

We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer

Enver Sangineto¹, Gloria Zen¹, Elisa Ricci^{2,3}, Nicu Sebe¹

¹ DISI, University of Trento, Italy
² DIEI, University of Perugia, Italy
³ Fondazione Bruno Kessler (FBK), Italy

Motivations and goals

- Human expressions (e.g., pain) are exhibited diversely, depending on the individual's appearance or personality. Previous work has proven that personalized classifiers perform better than generic ones
- Our *goal* is to obtain a personalized classifier for a new user without acquiring new labeled data
- Most of related work rely on re-weighting source samples and retraining a classifier, which is a **time consuming** process. A faster personalization is needed in some cases, e.g. where timing can affect user experience quality.

Sample frames of facial (top) non-pain and (bottom) pain expressions.

Intuition behind our approach

- Despite the inter-subject variability, **knowledge can be transferred among individuals** showing similar behavioral patterns.
- We show how θ_t can be accurately and efficiently inferred **exploiting the similarity between the data distribution** of the target user and the distributions from other subjects with known θ_i

(1) A set of personalized facial expression classifiers is learnt for each source user.

(2) We learn via a regression framework a mapping between a marginal distribution of the datapoints associated to a given person and the parameters of her/his personalized classifier.

Transductive Parameter Transfer (TPT) 3/3

(3) A personalized classifier is computed for a new given target by applying the learnt distribution-to-classifier mapping.
A kernel function measures the users' similarity based on their data points distributions.

Learning from Distributions 1/2

- Input data
 - N labelled **source datasets** with distributions $D_i = \{X_i, Y_i\}$ and learnt personalized classifiers $\Theta_i = \{w_i, b_i\}$

* Learning a distribution-to-classifier mapping $f: \mathcal{P} \to \Theta$

- \mathcal{P} is the **space** of all the possible **distributions** on X
- Θ is the classifier parameter space
- Learning a relationship between the "shape" of the underlying distribution and its corresponding hyperplane.
- Once $f(\cdot)$ is estimated, it can be applied on the new target data distribution for the hyperplane estimation

Learning from Distributions 2/2

↔ We use Multioutput Support Vector Regression (M-SVR)¹ for the mapping function estimation. The mapping function $f : \mathcal{P} \to \Theta$ is defined by a set of parameters:

$$\widehat{f}(X) = \phi(X)'\mathbf{B} + \mathbf{c}' \; ; \; \text{ where } \begin{bmatrix} \boldsymbol{\pi} = (\mathbf{B}, \mathbf{c}) \\ \phi(X) \; \text{ is a non-linear mapping} \end{bmatrix}$$

Parameters can be found by minimizing:

$$\min_{\pi} \frac{1}{2} \sum_{i=1}^{M+1} ||\boldsymbol{\beta}_i||^2 + \lambda_E \sum_{i=1}^N E(||\boldsymbol{\theta}'_i - \widehat{f}_{\pi}(X_i)||)$$

The same problem can be solved by introducing kernel matrix K:

$$\widehat{f}(X) = \sum_{i=1}^{N} \mathbf{V}_{i.\kappa}(X_i, X) + \mathbf{c}'$$

where $\mathbf{K}_{ij} = \kappa(X_i, X_j) = \phi(X_i)' \phi(X_j); \quad \mathbf{K} \in \mathbb{R}^{N \times N}$

¹ D. Tuia, et al. *Multioutput support vector regression for remote sensing biophysical parameter estimation*. IEEE Geoscience and Remote Sensing Letters, 8(4):804–808, July 2011.

Kernel Matrix Estimation

- Representing similarity between pairs of datasets $K(X_i, X_j)$
 - Fisher Kernel

 $\kappa_{FK}(X_i, X_j) = (\mathcal{G}_{\gamma}^{X_i})' \mathcal{G}_{\gamma}^{X_j}$

Earth Mover's Distance (EMD) based Kernel

$$\kappa_{EMD}(X_i, X_j) = e^{-\rho D_{EMD}(X_i, X_j)}$$

Density Estimate (DE) based Kernel

$$\kappa_{DE}(X_i, X_j) = \frac{1}{nm} \sum_{p=1}^n \sum_{q=1}^m \kappa_{\mathcal{X}}(\mathbf{x}_p, \mathbf{x}_q)$$

Application Domains and Datasets

Facial Action Unit Detection

Extended Cohn Kanade (CK+)

- set of spontaneous and posed expressions
- 593 videos, 123 users
- Facial landmark detection + SIFT features

Pain Facial Expression Recognition

UNBC-McMaster Shoulder Pain Expression Archive Database (UNBC-MSPEAD)

- spontaneous pain expressions of patients under shoulder mobility tests
- 200 videos, 25 users
- Local Binary Patterns Histograms features

Results – Action Unit Detection

F-Score	AU	SVM	KMM	TSVM	DASVM	STM	TPT	TPT	TPT
							EMD	Fisher	DE
	1	61.1	44.9	56.8	57.7	62.2	72.2	74.0	74.4
	2	73.5	50.8	59.8	64.3	76.2	81.8	75.5	84.2
	4	62.7	52.3	51.9	57.7	69.1	71.5	71.8	66.3
	6	75.7	70.1	47.8	68.2	79.6	75.1	74.9	74.8
	12	76.7	74.5	59.6	59.0	77.2	85.5	83.5	85.1
	17	76.0	53.2	61.7	81.4	84.3	82.8	83.5	76.1
	Avg	70.9	57.6	56.3	64.7	74.8	78.2	77.2	76.8
AUC	AU	SVM	KMM	TSVM	DASVM	STM	TPT	TPT	TPT
	110						EMD	Fisher	DE
	1	79.8	68.9	69.9	72.6	88.9	88.0	89.0	88.2
	2	90.8	73.5	69.3	71.0	87.5	93.5	92.9	92.6
	4	74.8	62.2	63.4	79.9	81.1	88.1	85.0	84.3
	6	89.7	87.7	60.5	94.7	94.0	92.2	91.3	91.1
	12	88.1	89.5	76.0	95.5	92.8	97.5	97.2	97.1
	17	90.3	66.6	73.1	94.7	96.0	95.9	94.3	94.3
	Avg	85.6	74.7	68.7	83.1	90.1	(92.5)	91.6	91.3

[KMM] Gretton et al. "Covariate shift by kernel mean matching". Dataset shift in Machine Learning, 2009 [TSVM] T. Joachim "Transductive inference for text classification using support vector machines", ICML, 1999 [DASVM] Bruzzone et al. "Domain adaptation problems: A DASVM classification technique and a circular validation strategy". TPAMI, 2010.

[STM] W.S. Chu et al. "Selective transfer machine for personalized facial action unit detection". CVPR, 2013.

[TTA] J. Chen et al. "Learning person-specific models for facial expression and action unit recognition". Pattern Recognition Letters, 2013 [TSVM] T. Joachim "Transductive inference for text classification using support vector machines", ICML, 1999 [STM] W.S. Chu et al. "Selective transfer machine for personalized facial action unit detection". CVPR, 2013.

Results at varying number of source data

• Performances at varying number of users N (CK+ dataset)

Results at varying number of source data

• Performances at varying number of users N (CK+ dataset)

 Performances at varying number of training images for a new target user (UNBC-MSPEAD dataset)

Performance and Computational Cost

• Performances vs computational time. Comparison among related works

Our method is more efficient because it is not based on retraining the classifier!

[TSVM] T. Joachim "*Transductive inference for text classification using support vector machines*", ICML, 1999 [STM] W.S. Chu et al. "*Selective transfer machine for personalized facial action unit detection*". CVPR, 2013.

- we proposed a novel domain adaptation approach for facial expression analysis which deals with the inter-individual variability
- A classifier for a new target individual is inferred without the need of acquiring labeled data
- our system achieves state-of-the-art accuracy on public benchmarks while being different orders of magnitude faster than other unsupervised domain adaptation approaches

