. A markov clustering
topic model for mining behaviour in video. ICCV, 2009.
3225, 3226, 3230, 3231, 3232

[4] D. Kuettel, M. D. Breitenstein, L. V. Gool, and V. Ferrari.
What’s going on? Discovering spatio-temporal dependencies
in dynamic scenes. CVPR, 2010. 3225, 3226, 3231, 3232

[5] J. Li, S. Gong, and T. Xiang. Global behaviour inference
using probabilistic latent semantic analysis. BMVC, 2008.
3231, 3232

[6] J. Li, S. Gong, and T. Xiang. Scene segmentation for be-
haviour correlation. ECCV, 2008. 3226, 3231, 3232

[7] H. Ling and K. Okada. An efficient Earth Mover’s Distance
algorithm for robust histogram comparison. IEEE Trans. on
PAMI, 29(5):840–853, 2006. 3225, 3228

[8] K. Murty. Linear programming, 1983. Wiley, NY. 3225,
3226, 3229

[9] Y. Rubner, C. Tomasi, and L. Guibas. The Earth Mover’s
Distance as a metric for image retrieval. IJCV, 40(2):99–
121, 2000. 3225, 3226

[10] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Phys., 60:259–268, 1992.
3228

[11] C. Stauffer and W. Grimson. Adaptive background mixture
models for real-time tracking. CVPR, 2(1):246–252, 1999.
3226

[12] J. Varadarajan, R. Emonet, and J.-M. Odobez. Probabilistic
latent sequential motifs: Discovering temporal activity pat-
terns in video scenes. BMVC, 2010. 3225, 3226, 3231

[13] T. Xiang and S. Gong. Video behavior profiling for anomaly
detection. IEEE Trans. on PAMI, 30(5):893–908, 2008. 3225

[14] Y. Yang, J. Liu, and M. Shah. Video scene understanding
using multi-scale analysis. ICCV, 2009. 3225, 3226

[15] Y. Yao and Y. Lee. Another look at linear programming for
feature selection via methods of regularization. 2007. Techn.
Report 800, Dept. of Statistics, Ohio State University. 3229

3232


