
Chapter 1
Relational Technologies, Metadata and RDF

Yannis Velegrakis

Abstract Metadata plays an important role in successfully understanding and
querying data on the web. A number of metadata management solutions have al-
ready been developed but each is tailored to specific kinds ofmetadata. The Re-
source Description Framework (RDF) is a generic, flexible and powerful model
which is becoming the de-facto standard for metadata representation on the Web.
Its adoption has created an exponential growth of the amountof available RDF data
calling for efficient management solutions. Instead of designing such solutions from
scratch, it is possible to invest on existing relational technologies by exploiting their
long presence and maturity. Relational technologies can offer efficient storage and
high performance querying at relatively low cost. Unfortunately, the principles of
the relational model are fundamentally different from those of RDF. This difference
means that specialized storage and querying schemes need tobe put in place in
order to use relational technologies for RDF data. In this work we provide a com-
prehensive description of these relational RDF storage schemes and discuss their
advantages and limitations. We believe that through carefully designed schemes, it
is possible to achieve sophisticated high performance systems that support the full
power of RDF and bring one step closer the materialization ofthe Semantic Web
vision.

1.1 Introduction

Recent years have shown a tremendous proliferation of systems that make available
on the web data and information from almost every field of human activity, i.e., from
corporate environments and scientific domains to personal media and social activi-
ties. Interaction with these systems is becoming increasingly complex, mainly due

Yannis Velegrakis
University of Trento, Via Sommarive 14, 38100 Trento, Italy.
e-mail:velgias@disi.unitn.eu

45

46 Yannis Velegrakis

Metadata Approach

Annotations [21]
Atomic value annotations attached to a block of values
within a tuple. They accompany the values as retrieved. Re-
lational algebra query language.

Provenance [11]
Atomic data values carry their provenance, which propa-
gates with them as they are retrieved. Query language sup-
ports predicates on provenance.

Quality Parameters [28]
Data values are associated with quality parameters (accu-
racy, freshness, etc.). SQL is extended to retrieve data using
these parameters.

Schema & Mappings [41,47]

Explicit modeling of schema and mapping information,
and associations of it with portions of the data. SQL ex-
tension to retrieve data and metadata that satisfy certain
metadata properties.

Security [7]
Credential-based access control. System reads complex se-
curity profiles and returns data results accordingly.

Super-imposed Information [26]

Loosely-coupled model of information elements, marks
and links used to represent superimposed information. It
has no specific schema, but is in relational model and can
be queried using SQL.

Time [13]
Creation and modification time is recorded with the data
and used in query answering. Query language supports
predicates on time values.

Fig. 1.1: Metadata management approaches in relational andsemi-structured data systems

to the fact that their internal data has dramatically increased in size, structural com-
plexity, semantic heterogeneity and interaction intricacy. To cope with this issue,
and successfully query, discover, retrieve, integrate andmaintain this data, metadata
plays an important role. The term metadata is used to refer toany secondary piece
of information that is separate in some way from the primary data. In corporate en-
vironments, for instance, metadata regarding data quality[28, 44, 46] can help in
detecting erroneous, inaccurate, out-of-date, or incomplete values and can have sig-
nificant impact on the quality of query results [16]. In scientific domains, whenever
data is collected from various sources, cleansed, integrated and analyzed to pro-
duce new forms of data [36], any provenance [8], superimposed information [26],
different forms of annotations [11,21] or information on the performed transforma-
tions [4, 41], can be important in order to allow users to apply their own judgment
to assess the credibility of the query results.

The relational model provides a clear separation between data values and meta-
data information. The metadata of a relational database concerns the structure of the
data (i.e., the schema), constraints that may exist on the data, statistics that are of
use by query optimizers, and information about time and permissions on the various
schema components. Additional types of meta-data cannot beeasily incorporated
in this model, and query languages, such as SQL, have no provision for meta-data

1 Relational Technologies, Metadata and RDF 47

based queries, i.e., queries involving meta-data terms. Over the years, there have
been numerous research efforts to cope with this limitation. Table 1.1 illustrates
some of these efforts along-side the way they have approached the problem. A com-
mon denominator of these efforts is the extension of the datamodel with special
structures to store the meta-data of interest and the extension of the query language
with additional operators that are specifically designed for a specific kind of meta-
data.

A closer look of the works in Table 1.1 can also reveal the highheterogeneity of
the kinds of metadata that have been considered and the high degree of specializa-
tion of each solution towards the specific meta-data it is targeting. In particular, it
can be observed that some metadata is expressed as single atomic values, e.g., the
creation time of an element in a database [13], while others have a more complex
structure, e.g., the schema mapping [41] or security [7] specification. Furthermore,
metadata may be associated either to individual data values[11,13,28] or to groups
of values, i.e., set of attributes in a tuple [21]. As far as itconcerns the query lan-
guage, it can be noticed that there is a clear distinction between data and metadata.
Either there are queries that return only metadata information, i.e., the relations of
a database schema, or data-only queries, or queries returning data accompanied by
their associated meta-data. However, in many real-world scenarios, the distinction
between data and meta-data is blurred. The same piece of information may be seen
by some as data and by others as metadata which means that a clear distinction
between the kind of arguments (data or metadata) that a queryoperator can accept
may not be desired. It can also be observed that each solutionis not directly ap-
plicable to other forms of meta-data, at least not without some major modifications.
Past attempts on building generic metadata stores (e.g., [6,23]) have employed com-
plex modeling tools for this purpose: [23] explicitly represented the various artifacts
using Telos [30], while the Microsoft Repository [6] employed data repositories (in-
tended for shared databases of engineering artifacts). A simple, elegant approach to
uniformly model and query data, arbitrary metadata and their association has been
elusive.

In parallel to the database community, the Web community faced a similar need.
More than ever before, a model for the uniform representation and querying of meta-
data on the Web had been apparent. The model had to be machine readable, flexible
and easily integrateable with existing web technologies and tools. This led to the
introduction of RDF that is currently emerging as the dominant standard for repre-
senting interlinked meta-data on the Web. It is a representation language based on
directed labeled graphs in which nodes are called resourcesand edges are called
properties. The graph structure is expressed through a series of triples, each repre-
senting an edge between two resources (the first and third component of the triple)
with the second component of the triple being the identifier of the edge. RDF has
an XML syntax, which means that it is humanly and machine readable. It allows
the representation of many different kinds of meta-data with highly heterogeneous
structures. Its wide adoption by organizations and individuals as the format for web
metadata publishing, brings the web one step closer to the realization of the Seman-
tic Web vision [37].

48 Yannis Velegrakis

The increased amount of RDF data has naturally called for efficient storage and
querying solutions, that has led to the development of a number of different systems,
typically referred to astriple stores[3,5,10,12,22,33]. Unfortunately, the flexibility
that RDF offered, came at a price. Its triple-based nature required special storage,
indexing, retrieval and update techniques. Early RDF systems stored triples in giant
three-column tables that were efficient for simple triple-based queries, especially
in the presence of the right index structures, but had serious scalability issues in
complex graph-based queries.

In order to avoid building new native RDF solutions from scratch, it seemed
logical to invest on the many years of research and development that has taken
place in the area of relational data management. Relationalsystems have matured
enough and are prevalent, thus they can be easily adopted in real world application
scenarios. Many popular systems such as Jena [12], Oracle [14], Sesame [10] and
3store [22], are based on this idea. Of course, the tabular nature of the relational
model cannot directly serve the graph-based query expressions and data traversal
functionality that RDF requires. As such, special schemas need to be designed in
order to alleviate that issue and improve query performance.

In this work we provide an overview of the ways that the database and the web
communities have dealt with the issue of metadata management. Section 1.2 is an
introduction to the relational model. Section 1.3 presentsa rough categorization of
the metadata management techniques in the relational data management community.
A quick overview of RDF and its basic modeling principles is made in Section 1.4.
Finally, Section 1.5 presents different modeling schemes for storing RDF data in
relational data management systems.

1.2 The Relational Model

Assume an infinite set of attribute namesL and a set of atomic types, e.g.,Integer,
String, etc., with pairwise disjoint domains. The name of an atomictype is used to
represent both the type and its domain.

A relational database (or relational instance) [15] consists of a set of relations (or
relational tables). A relational table is a named set of tuples. A tuple is an ordered
set of〈a,v〉 pairs, called attributes, witha∈L andv∈Integer∪String∪. . . The car-
dinality of a tuple is the number of attributes it contains. All the tuples in the same
relation must have the same cardinality, and all the attributes in the same position
of each tuple must have the same attribute name and values of the same type. The
schema of a relational table, denoted asR(A1:T1,A2:T2, . . . ,An:Tn), describes the
structure of its tuples. In particular,R is the name of the table,n is the cardinality of
its tuples, andAk:Tk is the name and type of the attributes in thekth position of each
tuple in the table. The schema of a relational database is theset of the schemas of
its relational tables.

A number of different languages have been proposed over the last three decades
for querying relational data. The most popular is without a doubt SQL [19]. An SQL

1 Relational Technologies, Metadata and RDF 49

query is formed by aselect, a from and awhere clause. Thefrom clause consists of a
set of variables, each associated to a relational table. Each variable is bound to the
tuples of the table with which it is associated. Thewhere clause contains a set of
conditions. Given a binding of the variables of a query, if the conditions in thewhere

clause are satisfied by the tuples to which the variables are bound, the binding is
said to be atrue binding. For each true binding, a tuple is generated in the answer
set according to the expressions in theselect clause. Eachselect clause expression is
defined by the following grammar:

exp ::= constant| variable.attributeName| f (exp1, . . . ,expn)
Since the output of an SQL query is a set of homogeneous tuples, i.e., a relational

table, queries can be composed to form more complex queries.SQL supports a
number of additional constructs for grouping, sorting and set operations and others,
but we will not elaborate further on those since they are out of the scope of the
current work.

The tabular form of the relational model makes it ideal for representation of
sets of data with homogeneous structures and the appropriate index structures can
provide efficient tuple selection operations based on attribute values.

1.3 Modeling Metadata in Relational Systems

There have been numerous efforts for storing metadata in relational databases. These
efforts boil down to three main categories. The first is the use of separate specialized
structures that represent the metadata. The second is the use of intermixed structures
in which the same table contains both data and metadata. The third kind is the use
of intensional associations that allows metadata to be associated to data without the
need for the latter to be aware of that.

1.3.1 Separate Structures

This approach involved specially designed tables whose semantics are known in ad-
vance and are not considered part of the database schema or instance. They contain
meta-information about the stored data, and they can be queried using the relational
query language supported by the system. However, they cannot be used for associ-
ating generic kinds of metadata to the data values. A classical example of this case
are the catalog tables of the relational DBMS.

50 Yannis Velegrakis

(a)

Restaurants

Name Namec City City c

Chinatown N.Y. in USA
Pizza Romavery nice L.A.
Pizza Romaexpensive L.A.
Pizza Romafrom citySearchL.A. from citySearch

(b)

Restaurants Restaurants c

Name City

Chinatown N.Y.
Pizza RomaL.A.

Key Namec City c

Chinatown in USA
Pizza Romavery nice
Pizza Romaexpensive
Pizza Romafrom citySearchfrom citySearch

(c)

Restaurants
Name City Namec City c value

Chinatown N.Y. 1 in USA
Pizza RomaL.A. 1 very nice
Pizza RomaL.A. 1 expensive
Pizza RomaL.A. 1 1 from citySearch

Fig. 1.2: Schemes for storing annotations in relational data

1.3.2 Intermixed Context

In the case in which different kinds of metadata need to be associated to specific data
values, a different mechanism is needed. Data annotations are classical examples of
such metadata. An annotation may vary from security information to data quality
parameters, with the simplest and most prevalent kind of annotation being the user
comments.

A possible scheme for data annotations is used in the DBNotessystem [8]. For
every attributeA, in a data table, a second attributeAc is introduced to keep the an-
notation of the value inA. An example of this scheme is illustrated in Figure 1.2(a).
AttributesNamec andCityc contain the annotations of the values in attributesName

andCity, respectively. A limitation of the scheme is that in the casein which a value
has more than one annotation, the whole tuple needs to be repeated, once for every
annotation. This is the case of thePizza Roma restaurant in the example. Note how
the tuple [Pizza Roma , L.A.] has to be repeated three times to accommodate the
three different annotations of the valuePizza Roma . Furthermore, if an annotation
is referring to more than one attributes of a tuple, the annotation has to be repeated
for every attribute. For instance, the annotationfrom citySearch in theRestaurants

table is repeated in both columnsNamec andCityc.

1 Relational Technologies, Metadata and RDF 51

Restaurants Comments

Name Type City Price

Chinatown ChineseN.Y. 8
Pizza RomaItalian L.A. 30
The India Indian San Jose25
Yo-Min ChineseN.Y. 22
Spicy HomeIndian L.A. 25
Noodle plateChineseN.Y. 15
Curry Indian San Jose20

References Comment Date Author

select *
from Restaurants
where
city=“L.A.”

It has
7% tax

03/06John

select *
from Restaurants
where
city=“N.Y.”

Tip is
15%

06/06Mary

select city
from Restaurants
where
city=“L.A.”

Is in
the US

01/04Kathy

select *
from Comments
where au-
thor=“John”

Not to
trust

06/05Nick

Fig. 1.3: A database instance with intensional associations

To avoid the redundancy a variation of the described scheme can be used. The
variation is based on the existence of keys or of row identifiers. In particular, the
scheme assumes that for every tableT there is a tableTc that stores the annotations.
The attributes of the tableTc are basically the attributesAc of the previous scheme,
with one additional attribute, used to reference the key (orrow id) of the respective
data tuple. This variation is illustrated in Figure 1.2(b).Tuple repetition may still be
required in case of multiple annotations on a value, but in this case the wasted space
is only for the repetition of the row identifier (or the key) and not for the whole data
tuple values.

In certain practical scenarios, an annotation may need to beassigned to more than
one tuple attributes as a block and not to each attribute individually. The Mondrian
system [21] uses a different variation of the previous scheme to achieve this. It
assumes a columnAc of typebit for every attributeA of the data table, and a column
value, in each data table. When an annotation needs to be placed on agroup of
attributes in a tuple, the annotation value is inserted in the value column, and the
bit columns of the respective attributes are set to 1. An example is illustrated in
Figure 1.2(c) in which the annotationfrom citySearch is assigned to both values
Pizza Roma andL.A.

52 Yannis Velegrakis

1.3.3 Intensional Associations

The two schemes presented have three main limitations. First, they require explicit
association of every metadata entry with its respective data entries. This is not prac-
tical in cases in which multiple data elements share the samemetadata informa-
tion. For instance, assume the existence of a tableRestaurants with information about
restaurants as illustrated in Figure 1.3, and a user that needs to annotate all the
restaurants in N.Y. city with some comment about them. Afterfinding all the tu-
ples in theRestaurant table for whichcity=“N.Y.”, an explicit association will have to be
made between each such tuple and the the respective comment.The second limita-
tion is that future data cannot be handled automatically. For instance, assume that
ten new New York restaurants are inserted in theRestaurants table and that the com-
ment the user needs to add is generic and applies to every New York restaurant.
An association between the user comment and each of these newrestaurants will
again have to be explicitly made. The third limitation of theschemes described in
the previous subsections is that the data table is fully aware of the existence of the
metadata. Any metadata value change to be implemented requires access to the ta-
ble that the data values are also stored. This is something that may not always be
possible since owners of data and meta-data may be differententities with different
privileges.

To overcome these limitations, an instensional association framework [34] can be
put in place. The idea is to replace the traditional value-based association between
tables with associations based on queries. An example is illustrated in Figure 1.3.
Table Comments contains comments that various users have made over time. Col-
umn References is of a special type that contains, instead of a regular atomic value
referring to the key of the data table, a query expression. The evaluation of this
query expression determines the data values that the respective comment is about.
For instance, the first tuple in theComments table is about all the restaurants in Los
Angeles (L.A.). Note that one metadata tuple is enough to cover all the restaurants
on which the comment applies. In real systems where the same metadata value may
have to be assigned to multiple data tuples, this scheme can lead to significant sav-
ing in terms of space. Furthermore, assuming that a new restaurant opens in L.A.
and the respective tuple is inserted in theRestaurants table. The tuple will be auto-
matically associated to the first entry in theComments table, since it will satisfy the
specifications of the query in theReferences column of the metadata tuple.

By using queries as attributes one can assign metadata to data without any modi-
fication on the data tables. Furthermore, theselect clause of the query can be used to
assign the metadata information to a subset of the columns ofthe data tuple, as is the
case with the third tuple in theComments table in Figure 1.3. An additional feature is
that the queries used as values can reference tuples in any table in the database, even
in their own. One such example, is the fourth tuple of theComments table that rep-
resents a comment that applies on the first tuple of the same table. The modeling of
this scheme allows for a uniform management of data and metadata and facilitates
the construction of metadata hierarchies, i.e., metadata assigned to other metadata.

1 Relational Technologies, Metadata and RDF 53

Of course, the presence of queries as values require modifications of the query
evaluation engine. Some first steps have already been done towards evaluation tech-
niques [32,39], and index structures [38].

1.4 RDF

RDF (Resource Description Framework) [22] has been introduced as a mean to
represent metadata on the web. It views web data as a set ofresources, that may also
be related to each other. Any web entity is considered a resource, uniquely identified
by itsUnique Resource Identifier (URI). Information about web entities is expressed
throughRDF statements. An RDF statementspecifies a relationship between two
resources. It is a triple of the form〈sub ject, predicate, ob ject〉. Thesub jectis a
URI representing a web artifact,statementis a label, andob ject is either another
URI or a literal. The information, for instance, that W3C is the owner of the web
page http://www.w3.org/RDF, can be expressed through the statement

〈http://www.w3.org/RDF, “owner”, http://www.w3.org〉
assuming that the URI of the W3C is http://www.w3.org.

Web metadata may not always be about web entities but about other metadata. To
facilitate this kind of information, statements themselves are considered resources,
thus, they can be used in statements like any other resource.

By representing every statement as an edge that connects theresources that ap-
pear in its subject and object and is labeled with its predicate, one can generate a
graph representation of any RDF data. Since statements are also resources, an edge
can connect not only nodes but also edges, thus, the generated graph structure is
actually a hyper-graph.

A set of RDF triple statements form anRDF base. More formally, we assume
the existence of an infinite set ofresourcesU , each with aunique resource identifier
(URI), an infinite set of labelsA, and an infinite set ofliterals L. Each literal can
be considered a resource having itself as its actual URI. Apropertyis an association
between two resources which is also a resource. A property isrepresented by a triple
〈s, p,o〉, wherep is the URI of the property whilesando the URIs of the resources
it associates. The URIp of a property〈s, p,o〉 is denoted byURI(p) or simply p.

Definition 1.1. A RDF baseΣ is a tuple〈I ,P〉, whereI⊆U is a set of individuals,
P⊆I×U×I is a set of properties andI∩{URI(p) | p∈P}= /0.

To describe and/or control the structure or RDF data, W3C hasintroducedRDF
Schema(RDFS) [42]. RDFS is a set of constructs that allows the definition of
schematic, i.e., typing, information about RDF data. It defines classes as a way to
group together RDF resources that have common structures, differentiates between
a property and a non-property resources, allows the definition of inheritance and
enables the definition of constraints on the resources that aproperty is allowed to
associate.

54 Yannis Velegrakis

RDFS assumes that setU contains the following special resources:1 rdfs:Literal ,
rdfs:Property , rdfs:Class, rdf:Thing , rdfs:type, rdfs:domain, rdfs:range, the
rdfs:subClassOfand therdfs:subPropertyOf .

Typing information is modeled through therdfs:type property. All the resources
associated to a resourceC through therdfs:type property are said to beinstances
of C. Every resource is an instance of the resourcerdf:Thing . Each resourceC that
can have instances is itself an instance of the resourcerdfs:Class. All such instances
are referred to asclasses. Resourcesrdfs:Property , rdfs:Literal , rdfs:Class and
rdf:Thing are classes. The instances of the classrdfs:Literal are all the literal
values. Every instance of a class that is not an instance of classrdfs:Property is
referred to asindividual. A partial order can be defined among classes, through
properties that are instances ofrdfs:subClassOf. If a class is a subclass of another,
then the set of instances of the first is a subset of the set of instance of the second.
The subclass relationship forms a lattice hierarchy among the classes, with class
rdf:Thing being at the top of the lattice.

Every property resource is an instance of aproperty class. Property classes are
used to restrict the resources properties can associate. Aproperty classis an in-
stance of classrdfs:Property and is associated through propertiesrdfs:domain
andrdfs:range to two other classes. When a property is an instance of a property
class, the resources it associates must be instances of the domain and range classes
of its property class.

A partial order sub-property relationship can be defined between the property
classes, similarly to the subclass relationship that can bedefined among classes.
The sub-property relationship is defined through therdfs:subPropertyOf . When a
property is a sub-property of another, then the domain and range classes of the first
must be subclasses of the domain and range of the second.

Definition 1.2. A RDF/RDFS baseΣ is a tuple 〈I ,P,C,Pc,τ,τc,
.
�c,

.
�p〉, where

I⊆U is a set of individuals, andP is a set of properties withP⊆I×U×I and
I∩{URI(p) | p∈P}= /0. C is a set of classes that includesrdfs:Class, Pc is a set
of property classes that includesrdfs:Property , τ|I→C andτp|P→Pc are typing

function,
.
�c is a partial order relationship2 on C with rdfs:Class as the root, and

.
�p is a partial order relationship3 onP with rdfs:Property as root.

1.5 Using Relational Systems for RDF Storage

The current RDF storage and retrieval landscape reminiscesXML. Although there
are proposals for native RDF storage, a great majority has opted towards the use

1 The names of the properties are their URIs. For simplicity, name-spaces have been omitted from
the discussion.
2 Representing the subclass relationships
3 Representing the sub-property relationships

1 Relational Technologies, Metadata and RDF 55

Fig. 1.4: The generic architecture of systems that employeerelational data management solutions
for storing, querying and retrieving RDF data.

of relational data management systems. This trend comes at no surprise. Develop-
ment of new solutions from scratch requires significant amount of effort, time and
money. Relational technologies, on the other hand, have been around for more than
three decades, have great achievements to demonstrate and are dominating the mar-
ket. They can offer numerous of-the-shelf solutions with great query performance
and good scalability. Unfortunately, using a relational system for that purpose is
not a straight forward task, mainly due to the different foundational principles be-
tween the RDF and the relational model. Special schema design and RDF-tailored
query answering techniques need to be put in place for such a coupling to work.
The following sections provide an overview of the differentschemes that can be
used for that purpose. Many of them are already adopted by major RDF stores, such
as Jena [12], Oracle [14], RDFStore [3], Sesame [10], 3Store[22], DLDB [33] or
Hexastore [45]. A typical architecture consists of a relational system with an addi-
tional layer that stands between the relational repositoryand the user or application
interface. The layer is aware of the storage scheme used in the relational repository
and is responsible for translating the RDF queries posed by users or applications
to queries on the relational structures. The architecture is graphically depicted in
Figure 1.4.

The length of the URIs is one of the first issues faced in relational RDF storage.
A URI typically consists of a web address followed by some directory path and the
name of the intended resource. Although storing and retrieving long strings is not an
issue in modern DBMS, it is becoming an issue in indexing. Many indexing mecha-
nisms use a maximum of 256 or 512 characters as key values, thus, only the first 256
or 512 characters of the URIs will be used in the index. Truncating URIs makes the
index useless since the truncated URIs may become non-unique. To avoid this issue,
URIs can be stored in a reverse form, so that any possible truncation occurs only on
its head. Alternatively, URIs can be mapped to unique systemgenerated identifiers,
preferably of numerical nature. Comparisons on numerical values are more efficient
than string comparisons, thus, such a mapping offers significant performance im-
provements. In what follows, we assume that such a mapping isalways possible and
we will treat URIs and their respective system generated identifiers as synonyms.

56 Yannis Velegrakis

Fig. 1.5: XML syntax (top left) of some RDF structure (top right) and the tree representation of its
XML syntax (bottom)

A similar technique based on hash encoding is used by 3Store [22]. In particular,
for every URI or atomic value that exists in the database, a hash key is computed
and used instead of a URI or a literal. The selection of the right hash functions can
significantly reduce the time required to compare two values/URIs, and can lead to
considerable query performance improvements.

1.5.1 Storing RDF as XML

Since RDF has an XML syntax, any XML storage mechanism can be used to store
RDF data. Currently, there is a rich literature addressing the issue of storing and
querying XML data in relational databases. Several mappingstrategies have been
proposed, and many systems have already been developed, such as, Stored [18],
Edge [20], Interval [17], XRel [49], XPERANTO [40], or LegoDB [9]. Further-
more, most major commercial relational DBMSs, e.g., IBM DB2[48], Oracle [24]
and Microsoft SQL Server [29], are currently supporting theshredding, storing,
querying and retrieving of XML documents.

There are two main drawbacks in following such a strategy. The first is the mis-
match between the syntactic variations of the XML representation and the RDF data
model. In particular, the tree representation of the XML syntax of some RDF struc-
ture may involve additional elements that may not correspond to any of the RDF
structures. For instance, Figure 1.5 illustrates an RDF model represening a couple
where John Smith is the husbant and Mary Wilkinson the wife. The top left-hand-
side of the figure is the XML syntax of the RDF model, while the top right-hand side

1 Relational Technologies, Metadata and RDF 57

is its graph representation. The lower part of the figure is the tree representation of
the XML data of the top left-hand side. It can easily be noticed the differences be-
tween the two graph representations, which means that queries on the RDF structure
will have to be translated accordingly if the RDF structuresare stored according to
the XML representation.

A second drawback of the strategy is the mismatch between theXML and the
RDF query patterns. XML queries are based on the tree structure of XML and typ-
ically involve root-to-element paths or subtree selections. RDF resources, on the
other hand, lack such a hierarchy. They are structured as directed graphs, and natu-
rally, RDF queries typically involve random graph traversals.

1.5.2 Vertical Table

Since an RDF base is expressed as a set of triple statements ofthe form〈subject, pred-

icate, object〉, a straight-forward solution is to use a 3-attribute table for storing the
statements. This schema is referred to as thevertical tablescheme. Each tuple in a
vertical table represents a triple statement, with its three attributes corresponding to
the subject, the predicate and the object part of the triple,respectively. Figure 1.6
illustrates a vertical table that models a part of an RDF base.

Assume that a user is interested in finding whetherCalvanese has any publica-
tions and poses the SPARQL query:

select?subjectwhere{ ?subject author Calvanese }
To retrieve the answer, the SPARQL query is translated to thefolowing SQL expres-
sion:

select subject
from Statements
where predicate=“author ” and object=“Calvanese ”

which can be efficiently answered in the presence of indexes on the attributes of the
tableStatements.

On the other hand, to answer queries like, for instance, the one that looks for
the journals in whichMecca andAtzeni have sent a publication together, requires
multiple self-joins over theStatements table which leads to significant performance
issues. The particular query, for instance, can be answeredthrough the relational
query:

selects3.objectfrom Statements s1, Statements s2, Statements s3
wheres1.predicate=“author ” and s1.object=“Mecca” and

s2.predicate=“author ” and s1.object=“Atzeni ” and
s3.predicate=“journal ” and s1.subject=s2.subjectand
s1.subject=s3.subject

The advantage of the vertical table scheme is that it is suitable for storing highly
heterogeneous data. It can easily model resources with any number of properties.

58 Yannis Velegrakis

Statements
subject predicate object
1 type article
1 title LAURIN
1 author Catarci
1 author Santucci
1 author Calvanese
1 journal WWW
1 year 2001
1 file CSC01.pdf
2 type book
2 author Codd
2 title The Relational Model
2 year 1990
2 publisher Addison-Wesley
3 type book
3 title Principles of DB Systems
3 author Vianu
3 author Hull
3 author Abiteboul
3 year 1995
3 publisher Addison-Wesley
4 type article
4 title Web-Based Data
4 author Atzeni
4 author Merialdo
4 author Mecca
4 journal IEEE Int. Comp.
4 file AMM02.pdf

Fig. 1.6: A vertical table.

The scheme facilitates statement-based queries, i.e., queries consisting of a triple
statement that lacks one or two parts and returns the resources of the triples com-
plementing the missing parts, like, the example query aboutCalvanese above. This
is because statement-based queries get translated to selectivity relational queries
which can be efficiently answered in the presence of the rightindex structures. On
the other hand, due to the joins that need to be performed, data browsing and path
queries on the RDF structures are costly to implement.

In the presence of schema information, the vertical table can be used to answer
schema queries, i.e., queries related to RDF metadata. The scheme stores the schema
information in triples as it does with the rest of the data [27]. Thus, it is easy, for
instance, to answer whether a class is a direct subclass of another. It will be hard,
however, to answer whether a class is a subclass of another inthe general case, since
the system will have to search and combine many triple statements.

1 Relational Technologies, Metadata and RDF 59

Class (classname, pre, post, depth)
Property (propertyName, domain, range, pre, post, depth)

Resource (resourceName, ppathID, datatype)
Triple (subject, predicate, object)
Path (pathID, pathexp)
Type (resourceName, className)

Fig. 1.7: Relational schema for a graph-based RDF storage

1.5.3 Graph-Based Storage

Since the RDF model is basically a directed graph, a large number of queries
are about detecting subgraphs satisfying some path expressions. The vertical table
scheme has poor performance for this type pof queries because they require multiple
join operations.

To overcome this problem, the design of the relational tables can be based on the
paths that are most likely to be used [27]. To cover all the possible cases, one can
extract for each resourceeall the path expressions to every other resource reachable
from eand explicitly store them. This precomputation avoids expensive joins during
query answering and improves significantly the query response time. An important
requirement, however, is that the data contains no cyclic paths.

To reduce the size of the tables, an idea is to use different tables to represents dif-
ferent parts on the RDF graph [27]. In particular, one can extract different subgraphs
based on the class hierarchy, the properties, etc., and store each one of them in its
own table. That way, depending on their kind, queries will bedirected and answered
on the respective tables. The extraction of the subgraphs can be based on the special
RDF properties. For instance, theclass, inheritance, property, type, domain-range
and generic subgraphs can be extracted from the RDF graph based on the properties
rdf:subclassOf, rdfs:subPropertyOf, rdf:type, rdfs:domain/range andrdfs:seeAlso/isDefinedBy re-
lationships. Clearly, the structure of each such graph is much less complex that the
structure of the whole RDF graph which leads to better response times. Further-
more, based on the characteristics of each such graph, different techniques can be
used for the representation of the different graphs in the relational tables.

A possible schema of the relational tables for a graph-basedRDF storage is il-
lustrated in Figure 1.7. RelationsClass andProperty are used to store the classes and
properties of the RDF Schema. Attributespre, pos and depth represent the Li and
Moon [25] encoding of each class/property in the RDF graph. The Li and Moon
encoding is a numbering scheme that has been extensively used in the XML litera-
ture to check ancestor/decedent relationships. It assignsto each node three numbers.
The first and the second, represent the pre-order and the post-order position of each
node in the XML tree. The third determines the depth of each node, computed as
the length of the path from the root to the specific node. Trying to apply the specific
numbering scheme on an RDF graph gives rise to two main issues. First, since RDF
graphs are directed acyclic graphs and not trees, it is not clear what node should

60 Yannis Velegrakis

serve as the root from which the numbering should start. Second, multiple different
paths may have a common start and end nodes, and choosing one over another may
have conncequences. To overcome these issues, nodes with in-degree equal to 0 can
be characterized as“roots” and paths can be computed from each such node to any
other. Furthermore, in the case of multiple paths to a node, multiple copies of that
node can be created, one for each different path.

In the relational schema of Figure 1.7, tableTriple is used to model all the RDF
statements and is used to efficiently answer predicate queries. TableType is used to
record for every resource instance the RDF schema class it belongs. The attributes
of these two tables are self-explanatory.

Materializing the different paths from the roots to the nodes is also an issue, since
the paths can be of variable size. To avoid expensive join operations, every path can
be encoded as a string of labels and resource names separatedthrough some special
character, i.e., “/”. The role of tablePath andResource is to materialize this encoding.
The former encodes every path along with a unique identifier.The latter, associates
every node, i.e., resource, in the RDF graph with its paths inthePath table.

Finding the resources reachable through a path can be answered by selecting
from thePath table those tuples for which thepathexp attribute is equal to the path
specified in the query. This selection can be performed fast if a Hash or B+ tree
index is available. Since the paths recorded inpathexp are all paths starting from a
root, the specific selection can work only if the path specified in the query also starts
from a root. If it starts from a non-root node, then the tablePath needs to be searched
for the tuples with apathexpr attribute value ending with the requested path. Such
an operation cannot exploit the index, and is based on sequential scan. To avoid
sequential scan, paths can be stored inpathexp in reverse order, i.e., starting from
the ending node and ending with the root. That way, the index can be exploited to
improve searching for paths ending to a node.

1.5.4 Graph Schema - Vertical Data

An approach similar to the graph-based storage has been usedin RDFSuite [3], but
with further improvements and features. The general idea isto exploit to the maxi-
mum the RDF Schema information whenever this is available. Two sets of relational
tables are needed. The first is used to represent the RDF Schema information and
the second the actual RDF data.

To represent the RDF schema information, and in particular the class and prop-
erty hierarchies, four tables are used, namely theClass, Property, SubClass and
SubProperty. The Class and Property tables hold the classes and properties defined
in the RDF Schema, respectively. TheSubClass and theSubProperty tables, store
the rdfs:subClass and rdfs:subProperty relationships that exist between the
classes and the properties, respectively. A special tableType is used in which the
build-in classes defined in RDF Schema [42], i.e,rdfs:Class or rdfs:Property ,
and the literals, i.e.,string or integer , are hard-coded into its contents. The

1 Relational Technologies, Metadata and RDF 61

Fig. 1.8: A Graph Schema Vertical Data encoding example.

schema of the tables along with a small fraction of the table contents are illus-
trated in Figure 1.8. Note that tableClass is a unary table, while tablesSubClass and
SubProperty are binary since they store the relationship between the classes and prop-
erties that exist in the tablesClass andProperty, respectively. TheProperty table on the
other hand is a ternary relationship since it provides for every property, the domain
and range classes. B+-tree indexes are required on every attribute in these tables to
achieve satisfactory performance.

For representing the RDF data, an idea similar to the vertical table scheme can be
used. In particular, a tableInstance with two attributes is required. The first attribute
of a tuple in that table keeps the URI of an instance resource and the second the
URI of the class that the instance belongs. A similar approach is used to represent
the properties of the instances, through aProperty table with three columns: two for
keeping the URIs of the instances that the property relates,and one for storing the
name of the property. A fraction of theInstance andPropertyInstance tables is illus-
trated in Figure 1.8. As before, B+-tree indexes are constructed for every attribute
in these tables.

The Instance and thePropertyInstance tables may get too large and affect perfor-
mance. An alternative modeling is to use one table for the instances of each different
class. The name of each such table is the name of the class, andthe tuples it con-
tains are the URIs of the instances of the respective class. The tables in Figure 1.8
that have a number as a name are examples of this variation. The same applies for

62 Yannis Velegrakis

the property instances, but this time the table is labeled with the name of the prop-
erty and it must have two columns that record the two resources that the property
instance associates.

Having separate tables for instances and properties of different classes may lead
to more efficient query answering since fewer tuples may haveto be scanned. How-
ever, this option is not applicable in cases that the number of classes are extremely
large, since this will require the definition of an extremelylarge number of tables.
Although the number of tables supported by the majority of modern relational sys-
tems is large enough, there are RDF bases that require the creation of more than
300.000 tables, which even if supported by the relational system, it will have seri-
ous performance and management issues.

1.5.5 Property Table

An alternative to the vertical table schema that aims at reducing the number of joins
required during query answering is to cluster the properties of the resources and find
groups of entities that share the same set of properties. Thecommon properties can
then be modeled as attributes of the same table, referred to as aproperty table. This
modeling makes explicit the association of the different properties, eliminating the
need for joins. A property table consists ofN attributes. The first functions as a key
and is typically a URI. The remainingN−1 attributes represent a set ofN−1 prop-
erties that are commonly found to all the resources, or at least the majority of them.
For instance, by studying the RDF data of Figure 1.6, one can notice that properties
type and title appear to all the four resources, while the propertyyear appears in the
majority of them, i.e., it appears in all resources apart from 4. Thus, we can con-
struct a relational table with four attributes, the first corresponding to the resource
URI and the rest to the attributestype, title andyear. The table is illustrated on the
left-hand side of Figure 1.9.

Note that resource 4 in Figure 1.6 has noyear property, and this is reflected in
the Property table of Figure 1.9 through a NULL value on the respective attribute.
The property table could have also included attributesjournal andfile for storing the
data of the respective properties. However, since these properties appear to only few
resources, they would have required the respective columnsto be padded with a lot
of nulls, resulting to an unjustified waste of space. To avoidthis, a different table,
referred to as theexcess table, is instead introduced. Its schema and functionality
is the same as the table in Figure 1.6. The context of this table are shown on the
right-hand side of Figure 1.9.

A requirement of the property table scheme is that the properties used in the
property table are not multi-valued. In the RDF example of Figure 1.6, certain re-
sources have more than one author. Since the relational model is in First Normal
Form [2], such multi-values attributes cannot be modeled inthe property table, and
unavoidably will be included in the excess table.

1 Relational Technologies, Metadata and RDF 63

Property Table Excess Table
URI type title year
1 article LAURIN 2001
2 book The Relational Model 1990
3 book Principles of DB Systems1995
4 article Web-Based Data NULL

URI predicate object
1 author Catarci
1 author Santucci
1 author Calvanese
1 journal WWW
1 file CSC01.pdf
2 author Codd
2 publisher Addison-Wesley
3 author Vianu
3 author Hull
3 author Abiteboul
3 publisher Addison-Wesley
4 author Atzeni
4 author Merialdo
4 author Mecca
4 journal IEEE Int. Comp.
4 file AMM02.pdf

Fig. 1.9: A property table scheme.

A variation of the property table scheme is one that considers multiple property
tables. Howe many such tables and with what attributes is something that is deter-
mined by the property clustering technique. For instance, by noticing that although
there is nojournal property for every resource in the RDF data, for those resources
that exist, propertyfile is also present. Thus, a second property table can be created
for only the propertiesjournal andfile.

The advantage of the property table scheme is that queries involving popular
attributes in the cluster, can be answered without joins. For instance, asking for
the article with the title “LAURIN” published in 2001, can beanswered with a
selection query on the property table. Of course, queries involving attributes that
have not been modeled in the property table and are located inthe excess table will
unavoidably require joins.

The property table scheme makes no use of schema information, thus it can be
used for schema-less data. However, the existence of RDF Schema can offer new
opportunities for optimizing the encoding. In particular,since classes are used to
cluster together resources with the same structure, one could use the classes as a
guide for generating multiple property tables, for instance, one for each class. The
properties encoded in each such table will be the propertiesof the respective class,
and the table will be referred to as aclass property table. For example, assuming
that for the RDF data of Figure 1.6 there are two main classes,one forarticles and
one for books. The data can then be represented into two class property tables as
illustrated in Figure 1.10. Note that even in this case, the multi-valued properties
continue to be an issue and still require anexcess table in order to be stored. On the
other hand, all the other properties will be accommodated toone or more property
tables. The case in which a property is modeled in more than one property tables, is

64 Yannis Velegrakis

Article Property Table
URI type title year file journal
1 article LAURIN 2001 CSC01.pdf WWW
4 article Web-Based DataNULL AMM02.pdf IEEE Int. Comp.

Book Property Table
URI type title year publisher
2 book The Relational Model 1990 Addison-Wesley
3 book Principles of DB Systems1995 Addison-Wesley

Excess Table
URI predicate object
1 author Catarci
1 author Santucci
1 author Calvanese
2 author Codd
3 author Vianu
3 author Hull
3 author Abiteboul
4 author Atzeni
4 author Merialdo
4 author Mecca

Fig. 1.10: A property table scheme with class property tables.

the one in which the property is shared by more than one classes. For instance, the
property title appears in both property tables of Figure 1.10. This is a fundamental
difference between the property tables based on the RDF Schema and the property
tables based on property clustering. In the latter case, no property gets repeated in
more than one table.

Although the property table scheme may be proved to be efficient for many ap-
plications, there are cases in which it may under-perform. One of these cases is the
one in which the data from different class property tables needs to be combined.
For instance, assume that one is interested in finding the years in which publications
have taken place. In the case of class property tables, this will translate to the union
query that selects the years from the two class property tables. The scheme performs
well if the data is highly structured data, i.e., conforms tosome schema. This mini-
mizes, and in the best case eliminates, the number of properties that are recorded in
the excess table. However, we should not forget that one of the main reasons of the
RDF popularity is its ability to model highly heterogeneousdata, which means that
a large majority of the data of interest is of such nature.

1.5.6 Vertical Partitioning

The property table clusters together properties that are common to a group of re-
sources, but those properties that cannot be accommodated in any cluster will have
all to be stored in the excess table. A different scheme that aims at tackling this lim-
itation is the vertical partitioning. The idea of the vertical partitioning scheme [1] is
similar to the idea of column-store in databases. It groups together properties of the
same type and store each such group in a separate table. Thesetables can be linked
together based on the resource URIs. More specifically, all the subject-predicate-
object triples that have the same predicate value form a group stored under a two-
column relational table named after the name of the predicate. The first column is

1 Relational Technologies, Metadata and RDF 65

type title year
URI value
1 article
2 book
3 book
4 article

URI value
1 LAURIN
2 The Relational Model
3 Principles of DB Systems
4 Web-Based Data

URI value
1 2001
2 1990
3 1995

journal publisher file
URI value
1 WWW
4 IEEE Int. Comp.

URI value
2 Addison-Wesley
3 Addison-Wesley

URI value
1 CSC01.pdf
4 AMM02.pdf

author
URI value
1 Catarci
1 Santucci
1 Calvanese
2 Codd
3 Vianu
3 Hull
3 Abiteboul
4 Atzeni
4 Merialdo
4 Mecca

Fig. 1.11: A vertical partitioning scheme example.

the URI of the resource, i.e., the subject, and the second is the value of the property,
i.e., the object. In total, there will bek such tables, wherek is the number of different
properties that the RDF data contains. A vertical partitioning example for the RDF
data of Figure 1.6 is illustrated in Figure 1.11.

URI attributes cannot be keys for the tables in the vertical partitioning scheme,
unless the represented property is not a multi-valued property. However, since joins
are based on the URIs, the existence of indexes on all the URI attributes is required.
Furthermore, indexes can also be constructed on thevalue attribute for facilitating
selection based on property values. If the tuples in each table are sorted by the URI
attribute, then joins between two tables can be performed inan efficient manner us-
ing merge-joins [35]. This also means efficient handling of multi-valued properties
since all the entries of a multi-valued property will be stored consecutively in the
respective property tables.

The defragmentation of the set of triples into sets that are stored into separate
tables can significantly improve query answering for queries that require searching
to only few properties, since the data access is needed to only the tables of interest.

Despite its advantages, the vertical partitioning scheme is not free of limitations.
The most critical one is that queries with conditions on several properties will re-
quire joins of multiple tables, which although can be speed-up with the right index-
ing and join technique, it is not as efficient as sequential access to tables that contain
all the attributes of interest. Another limitation is that the names of the properties
are not recorded as data, but as meta-data in the names of the individual tables. This
means that the data can be access only if the names of the respective properties are
known. Thus, queries requiring the discovery of all the properties that a specific re-
source may have, cannot be directly answered. A solution is to use the meta-data
information offered by relational DBMSs, in particular thecatalog tables, in order
to obtain a list of the available tables. Even with such a knowledge though, to find
all the properties that a particular resource may have, willrequire a separate query
to be sent to every table in the database in order to discover whether it contains a
tuple for the specific resource of interest.

66 Yannis Velegrakis

1.5.7 Smart Indexing

In recent years, a new query model has emerged on the web. Users may not have
complete knowledge of the data they are querying since it is highly heterogeneous
and its structure difficult to communicated. In such an environment, queries are
mainly of exploratory nature and, in some cases, underspecified. For this kind of
queries, schema-based approaches like the vertical partitioning or the property tables
may not be the preferable solution.

For efficiently answering queries that look for properties of a given resource, the
triple nature of RDF can be exploited to build specialized indexes [45]. Since RDF
data is described by a list of triples of the form〈subject, predicate, object〉, there
are 6 different ways one can retrieve that data, each corresponding to one of the 3!
different ways that the componentssubject, predicateandobject, can be combined.
For example, one combination is to first provide asubject, retrieve all thepredicates
of thatsubject, and for each suchpredicateretrieve theobjectsof the triples that have
the specificsubjectandpredicate. Given the six different ways the three components
can be combined, there are six different indexes that can be constructed, one for each
combination. Each such index, consists of a list of lists of resources. A graphical
illustration of such a structure is depicted in Figure 1.12.Assume that this figure
is the index for the combinationsubject-predicate-object. Since thesubjectis first,
the first horizontal list has as many elements as the different subjectvalues that can
be found in the RDF data triples. Each element corresponds toone such values
and points to another list. Sincepredicateis the second component in thesubject-
predicate-objectcombination, the pointed list consists of as many elements as the
number of differentpredicatevalues that are found in the RDF data triples withsas
a subject. Each of these elements corresponds to onepredicatevaluep and points
also to a list. That list contains all theobjectvalues that can be found in the RDF
data triples that havesas asubjectandp as apredicate. This kind of lists are those
depicted vertically in Figure 1.12.

An index structure like the one described above is constructed for each of the
six different combinations ofsubject, predicateandobject, in order to cover all the
possible orders they may be queried. Each index has all the information that can be
found in the list of triples, thus no additional storage is required. Since each index
hold all the triple information, one would expect the total required space to be six
times the size of the set of triples. This is not actually true. The reason is that the
lists of the third component in a combination are the same independently of the
order of the first two components, thus, there is no need for storing them twice. For
instance, the lists for theobjectvalues in the combinationpredicate-subject-object
is the same as the list ofobjectvalues in the combinationsubject-predicate-object.

The materialization of a specific combination of the index structure in a relational
system requires a number of two-column and a number of single-column tables. In
particular, a two-column table is needed to model the list for the first component of
the combination, i.e., the top horizontal list in Figure 1.12. The first column of the
table contains the values of the component that the list represents, and the second
column contains the reference to the table that models the respective list of the

1 Relational Technologies, Metadata and RDF 67

Fig. 1.12: One of the six triple-based indexing structures.

second component. The latter has also a two-column structure. The first column
contains the values of the second component in the combination. In each tuple of
that table, the second attribute is a reference pointer to a table materializing the list
with the respective values of the third component, i.e., thematerialization of the
vertical lists depicted in Figure 1.12.

Among the advantages of this scheme is its natural support for multi-valued prop-
erties, the lack of any need for nulls, and the reduced numberof I/O operations to
access the data of interest. The main limitation, however, is the space. Every value in
the triples is indexed twice. For instance, anobjectvalue of a triple is indexed by the
subject-predicate-objectand by thepredicate-subject-objectcombination structure.

The RDF-3X [31] system is following a similar approach for the management
of RDF data. RDF-3X is not based on relational technology. Ithas been built from
scratch, and is tailored specifically to RDF data. It stores RDF data as a list of triples,
as in the case of a vertical table (ref. Section 1.5.2), and builds on top of it a series of
specialized indexes for the various query operators. The list of triples, however, can
easily be stored in a relational database if needed. Like hexastore, it builds indexes
for all the six different permutations of the three dimensions that constitute an RDF
triple, but it goes beyond this by constructed additional indexes oven aggregation
operators on them. The constructed indexes can be compressed in an efficient way
and can lead into a space requirement that is less than the oneof the actual triple
data. Query answering in RDF-3X is also based on merge-join operators performed
over sorted index lists.

68 Yannis Velegrakis

1.6 Conclusion

The goal of this chapter was to explore the links between metadata management,
RDF and relational technologies. The first part introduced relational systems and
presented the main directions that have been followed in storing and querying meta-
data in such systems. The second part introduced RDF which isthe emerging stan-
dard for metadata representation on the web. It presented the rational of its introduc-
tion, the reasons for its success and its main modeling principles. It was recognized
that building native RDF solutions from scratch requires a lot of effort and under
the current rate that the web evolves, any delay is a luxury the community cannot
afford. Efficient and effective solutions are needed right now. The exploitation of the
relational technology appears as a promising option. Relational systems have been
around for decades. They are mature enough, easily accessing and offer great per-
formance and scalability. However, the different principles between the RDF and the
relational model makes the use of relational systems for RDFstorage and retrieval
a complicated task. We presented alternative schemes that have been proposed in
the scientific literature, and we have described the advantages and disadvantages of
each one. From the descriptions it is becoming clear that there is no such thing as
golden rule or best solution. Each technique is best suited for certain cases. The de-
cision on which technique one could use, highly depends on the characteristics of
the RDF data to be stored and the kind of queries that are to be asked.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Man-
agement Using Vertical Partitioning. In: Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 411–422 (2007)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
3. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On Storing Voluminous

RDF Descriptions: The Case of Web Portal Catalogs. In: Proceedings of the International
Workshop on the Web and Databases (WebDB), pp. 43–48 (2001)

4. Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: towards a benchmark for mapping sys-
tems. Proceedings of VLDB Journal1(1), 230–244 (2008)

5. Beckett, D.: The design and implementation of the RedlandRDF application framework.
Computer Networks39(5), 577–588 (2002)

6. Bernstein, P.A.: Repositories and Object Oriented Databases. ACM SIGMOD Record27(1),
88–96 (1998)

7. Bertino, E., Castano, S., Ferrari, E.: On specifying security policies for web documents with
an XML-based language. In: Proceedings of the Symposium on Access control Models and
Technologies (SACMAT), pp. 57–65 (2001)

8. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An Annotation Management System
for Relational Databases. In: Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp. 900–911 (2004)

9. Bohannon, P., Freire, J., Roy, P., Siméon, J.: From XML Schema to Relations: A Cost-Based
Approach to XML Storage. In: Proceedings of the International Conference on Data Engi-
neering (ICDE), pp. 64– (2002)

1 Relational Technologies, Metadata and RDF 69

10. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: AnArchitecture for Storin gand
Querying RDF Data and Schema Information. In: Proceedings of the Spinning the Semantic
Web Conference, pp. 197–222 (2003)

11. Buneman, P., Khanna, S., Tan, W.: On Propagation and Deletion of Annotations Through
Views. In: Proceedings of the Symposium on Principles of Database Systems (PODS), (2002)

12. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D.,Seaborne, A., Wilkinson, K.: Jena: im-
plementing the semantic web recommendations. In: Proceedings of the International World
Wide Web Conference (WWW), pp. 74–83 (2004)

13. Chawathe, S., Abiteboul, S., Widom, J.: Representing and Querying Changes in Semistruc-
tured Data. In: Proceedings of the International Conference on Data Engineering (ICDE), pp.
4–19 (1998)

14. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF Querying
Scheme. In: Proceedings of the International Conference onVery Large Data Bases (VLDB),
pp. 1216–1227 (2005)

15. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications of
ACM 13(6), 377–387 (1970)

16. Dasu, T., Johnson, T.: Exploratory Data Mining and Data Cleaning. Wiley Publishers (2003)
17. DeHaan, D., Toman, D., Consens, M.P.,Özsu, M.T.: A Comprehensive XQuery to SQL

Translation using Dynamic Interval Encoding. In: Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pp. 623–634 (2003)

18. Deutsch, A., Fernández, M.F., Suciu, D.: Storing Semistructured Data with STORED. In:
Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.
431–442 (1999)

19. Eisenberg, A., Melton, J., Kulkarni, K.G., Michels, J.E., Zemke, F.: SQL: 2003 has been
published. ACM SIGMOD Record33(1), 119–126 (2004)

20. Florescu, D., Kossmann, D.: A performance evaluation ofalternative mapping schemes for
storing XML in a relational database. Tech. rep., INRIA (1999)

21. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN:Annotating and querying databases
through colors and blocks. In: Proceedings of the International Conference on Data Engineer-
ing (ICDE) (2006)

22. Harris, S., Shadbolt, N.: SPARQL Query Processing with Conventional Relational Database
Systems. In: Proceedings of the International Conference on Web Information Systems En-
gineering (WISE), pp. 235–244 (2005)

23. Jarke, M., Gallersdorfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase - A Deductive Object
Base for Meta Data Management. Journal of Intelligent Information Systems4(2), 167–192
(1995)

24. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: XML-SQL Query Translation Literature:
The State of the Art and Open Problems. In: Proceedings of theXML Database Symposium
(XSym) , pp. 1–18 (2003)

25. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In: Pro-
ceedings of the International Conference on Very Large DataBases (VLDB), pp. 361–370
(2001)

26. Maier, D., Delcambre, L.M.L.: Superimposed Information for the Internet. In: International
Workshop on the Web and Databases (WebDB), pp. 1–9 (1999)

27. Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S.: A Path-based Relational RDF
Database. In: Proceedings of the Australasian Database Conference (ADC), pp. 95–103
(2005)

28. Mihaila, G., Raschid, L., Vidal, M.E.: Querying “Quality of Data” Metadata. In: Proceedings
of the IEEE META-DATA Conference (1999)

29. Microsoft support for XML. Http://msdn.microsoft.com/sqlxml
30. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.:Telos: Representing Knowledge

About Information Systems. ACM Transactions on Database Systems (TODS)8(4), 325–
362 (1990)

31. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine forRDF. Proceedings of VLDB
Journal1(1), 647–659 (2008)

70 Yannis Velegrakis

32. Neven, F., Bussche, J.V., Gucht, D.V., Vossen, G.: TypedQuery Languages for Databases
Containing Queries. In: Proceedings of the Symposium on Principles of Database Systems
(PODS), pp. 189–196 (1998)

33. Pan, Z., Heflin, J.: DLDB: Extending Relational Databases to Support Semantic Web Queries.
In: Proceedings of the International Workshop on Practicaland Scalable Semantic Systems
(PSSS), (2003)

34. Presa, A., Velegrakis, Y., Rizzolo, F., Bykau, S.: Modelling Associations through Intensional
Attributes. In: Proceedings of the International Conference on Conceptual Modeling (ER),
(2009)

35. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill (2007)
36. Rose, R., Frew, J.: Lineage Retrieval for Scientific DataProcessing: A Survey. ACM Com-

puting Surveys37(1), 1–28 (2005)
37. Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE Intelligent Sys-

tems21(3), 96–101 (2006)
38. Srivastava, D., Velegrakis, Y.: Intensional Associations between Data and Metadata. In: Pro-

ceedings of the ACM International Conference on Managementof Data (SIGMOD), pp. 401–
412 (2007)

39. Stonebraker, M., Anton, J., Hanson, E.N.: Extending a Database System with Procedures.
ACM Transactions on Database Systems (TODS)12(3), 350–376 (1987)

40. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang, C.: Storing
and querying ordered XML using a relational database system. In: Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pp. 204–215 (2002)

41. Velegrakis, Y., Miller, R.J., Mylopoulos, J.: Representing and Querying Data Transforma-
tions. In: Proceedings of the International Conference on Data Engineering (ICDE), pp.
81–92 (2005)

42. W3C: RDF vocabulary description language 1.0: RDF Schema (2004).
Http://www.w3.org/TR/rdf-schema/

43. W3C: Resource Description Framework (RDF) (2004). Http://www.w3.org/TR/rdf-concepts/
44. Wang, R., Reddy, M.P., Kon, H.B.: Toward Quality Data: anAttribute-based Approach13(3-

4), 349–372 (1995)
45. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data man-

agement. Proceedings of VLDB Journal1(1), 1008–1019 (2008)
46. Widom, J.: Trio: A System for Integrated Management of Data, Accuracy, and Lineage. In:

Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR), pp.
262–276 (2005)

47. Wyss, C.M., Robertson, E.L.: Relational languages for Metadata Integration. ACM Transac-
tions on Database Systems (TODS)30(2), 624–660 (2005)

48. IBM DB2 XML Extender. Http://www4.ibm.com/software/data/db2/extenders/xmlext.html
49. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based approach to stor-

age and retrieval of XML documents using relational databases. ACM Transactions on Inter-
net Technologies1(1), 110–141 (2001)

