
Entity Ranking Using Click-Log Information

Davide Mottin∗

University of Trento
mottin@disi.unitn.eu

Themis Palpanas
University of Trento
themis@disi.unitn.eu

Yannis Velegrakis
University of Trento
velgias@disi.unitn.eu

Abstract

Log information describing the items the users have selected from the
set of answers a query engine returns to their queries constitute an excel-
lent form of indirect user feedback that has been extensively used in the
web to improve the effectiveness of search engines.

In this work we study how the logs can be exploited to improve the
ranking of the results returned by an entity search engine. Entity search
engines are becoming more and more popular as the web is changing from
a web of documents into a “web of things”. We show that entity search
engines pose new challenges since their model is different than the one doc-
uments are based on. We present a novel framework for feature extraction
that is based on the notions of entity matching and attribute frequencies.
The extracted features are then used to train a ranking classifier.

We introduce different methods and metrics for ranking, we combine
them with existing traditional techniques and we study their performance
using real and synthetic data. The experiments show that our technique
provides better results in terms of accuracy.

Keywords: Entity Ranking, Click logs, Feature extraction, Ranking metrics

∗Corresponding author

1

1 Introduction

Existing web search engines have resorted to the exploitation of log files [28] in
order to improve the accuracy and relevance of their results. Log files provide an
excellent source of information not only about the queries the users are posing,
but also the answers these users consider as correct. Information Retrieval [22]
and machine learning techniques [25, 26, 27] have been extensively used to ana-
lyze the logs and build models that can predict the most prominent answers to
a given query, which can in turn be promoted to higher positions in the answer
set they belong. Since log files contain the list of results, the sessions and the
clicked documents we refer to them as click-logs.

Recently, we are witnessing an increasing interest in entity-based search and
retrieval [8]. This is a direct consequence of the observation that the web,
modeled today as a collection of documents, is not accurately reflecting the cog-
nitive model humans use when searching for some specific piece of information.
Humans are not thinking in terms of documents, but in terms of entities that
may be persons, locations, events, etc. This idea is gaining support in the web
search community [14] and is also one of the basic principles of dataspaces [17].
Furthermore, the semantic web community is interested in building the infras-
tructure that will transform the current web from a web of documents into a
web of objects, i.e., entities [38]. Entity search engines have already appeared
both in industry [42, 14, 47, 45], and in academia [9, 33], with major industrial
players like Microsoft’s Bing [34, 11], Yahoo! [44, 40], and Google [37], indicating
a strong interest.

Entity searching is fundamentally different from document searching [3, 7].
An entity is an artifact that models a real world object. It is typically uniquely
identified, and has a set of characteristics modeled as attribute name-value pairs.
As such, the attributes are defining the semantics of an object and have a much
stronger relationship between them, than what keywords in a document have.
A keyword in a document is typically an indication that the document is related
to the keyword but is is not easy to understand how it is related. For instance,
answering queries such as location=Lombardia in a document search engine
could be wrongly interpreted as documents containing the word location and
Lombardia and their synonyms. Although the search engines are now able to
perform semantic matching they cannot interpret this query as a request of the
user of a particular characteristic of an entity. Furthermore, a document may
contain reference to different entities, thus, the flat vector representation that
most search engines use to model documents does not suffice. An entity, on the
other hand, uniquely identifies, and represents in a compact way, a very specific
concept, e.g., a person, a place, or a fictional object.

A keyword query in an entity search engine is intended to specify the charac-
teristics of an entity. The search engines employ various techniques for similarity
searching to identify the entities that satisfy these characteristics as much as
possible, and rank them accordingly [16]. However, this selection may not re-
flect what the majority of the users are looking for. Ideally, the search engine
would take into consideration the user intentions and rank entities that have a

2

high popularity in higher positions in the result list. This is why they tried to
exploit other information such as query logs.

Although reranking approaches that use log analysis have been systemat-
ically studied in the context of document search engines, we claim that new
techniques are needed in the context of entity search engines, because of the
following reasons. First, documents are typically represented as a flat vector of
keywords, while the different attributes of an entity have more specific seman-
tics. For instance, matching the value of the attribute name for people plays a
much more important role than matching other attributes like the city or the
country. The above claim is also verified by the results of our experimental
evaluation with real data from an entity search engine (discussed in Section 7).
Second, in document search engines there is a set of relevant (i.e., correct) an-
swers to a query. In contrast, there is only a single entity that correctly answers
a query to an entity search engine. We do not consider retrieval queries, i.e.,
queries of the form “Give me all the persons in London”.

In this work, we present a novel approach for reranking results of entity-
based search engines. In this way, the proposed method improves the entity
identification. Our approach is based on the implicit feedback extracted by
analyzing the logs, and on machine learning techniques [13, 51]. To the best
of our knowledge, this is the first approach that has specifically been designed
to solve the problem of reranking entities. In contrast to existing log analysis
techniques that typically promote popular elements within the results, a major
novelty of our approach is that we go further and we can make predictions
even for undisclosed queries, by trying to reason about the motivations that
a user has selected an entity in an answer set. Furthermore, our approach is
independent of the matching technique used by the entity search engine, which
makes it applicable in almost every situation.

More specifically, we make the following contributions:

• we propose a novel method to solve the entity reranking problem cap-
turing interdependencies between entities in a result set alongside any
relationships among query keywords and entity attributes;

• we introduce effective approaches for extracting implicit user feedback
from the query logs of an entity search engine;

• we provide a new metric for evaluating the accuracy of the results with
respect to the most selected entities and the ranking of the entities in a
result set; and

• we experimentally validate the proposed approach using real datasets.

The remainder of the document is structured as follows: Section 2 provides
a motivating example that illustrates our goals. Section 3 makes an overview
of the scientific literature on topics related to our work and highlight our dif-
ferences. Section 4 provides a set of preliminary definitions and explanations,
alongside a formal definition of the problem we try to solve. Section 5 de-
scribes our solution, and Section 6 introduces evaluation metrics suitable for

3

e1:

�
�

�
�

Name: Milan
Latitude: 45.8534
Longitude: 10.875
Country: Italy

e2:

�

�

�

�
Name: Milan
ANSIname: Milan
Latitude: 45.4773
Longitude: 9.1815
Feature: populated place

e3:

�

�

�

�

Name: Milan
ANSIname: Milan
Latitude: 45.8534
Longitude: 10.875
Feature: 1st-order admin.

division seat

e4:

�
�

�
�

Name: Univ. of Milan
Homepage: www.unimi.it
City: Milano
Country: Italy

e5:

�

�

�

�

Name: Univ. of Milan
Tag: university
Domain: university
First sentence: The University of Milan is a university located in
Milan, Italy
OfficialName: Università di Milano

Figure 1: An answer set to the query Milan.

our problem. Section 7 presents our experimental results. Concluding remarks
and possible future directions can be found in Section 8.

2 Motivating example

Consider a user that submits the query Milan to an entity search engine. The
engine returns the five entities illustrated in Figure 1. The first entity represents
the province of Milan, the second its capital city, the third the administrative
division of Milan, the fourth the web page of the University of Milan, and the
fifth the actual University of Milan. The order in which the results are returned
reflects some internal algorithm of the search engine that we consider as a black-
box, since we do not care about it.

Assume now that by analyzing the log files, we observe that most of the times
that the query Milan was issued the users selected entity e2, some number of
times e3 was selected, and a few times e1 was selected, while entities e4 and e5

were never selected. Based on this information, it would have been desired to
rerank the result set by placing e2 first, then e3 and then e1.

What we are interested in, however, are the reasons that a user is actually
recognizing a specific entity and selects it. An entity is characterized by its
attributes. Thus, the attributes are those that allow the user to differentiate
among the entities in the result set. In our particular example of Figure 1, one
can see that all the entities have an attribute name with a value that matches
the query keyword, i.e., the value Milan This means that the attribute name
is not actually a distinguishing feature. The attributes longitude and latitude,
on the other hand, appear in all the three entities e1, e2 and e3 that have been
selected at least one, but do not appear in e4 or e5 that were never selected.

4

This means that the values of these two attribute may play some important
role in the user’s decision to select an entity from the answer set of the specific
query. The attribute country:Italy, on the other hand, does not match any
query keyword and it appears in both selected and unselected entities, thus, it
is not clear how much it can help as a discriminating feature.

Consider now the case in which the query Milan Province is executed on
the search engine for the first time. This means that the logs have actually no
information about any user intentions for this particular query. One could use
information retrieval techniques and count the number of times each attribute
is selected given a keyword. Unfortunately, this approach assumes attributes
(and as a consequence, entities) as independent, ignoring valuable information
about interconnections that entities may have based on their attributes and the
user selections. The existing logs for instance, as previously explained, indicate
that for the keyword Milan the attributes latitude, longitude and feature play
some important role. This information can be used to rerank the results of the
keyword query Milan Province.

Our challenging task is to develop a mechanism that, by analyzing the logs,
can build a model for reranking entities in the result set by taking into con-
sideration not only the popularity of attributes (as most information retrieval
techniques do), but also the interdependencies among the entities, and which
can actually use that knowledge even for queries not previously seen.

3 Related work

Ranking is a broad field of research in databases, information retrieval and the
web. It deals with methods of sorting the query results in a way that the highest
in the list is the one that more likely is the one for which the user was seeking.
Using click-log information to improve ranking is a well studied problem [25]
since it provides an implicit feedback on the accuracy of the results. They
typically use machine learning techniques to learn a click model or develop a
total order function that agrees with the user preferences. RankNet [5] is a
neural network for learning the ranking function using gradient descent. Cohen
et al. [13] proposed the Rank SVM method and demonstrated that the problem
is NP-complete. The major challenge in that work was to find a consistent set
of features that represents documents in a proper way. A similar challenge is
present in our setting and is one of the main focuses of our work, but in the
context of entities. Many of these approaches require a consistent training-set
of labeled instances. [51] proposed a method that uses click-logs as implicit
preference feedback (relative judgments), and for a large set of click-logs, it can
have similar success to the methods that use explicit labeling. Another boosting
algorithm has been described in [50], which is easier to train and implement,
and outperforms traditional ranking methods such as the Ranking SVMs [13],
the BM25 [36] and the RankBoost [19].

A number of extensions to the above idea have been proposed. One is
to use query sessions to improve accuracy [35]. Some have claimed that the

5

ranking is tightly coupled with the search method, but most search methods
are based on the relationship between the query and each document. This
leads to what is called, a local ranking. Considering the relationship among the
individual documents during search and retrieval leads to what is called a global
ranking [23]. Our work is independent of the search method and utilizes the logs
and the attributes of the entities in the result set to understand how they relate
to each other, leading that way into a global ranking. As a different perspective,
clustering has also been proposed to be applied on the click-logs [48], which can
lead into an identification of users or query categories and further assist the
search.

Another group of studies [22] involves the construction of user click models
that abstract the sequence of user selections in a web search. It introduces a
probability framework based on a Bayesian approach. The results show that the
method outperforms traditional models, such as the User Browsing Model [18]
and the Dependent Click Model [21].

The majority of the above works are centered around document ranking
and have not been studied in the context of entities. Our setting can be more
effective when applied on entity search engines by exploiting their characteristic
feature of consisting of attributes describing their properties. This allows us to
reason about names and values of these attributes, as well as their relationships
to the query and, last but not least, across entities. A document contains a set of
entities and so document ranking techniques intrinsically computes a matching
between the query and the words. We demonstrate that with entities there
exists better matching schemes that allow us to connect similar entities and
boost only the most relevant for the user.

In the area of Top-k query answering, finding and ranking entities within a
database has been studied [6], but on databases with fixed schemas, thus, the
kinds of attributes that the entities may have is limited. Text Retrieval [43] and
XML Retrieval [46] are two initiative for the discovering and ranking entities on
the web. Our method can be used on top of these techniques in order to exploit
log information and improve the ranking.

Certain IR techniques have been proposed to improve entity searching and
ranking [1] using click-logs. The main difference from our work is that entities
there are web documents and relationships among them are explicit through
hyperlinks. The EntityRank system [10], although it has goals similar to ours,
considers entities to be any recognizable unit within a document, and not a
structure containing a set of attributes. Click-log information has been used
also for ranking XML documents [30], however, the queries there are structured
queries, thus understanding the intended query semantics is not as challenging
as ours. Apart from the click logs, others [15] have also considered the use of
external knowledge, i.e., knowledge bases, to improve entity ranking.

6

4 Problem statement

We assume the existence of an infinite set of identifiers O, an infinite set of
names N and an infinite set of atomic values V. Let A=N×V be the set of all
possible attributes. An entity is a pair 〈i, A〉 where i∈O and A⊆A and finite.
We use E to refer to the infinite set of all possible entities.

A query is a finite set 〈k1, . . . , kn〉 with ki∈N∪V for i=1. . .n. A ranking
function, denoted as � is a total order on the elements of E . A list L⊆E is
ranked according to a ranking function �r, denoted as L�r , if pos(ei)≤pos(ej)
if and only if ei�rej , where ei,ej∈L and pos(e) denotes the position of entity e
in the list L.

A log entry is a triple 〈q, L�e , e〉, where q is a query, L�e is a list of entities
ranked according to a ranking function �e specified by the search engine, and
e∈L�e the entity that the user chose being the one he or she was looking for
when posing the query q. We stress the fact that e is the single correct answer
to q.

We will use the notation Lq to refer to all the log entries in a log that have
the same query q.

Problem. Given a set of log entries L, we need to build a model that will
allow us at run time, for a given query q, with L�e being the list returned by
the search engine for that query, to construct a ranked list L�r of entities such
that the entities in L�r are those in L�e and a ranking-quality f is maximized.

Note that the above problem definition is general, and does not assume any
particular ranking-quality function f . In this study, the objective is to rank the
correct answer for each query and user (remember that different users may look
for different answers when issuing the same query) as close as possible to the
top position.

5 Proposed approach

As a first step the log entries need to be converted into some mathematical
structure that can be consumed. Many approaches typically eliminate log entries
that fall outside a certain distribution [51]. This significantly reduces the size
of the logs and eliminates noisy data. We chose not to do so in order to be able
to test our approaches with the actual logs that typically include noise.

We represent the information from the logs to a given query q through a
vector. In particular, for a given answer to a query q, we construct a vector
whose length is the same as the number of entities in its answer set L�e . Recall
that for a given query q the list L�e is always the same. Different techniques
can be used to populate such a vector, the difficult part is to find meaningful
representation of the knowledge. One technique is to set the ith element of the
vector to value 1 if for the ith entity ei in L�e , there is a log entry 〈q, L�e , ei〉,
i.e., the entity ei has been selected at least once. All the remaining entries in

7

the vector are set to 0. We refer to this technique as Sel. The Sel technique is
easily implementable but does not offer a fine-grained distinction based on the
number of times an entity has been selected as opposed to the other entities in
the result set.

A second technique that achieves such a distinction is to set the value of each
position in the vector to the selected probability P (Ci = 1), i.e., the probability
that the respective entity in the result list has been selected. Such a probability
is easily calculated by the log entries. In particular, for a given query q with
an answer set L�e , the ith position of the vector is assigned the value

cei
ctotal

,

where ei is the element in the ith position in the list L�e , cei is the number
of log entries that are about the query q and for which the element ei is the
one selected, while ctotal is the number of log entries related to the query q in
general. We refer to this technique as the SelProb.

Finally, a third technique is to set to 1 only the vector value that corresponds
to the most selected entity. We refer to this technique as the Sel1. All three
feedback extraction techniques are illustrated in Figure 2.

Figure 2: Feedback extraction methods.

We use a classifier in order to model the user behavior. To use a classifier
we need to represent the information in the logs through features. Before de-
scribing these features, let us make a short introduction to the classifier. We
use SVMRank [25], but other classifiers can also be used. SVMRank is a special
SVM that learns ranking functions.

Given the results of the query engine and the logs, we need to quantify how
related an entity e is to a query q. We denote this relevance as rel(e, q), and
compute it as

rel(e, q) = w · Φ(e, q)

where w is a vector and Φ is a function generating a feature vector. SVM will
learn the vector w, subject to certain constraints. In particular, if ej � ei, then
it should hold that rel(ej , q)≤rel(ei, q), which means that

w · Φ(ej , q) < w · Φ(ei, q)

To allow some of the preference constraints to be violated, as is typically done
in SVM classifications, a margin and non-negative slack variables are added.

8

This brings the preference constraint to the form

w · Φ(ei, q) ≥ w · Φ(ej , q) + 1− ξij

Although we cannot efficiently find a w that minimizes the number of vio-
lated constraints, we can minimize the upper bound for it, i.e.,

∑
ξij .

To maximize the SVM margin the following convex quadratic optimization
problem needs to be solved:

minw,ξij
1
2w · w + C

∑
ij ξij

subject to: w · Φ(ei, q) ≥ w · Φ(ej , q) + 1− ξij
and ξij≥0, ∀q, i, j

Our goal is to propose a proper feature vector Φ. To improve the performance
of SVM, the feature vectors are normalized to a vector Φ̂ with Euclidean distance
1 using the formula:

Φ̂ =
Φ

‖Φ‖
In existing work [23, 51, 35] related to document retrieval, a feature vector

Φ, encapsulating the information about the query and the document charac-
teristics, is typically composed by the concatenation of three kinds of smaller
vectors. The first is a vector describing features of the query only independently
of the documents. The second kind is a vector describing features of the docu-
ment, independently of what the query is, and finally, the third kind is a vector
consisting of document features related to the query.

Unfortunately, such a model is not sufficient for our case, where it is desired
to represent relationships among the entity attributes, needed to model the
relationship across entities in the same query set, and among entity attributes
and the query, needed to model the importance of each attribute for the given
query. Thus, we present three new ways of constructing the feature vectors for
our case.

5.1 Entity Set Comparison

The first method is based on the idea that entities can be seen as sets of at-
tribute name-value pairs. Doing so, we can exploit set properties to model the
relationship between the query terms and the attributes of the entities in the
same result list, as well as the relationship among the attributes of these enti-
ties. These sets are then transformed into features. We create a feature vector
for every query q in the logs.

Since an entity attribute consists of a name and a value, a keyword in a
query may match the name or the value. Assume a query q=〈k1, k2, . . . kn〉,
and L�e the list of elements returned by the query engine. We define the query
matching set for every entity e∈L�e as:

QMq
e = {(n, v)|n : v attribute of e ∧ v ' k ∧ k ∈ q}

To compare the attributes of an entity to the attributes of all the other
entities we need to consider how their names and values match. Given two

9

attributes (n1, v1) and (n2, v2), we define four cases on the way they can be
related:

1. not matching: n1 ' n2 and v1 6= v2

2. imperfect matching: n1 6= n2 and v1 ' v2

3. perfect matching: n1 ' n2 and v1 ' v2

4. incomparable: n1 6= n2 and v1 6= v2

Note that the equality between two values (') here is not necessarily strict
equality. It may be substring matching, or any other form of matching desired.
In all our experiments we employ the traditional JaroWinkler [49] matching
scheme. The choice of the measure is dependent to the data. Thus we do not
specifically address this problem in this work.

Based on the above, for each entity e in the answer set L�e of every query
q=〈k1, k2, . . . , kn〉 in the logs we further define the following four sets:

PMq
e=

(n, v)|n ' ni, v ' vi s.t. (ni, vi) ∈
⋃

ej∈Lq,ej 6=e

ej


IMq

e=

(n, v)|n 6= ni, v ' vi s.t. (ni, vi) ∈
⋃

ej∈Lq,ej 6=e

ej


NMq

e=

(n, v)|n ' ni, v 6= vi s.t. (ni, vi) ∈
⋃

ej∈Lq,ej 6=e

ej


Iqe=

(n, v)|n 6= ni, v 6= vi s.t. (ni, vi) ∈
⋃

ej∈Lq,ej 6=e

ej


Computing these sets requires O(nv) time, where n is the number of different

attribute names and v the number of different attribute values in the set of
entities in the query result. However, experimental results demonstrate that,
since n�v, the time to produces such features is reasonable. An important
property of the above sets is the completeness of the knowledge expressed by
them. In particular:

PMq
e ∪ IMq

e ∪NMq
e ∪ Iqe = e

Example 1. Suppose that a user poses the query Milano to the search en-
gine and the search engine responds with a list that contains two entities.
e1:(name : Milano, country : Italy, zipcode : 20121, population : 1321113)
and e2:(name : Luca, lastname : Milano, country : Italy), from which the
user selects the first one. The keyword Milano in the query matches only
the attribute value of the name attribute in e1 and of the lastname in e2.
Thus, QMq

e1 = {(name,Milano)} and QMq
e2 = {(lastname,Milano)}. Fur-

thermore, PMq
e1 = {(country,Milano)}, IMq

e1 = {(name,Milano)}, NMq
e1 =

10

{(name,Milano)} and Iqe1 = {(zipcode, 20121), (population,
1321113)}.

We create a feature vector Φe,q, for every pair of query q in the logs and
entity e in the answer set L�e of the query q. Let n1, . . ., nk be the set of all
the attribute names of the attributes in the entities within the whole result set
L�e . The vector Φe,q has the form:

Φe,q =


φ(n1, e, q)
φ(n2, e, q)

...
φ(nk, e, q)


Each of the φ(n, e, q) is a block of five single-value rows, constructed as follows:

φ(n, e, q) =


1 if (n, v) ∈ QMq

e else 0
1 if (n, v) ∈ PMq

e else 0
1 if (n, v) ∈ IMq

e else 0
1 if (n, v) ∈ NMq

e else 0
1 if (n, v) ∈ Iqe else 0


Note that in the above specification of φ(n, e, q), the value v of the attribute
can be whatever, i.e., it is enough one (any) attribute with the name n in the
respective set to satisfy the condition.

We refer to this method of generating the feature vector as Full. As an
alternative, one can ignore the name matching and produce only three sets out
of the five mentioned earlier. These three sets will be the QMq

e as before, but
instead of the four others, one set Mq

e = PMq
e ∪ IMq

e is created for modeling
the matching values, and one NNq

e = NMq
e ∪ Iqe for those not matching. We

refer to this approach as Simple.

5.2 Entity Centric IR (ECIR)

Instead of using features purely based on the entity structure as was previously
described, one can use traditional IR techniques but adapted to the case of
entities. In particular, in each entity we consider what is called the title part,
which are attributes of major identification importance, like name, title, last
name, etc [4]. We also consider the entity content as the set of all the values of
its attributes, and the entity as a whole, consisting of all the attributes names
and values. Having done so, traditional IR techniques [31] can be applied to
analyze the logs and build a feature vector.

The feature vectors consist of features in three main categories, 24 features in
total. The first category is about query features and includes the query length,
the number of query keywords, the IDF feature values, the IDF titles and the
IDF feature names and values. The second category is about entity features and
includes the number of words in the values, the number of words in titles, the

11

number of words in attribute names and values, the number of attributes, the
number of numeric attributes, whether the entity is a person, whether it is a an
organization, a place or something else [4]. The last category contains features
related to the relationship between the entity and the query. These features are
the TF-IDF score, the BM25 score and the sum of TF for the values [32], the
titles, and the remaining attributes as a whole. All the features are summarized
in Table 1.

Query features Entity features Query-entity features
query length number of words titles tf-idf titles
number of keywords word number content tf-idf content
average keywords length word number whole entity tf-idf whole entity
idf titles attribute number BM25 titles
idf content numeric attributes number BM25 content
idf whole entity is a person BM25 whole entity

is an organization sum of tf titles
is a place sum of tf content
is other sum of tf whole

Table 1: Feature descriptions for ECIR method.

5.3 Induced popularity (IP)

A third alternative is to measure the popularity of each attribute by analyzing
the logs and then using this information as a base for the entity ranking. For
instance, consider two entities that represent two persons, both called Jordan,
but the first is a basketball player while the second is a clerk. Knowing that
the first entity is more popular, one can conclude that the job=basketball

player is more popular than the job=clerk. We refer to this idea as induced
popularity.

To build features out of this notion one can select a threshold and look at the
number of popular attributes above a specific threshold T , characterizing the
number of times that an attribute has to be selected in order to be considered
popular. In this way an attribute is defined as popular if in the logs it has been
selected at least T times.

The number of popular attributes following this diverse notion of popularity
is the value of the feature we add to the example set in the classifier. We
propose two different configurations: the first is taking into account only selected
entities, while the second considers also attributes of non-selected entities. In the
experiments, we refer to them as SIP (Selected Induced Popularity) and N/SIP
(Non-Selected / Selected Induced Popularity), and we consider four different
thresholds (3, 5, 7, and 9).

12

5.4 Traditional IR

Apart from the above three methods that we propose, the entities can be seen as
documents, hence, traditional IR techniques can be used. Of course, not all the
IR techniques are applicable. For instance, the page-rank or other URL-related
features are not applicable. However, the vast majority of the existing tech-
niques could be used. More specifically, we implemented the features described
in Microsoft Learning to Rank benchmark [31]. From that list we extract a total
of 23 features.

6 Evaluation Measures

6.1 IR Measures

There is a number of different document ranking evaluation techniques. Among
them, the MAP and the NDCG are widely used [2, 29, 50].

The NDCG measures the distance between a re-ranking and an optimal
ranking obtained by reordering the results according to relevance judgment that
is provided as ground truth. Evidently, NDCG cannot be directly applied in
our setting, where we only have a single correct answer (not a set of relevant
answers with a varying degree of relevance).

The other classical metric in the document ranking literature is MAP. In that
context, results are classified as relevant or irrelevant (with respect to the given
query), and the final ranking is considered good when all relevant results are in
the top positions, irrespective of the relative order of these relevant results.

MAP is defined as the mean of the average precision scores for a query. Let
L�r be a ranked list of entities, and R ⊆ L�r the subset of entities which are
relevant. The average precision score is defined as:

MAP (L�r) =
1

|R|
∑
ei∈R

Prec(pos(ei)), (1)

where Prec(i) is the number of relevant entities in the first i positions, divided
by i. The final MAP score is obtained by summing together the MAP of each
query divided by the number of queries.

Example 2. Consider an original ranking that includes entities e1, selected
once, and e2, selected five times, and assume the two possible final rankings
depicted below.

original ranking
1 2 3

e1 : 1 e2 : 5 . . .

final ranking A
1 2
e1 e2 . . .

final ranking B
1 2
e2 e1 . . .

In the case of final ranking A, MAP is 1 since the two relevant entities are in
the top positions of the result list. However, our intuition says that this ranking

13

is not perfect, because e1 is way less preferred than e2, and should therefore
be ranked second. This is the situation in final ranking B, which is of higher
quality. Nevertheless, the MAP value is the same as before.

6.2 Average Entity Precision (AEP)

The example above, illustrates the deficiency of MAP in our problem setting,
i.e., the fact that it cannot differentiate among rankings that may have different
quality, because it treats all relevant (i.e., selected) entities equally. In the
problem we consider though, there is only one relevant result for each query.

In order to remedy this situation, we introduce AEP, which measures the
mean precision among references of the same query. In doing so, AEP includes
in the computation the user selections (i.e., how many times each entity is
selected), and additionally uses the rank positions of the entities as weights.
AEP is formally defined as follows.

AEPq =
1

|Lq|
∑

(q,L,e)∈Lq

1

posL(e)
, (2)

where posL(e) is a shorthand notation that represents the position of entity
e in L.

Example 3. Continuing the previous example, the value of AEP for final
ranking A is 0.58, while for B becomes 0.92. This result is intuitive, since it
more accurately captures the user selections.

7 Experimental Evaluation

In this section, we present the results of the experimental evaluation of the
proposed approach, compared to the original ranking and to traditional IR
techniques used in the document re-ranking literature. In all cases, we evaluate
the performance of the algorithms using 10-fold cross validation.

We used the SVMLight∗ implementation of SVMRank [24], which is a widely
used ranking SVM classifier. Regarding the choice of a string similarity method
(used by the Simple and Full methods), we tested several alternatives (perfect
equality, Levenstein distance, SoftTFIDF, JaroWinkler) [12], and decided to use
the JaroWinkler.

All algorithms were coded in Java 1.6, and run in i686 Intel(R) Xeon(R)
CPU X3220 2.40GHz machine with 4Gb of main memory.

We have designed all experiments such that they are reproducible. To this
end, we have built a webpage [41], which contains all datasets and code used in
this work.

∗ http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

14

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Dataset Log entries Dist. queries Avg sel. ent. Max sel. ent.
D-Okkam 2,321 116 3.2 7
D-Top 3,934 2,199 1.8 5
D-Mid 3,791 2,272 1.7 4
D-Low 3,697 2,281 1.6 4

Table 2: Characteristics of the datasets.

7.1 Datasets

In the following paragraphs we describe in detail the datasets we used in our
evaluation. Their characteristics are summarized in Table 2.

7.1.1 D-Okkam datasets

We obtained a real dataset, D-Okkam, by observing the behavior of users when
interacting with the OKKAM [33] entity search engine. The system allows users
to search for a named entity, and to select the correct entity from the result list.
We logged the queries (drawn from a restricted list), search engine result lists,
and selected entities for a period of one month. We gathered 2, 321 log entries
from 129 distinct users, corresponding to 116 different queries.

Figure 3(a) depicts the distribution of the position in the result list of the
entities selected by the users. We note that for the majority of the queries
different users were selecting different entities as the correct answer (indicating
the different search goals of the users), with an average of 3 (max=7) selected
entities per query.

7.1.2 D-Top, D-Mid, D-Low datasets

In order to evaluate our techniques on datasets with different characteristics, as
well as to test their time performance, we generated datasets based on real data
as follows.

We had in our disposal a query log from Microsoft MSN search engine, from
which we randomly extracted 5, 370 queries on distinct named entities. These
queries were later manually matched against the entities stored in OKKAM,
producing for each query a set of relevant entities that included the correct
entities (remember that we may have more than one when aggregating the be-
havior of many users), as well. We removed queries that shared at least one
selected entity, so as to be sure that in our experiments the classifier is prop-
erly generalizing and not simply learning how to rank the same set of entities.
Then, we generated three datasets, D-Top, D-Mid and D-Low, by randomly
shuffling the answer set of a query, thus, producing a corresponding result list
that included the correct entities. These datasets measured 2, 250 queries and
3, 850 log entries on average.

The D-Top dataset simulates a situation where the correct entities are al-
ready listed in the top positions of the result list, following a Zipfian distribution

15

from position 2 (Figure 3(b)). This is the hardest case for our techniques, since
there is little room for improving these result lists. The D-Mid and D-Low
simulate the cases when most of the correct entities are listed in the middle (fol-
lowing a Gaussian with µ = 9, σ2 = 1) and bottom (following a Gaussian with
µ = 19, σ2 = 1) positions of the result lists. The two distributions are depicted
in Figures 3(c) and 3(d), respectively. (These graphs show that some correct
entities are still ranked in the top positions: this happens when the result list
only contains 2 − 3 entities.) The D-Top, D-Mid and D-Low datasets, too,
have an average of 2 (max=5) selected entities per query.

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

%" &" '" (" $")" *" +" ," %!
"

%%
"

%&
"

%'
"

%(
"

%$
"

%)
"

%*
"

%+
"

%,
"

&!
"

!
"#

$%
&'
&

()*+,)-&

(a)

!"
!#!$"
!#%"

!#%$"
!#&"

!#&$"
!#'"

!#'$"
!#("

%" &" '" (" $")" *" +" ," %!
"

%%
"

%&
"

%'
"

%(
"

%$
"

%)
"

%*
"

%+
"

%,
"

&!
"

!
"#

$%
&'
&

()*+,)-&

(b)

!"
!#!$"
!#%"

!#%$"
!#&"

!#&$"
!#'"

!#'$"
!#("

%" &" '" (" $")" *" +" ," %!
"

%%
"

%&
"

%'
"

%(
"

%$
"

%)
"

%*
"

%+
"

%,
"

&!
"

!
"#

$%
&'
&

()*+,)-&

(c)

!"
!#!$"
!#%"

!#%$"
!#&"

!#&$"
!#'"

!#'$"
!#("

%" &" '" (" $")" *" +" ," %!
"

%%
"

%&
"

%'
"

%(
"

%$
"

%)
"

%*
"

%+
"

%,
"

&!
"

!
"#

$%
&'
&

()*+,)-&

(d)

Figure 3: Click distribution of datasets (left to right): D-Okkam, D-Top,
D-Mid, D-Low.

7.2 Ranking Quality

We evaluated our methods with the MAP and AEP measures, using different
feedback extraction strategies and different sets of features for the classification
model (refer to Section 5). We also propose and evaluate hybrid feature schemas
that combine different techniques. The resulting feature vectors are obtained
training the classifier on features computed using two different base-methods.
In particular, we compare the following approaches (introduced in Section 5).

16

Sel SelProb

MAP AEP MAP AEP

Original 0.398 0.333 0.398 0.333
Traditional IR 0.754 0.671 0.754 0.671
Simple 0.712 0.633 0.712 0.633
Full 0.712 0.633 0.712 0.633
ECIR 0.757 0.672 0.757 0.672
Simple + ECIR 0.717 0.630 0.717 0.630
Full + ECIR 0.717 0.630 0.717 0.630
ECIR + SIP 0.805 0.709 0.804 0.708
ECIR + N/SIP 0.806 0.709 0.806 0.710
Simple + SIP 0.813 0.716 0.811 0.715
Simple + N/SIP 0.813 0.717 0.811 0.715
Full + SIP 0.810 0.715 0.815 0.718
Full + N/SIP 0.813 0.716 0.811 0.715

Table 3: Results for D-Top.

Simple and Full, ECIR, and combinations of the above among themselves and
with IP methods, namely SIP and N/SIP. We also compare against Traditional
IR, a classifier using traditional IR features. The baseline is Original, which
represents the original result list produced by the search engine.

The experimental results are grouped according to the method used. Due to
lack of space, we do not report results for the Sel1 feedback extraction strategy,
because it either leads to small improvements, or no improvements at all. Its
low performance is explained by the fact that it contains partial information,
only storing the single most selected correct entity and discarding all the rest,
which in our case turns out to be a suboptimal strategy.

We first report results on the datasets shown in Tables 3, 4 and 5, for D-Top,
D-Mid, and D-Low, respectively. We mark with bold the best improvement
over Original. We also performed a two-tailed t-test to establish statistically
significant values. The test showed that all measurements are statistically sig-
nificant with a p-value ≤ 0.001.

The results show that in all cases the classifier produces accurate ranking
functions, able to reorder the query results in a proper way. For all three
datasets, the proposed approaches are able to correctly reorder the entity result
lists, achieving improvements (over the original ranking) for both MAP and
AEP of up to more than 4 times for D-Low. As expected, the improvements
are less pronounced for the other two datasets, but there is still a significant
improvement of up to more than 2 times for D-Top. When compared to Tra-
ditional IR, the proposed techniques achieve results that are 4% (D-Low) to
18% (D-Mid) better.

For these datasets, we observe that ECIR performs similarly to Traditional
IR. In contrast, the IP-based features help the classifier achieve better perfor-
mance, achieving the best results in combination with Simple and Full, closely
followed by ECIR.

17

Sel SelProb

MAP AEP MAP AEP

Original 0.214 0.176 0.214 0.176
Traditional IR 0.794 0.720 0.816 0.740
Simple 0.695 0.633 0.695 0.633
Full 0.695 0.633 0.695 0.633
ECIR 0.803 0.725 0.803 0.725
Simple + ECIR 0.717 0.641 0.717 0.641
Full + ECIR 0.717 0.641 0.717 0.641
ECIR + SIP 0.925 0.796 0.924 0.795
ECIR + N/SIP 0.923 0.795 0.924 0.796
Simple + SIP 0.933 0.803 0.931 0.802
Simple + N/SIP 0.932 0.802 0.932 0.802
Full + SIP 0.931 0.801 0.932 0.802
Full + N/SIP 0.930 0.801 0.931 0.801

Table 4: Results for D-Mid.

Table 6 summarizes the results for the D-Okkam dataset. In this table,
we mark with an asterisk the values that are not statistically significant, i.e.,
having p-value > 0.05. By analyzing Table 6, we observe that the proposed
approach results in improved rankings (overall). Moreover, we note that in some
cases, these improvements are significant. In particular, we achieve the best
performances with Simple + N/SIP and Full + SIP, with an improvement in
AEP of 26% and 18%, respectively, with respect to Original. In general, Induced
Popularity methods perform better than the rest. Traditional IR features, on
the other hand, do not have a good performance: they worsen the results for
MAP, and only modestly improve the AEP measure. Although Simple and Full
methods, achieve the worse results in MAP, a more accurate analysis revealed
that for small datasets like D-Okkam these methods tend to produce high
variability in MAP. However, they achieve good performance in conjunction
with other techniques such as Induced Popularity.

We notice that several of the MAP values are not statistically significant.
A closer look at the data shows that there is a high variability in the observed
results, which is not the case for AEP. The reason is that MAP does not dis-
tinguish among the selected entities (see discussion in Section 6), while AEP is
a measure that focuses on the most selected of the correct entities, which the
results demonstrate that are consistently pushed higher in the final ranking.

The results validate the observations we made with the bigger data (even
though the improvements are smaller), that the hybrid techniques achieve the
best results, especially those that use the IP-based features. Though, we note
that in this dataset Traditional IR performs worse than ECIR, which is an indi-
cation that Traditional IR is less suitable for entity ranking than our proposed
techniques. In summary, we can say that with the proposed approach the users
are (on average) indeed experiencing a better performance of the search engine.

Overall, our experimental evaluation shows that the proposed techniques

18

Sel SelProb

MAP AEP MAP AEP

Original 0.179 0.154 0.179 0.154
Traditional IR 0.914 0.794 0.914 0.794
Simple 0.682 0.630 0.682 0.630
Full 0.682 0.630 0.682 0.630
ECIR 0.907 0.789 0.907 0.789
Simple + ECIR 0.789 0.677 0.789 0.677
Full + ECIR 0.789 0.677 0.789 0.677
ECIR + SIP 0.947 0.818 0.947 0.818
ECIR + N/SIP 0.946 0.817 0.947 0.817
Simple + SIP 0.950 0.821 0.949 0.820
Simple + N/SIP 0.950 0.821 0.949 0.820
Full + SIP 0.950 0.821 0.951 0.822
Full + N/SIP 0.948 0.820 0.948 0.819

Table 5: Results for D-Low.

result in better performance when compared to the traditional IR approach,
because they are in a position to exploit the unique features that entities have.
The hybrid techniques that use the IP-based features achieve the best results,
but when considering time performance (Section 7.4), as well, two of these
hybrid techniques, Simple+N/SIP and Full+SIP, are the methods of choice.
These two techniques achieve the best results (or are very close to the best)
across different feedback methods and datasets for all the cases we evaluated in
our experiments.

Regarding the feedback extraction method, it seems that there is significant
difference between Sel and SelProb. We are currently collecting a larger real
dataset, which will further help showcase the differences among the proposed
techniques.

7.3 Classification Model

In this section, we make some observations on the classification model, based on
our experimental results. As we discussed in Section 5, the classification model
we use in this study is linear, and the model representation is a weight vector
w. Features with positive weight affect the ranking in a positive way, while a
negative weight means a negative impact of the feature for the final rank. This
analysis refers to the D-Okkam dataset and SelProb feedback method (similar
results hold for Sel), and in the next paragraph we briefly present some of the
most important findings. Table 7 presents a summary of the main positive and
negative feature weights for the most significant methods.

Our analysis shows that Traditional IR is mostly affected by the term fre-
quency and the BM25, while ECIR is positively affected by the number of at-
tributes and the number of characters of the entity. In both cases, the number
of covered terms has a negative impact on the classifier.

19

Sel SelProb

MAP AEP MAP AEP

Original 0.661 0.442 0.661 0.442
Traditional IR 0.641 0.478* 0.627 0.465*
Simple 0.580 0.505* 0.585 0.514*
Full 0.618 0.451* 0.623 0.438*
ECIR 0.677* 0.514 0.701* 0.526
Simple + ECIR 0.680* 0.458 0.680* 0.462
Full + ECIR 0.652* 0.498 0.680 0.462
ECIR + SIP 0.656* 0.486 0.659* 0.496
ECIR + N/SIP 0.662* 0.504 0.675* 0.525
Simple + SIP 0.665* 0.517 0.667* 0.543
Simple + N/SIP 0.677* 0.555 0.664* 0.543
Full + SIP 0.671* 0.520 0.668* 0.547
Full + N/SIP 0.668* 0.494 0.667* 0.545

Table 6: Results for D-Okkam.

Traditional IR weight
Normalized Min tf 0.48
Max tf-idf 0.45
Covered term ratio -1.19
Covered term -1.19

ECIR weight
Number of attrs 0.80
BM25 of values 0.46
Title length -0.88
Keywords in attrs -1.85

Simple + ECIR weight
Entity Size 4.41
Keywords in attrs 2.53
Title length -0.97
Number of # attrs -1.58

ECIR + N/SIP weight
Popular attrs (thr 3) 0.39
BM25 titles 0.34
Title length -0.39
Unpop. attrs (thr 3) -0.53

Simple + N/SIP weight
Legal name QM 2.03
Org. name QM 1.62
Middle name QM -1.16
Country QM -1.35

Full + SIP weight
Incountry QM 2.57
Legal name QM 2.12
Country QM -1.08
Middle name QM -1.12

Table 7: Main positive and negative feature weights.

In contrast, hybrid combinations of ECIR and the other methods are strongly
affected by the size of the entity and the number of query keywords in the
attribute values. Interestingly, the idf of the values and the number of nu-
meric attributes have negative weights. In addition, it is worth noting that for
Full+ECIR and Simple+ECIR the models are almost the same, and the set
comparison features do not affect the classification task in a significant way.
On the contrary, even though popularity-based features decisively contribute
to improving the precision of the models, we observed that the winner meth-
ods, i.e. Simple+N/SIP and Full+SIP, are positively influenced by both the
popularity-based features and the attribute features.

We additionally report an analysis of the correlations between pairs of fea-
tures. From a statistical perspective, uncorrelated features are more likely to
bring new information for the classification task. On the other hand, a strong
correlation with another feature is a signal of redundancy and so feature reduc-
tion techniques, such as principal component analysis [20], can be carried out in
order to reduce the dimensionality and the complexity of the model. Below we
report as correlation measure the Spearman rank coefficient [39], which com-

20

putes the correlation among ranked variables. We tested all the pairs with a
t-test and the null hypothesis of non-correlation, and we report the top-6 cor-
related features in Tables 8 and 9. All reported correlations are statistically
significant.

Table 8 shows the top-6 highly correlated and non-correlated pairs for the
Simple + N/SIP and Full + SIP methods. One of the top correlations is
between the features “Homeunitn QM” and “Fullname M” (refer to section 5.1
for the definition of QM and M) that correspond to the webpage of the University
of Trento and the name of a person. This correlation is explained by the fact that
the webpage of the university contains the names of its employees. Similarly, the
popularity features, i.e. “Selected ≥ 9” and “Selected ≥ 7” (where 7 and 9 are
the thresholds introduced in Section 5.3), are strongly correlated. On the other
hand, semantically different attributes, such as “Longitude” and “Population”,
are not correlated. We note that the “Incountry” attribute in Full + SIP,
which is the most influential (as discussed earlier) attribute in the model, is also
correlated with other attributes. As expected, the popularity based features are
not correlated with anyone of the entity-set features. For this reason, popularity
based features are important for the classification task, and this motivates the
good results of the Simple + N/SIP and Full + SIP methods.

To compare our approach to the IR approaches, we list in Table 9 the top-6
highly correlated and non-correlated features for the Traditional IR and ECIR
methods. Unsurprisingly, we notice a strong correlation between idf, tf-idf (and
also their normalized versions). The Traditional IR approach presents several
redundancies in the features, e.g., in the aggregated scores sum and mean (in
order to compute the mean we have to first compute the sum). On the other
hand, the number of covered terms, i.e., the number of terms in the entity that
are also query keywords, are unrelated to most of the IR metrics, such as tf-idf
and idf. It is interesting to note that the top-6 correlated ECIR features exhibit
correlations that are weaker than the corresponding top-6 features of Traditional
IR. This observation explains why ECIR performs better than Traditional IR,
since ECIR uses more informative features. Finally, naturally correlated scores
(e.g., idf and tf-idf) are uncorrelated with respect to different parts of the entity
(i.e. titles vs values) validating the claim that entities cannot be treated as
documents.

The above results highlight characteristics of the features that may be useful
in order to further improve the classification model. A detailed study of how to
best integrate this knowledge in our method is part of our future work.

7.4 Time Performance

In order to measure the time performance, we created five new datasets with
different number of queries, namely 1k, 5k, 10k, 25k and 50k (by repetidly
sampling from D-Top). In Figure 4 we report the time needed for the prepro-
cessing and classifier model learning tasks. We note that the results are simply
indicative of the trends, and the absolute times can be significantly reduced by
optimizing and parallelizing the operations.

21

Simple + N/SIP
Feature 1 Feature 2 Corr.
Homeunitn QM Fullname M 0.999
Fullname QM Fullname M 0.999
Faculty NN University NN 0.999
Selected ≥ 9 Selected ≥ 7 0.999
Created By M Is Part of M 0.999
Is part-of M Category M 0.999
Unselected ≥ 9 Occupation NN 0.0007
Domain NN Found. Date M 0.002
Longitude NN Population M –0.003
Birthdate NN Unselected ≥ -0.004
Domain QM Legal name M -0.004
University QM University NN -0.005

Full + SIP
Feature 1 Feature 2 Corr.
Incountry NM Name NM 0.999
Name NM Longitude NM 0.999
Longitude NM Latitude NM 0.999
Latitude NM Country Code NM 0.999
Country code NM Attribution NM 0.999
Longitude NM Latitude NM 0.999
Unselected ≥9 Occupation I 0.0007
Last name M Empoyer QM 0.001
Domain I Found. date M 0.002
Longitude I Population M 0.003
Birthdate I Unselected ≥5 -0.004
Domain QM Legal name M -0.004

Table 8: Top-6 correlated and non-correlated features in Simple + N/SIP (left)
and Full + SIP (right) methods.

Traditional IR
Feature 1 Feature 2 Corr.
Sum tf-idf Mean tf-idf 1
Covered term Covered term % 1
Norm. mean tf-idf Norm. sum tf-idf 1
Sum tf Mean tf 0.999
Sum tf Max tf 0.970
Mean tf Max tf 0.969
Min tf-idf BM25 -0.007
Covered term idf 0.009
Covered term % idf 0.009
Covered term % Variance tf 0.010
Covered term Variance tf 0.010
Covered term Max tf-idf 0.014

ECIR
Feature 1 Feature 2 Corr.
idf values idf entity 1
BM25 entity BM25 values 0.993
Values length Entity length 0.981
tf entity tf values 0.949
tf-idf values tf-idf entity 0.948
BM25 titles tf titles 0.865
idf values tf-idf entity -0.0001
idf entity tf-idf entity -0.0001
query length tf entity -0.0003
BM25 values tf-idf titles -0.0006
is-place avg key len. -0.002
values length tf values -0.002

Table 9: Top-6 correlated and non-correlated features in Traditional IR (left)
and ECIR (right) methods.

Preprocessing involves the computation of the set of features. The results
(refer to Table 10) show that the required time is 0.5 sec/query for Simple and
Full, and up to 2 sec/query for the IR-based techniques. ECIR is the slowest,
due to the computation-intensive feature set it involves. Learning is a task whose
time requirements depend on the type of classifier we choose (quadratic for the
SVM in our case). Figure 4 depicts the time needed for SVM to learn models for
some of the proposed methods. The graph shows that the proposed techniques
require more time to learn than Traditional IR. We plan to investigate this issue
further, in order to render the models of the proposed techniques easier to learn.

Finally, ranking time is the time needed to compute the final weights using
the model produced by the SVM. Since we employ a linear model that can easily
fit in main memory, this time is negligible.

8 Conclusions

This work tackled the problem of reordering a list of entities retrieved by an
entity search-engine, based on the extraction of implicit feedback from click-logs.
We proposed three novel approaches to extract relevant features from click-

22

time/query
Traditional IR 1.4
Simple 0.4
Full 0.6
ECIR 2.0

Table 10: Average preprocessing time per query (sec).

!"#$

#$

#!$

#!!$

#!!!$

#!!!!$

#%$ &%$ #!%$ '&%$ &!%$

!"
#
$%
&#

"'
(%

)*#+$,%-.%/*$,"$0%

()*+$

,-./01$

2300$

4567-89:60$*+$

Figure 4: Learning time (y-axis is in log-scale).

logs, and analyzed three feedback extraction methods. Features are extracted
considering the relationships among the attributes in different entities in the
result list. Moreover, we proposed novel uses of the IR features that exploit
the structure of the entities. We also introduced novel measures, suitable for
evaluating the results in this new context. The experimental evaluation on real
datasets shows that the proposed methods are more effective when compared to
traditional IR techniques (that are document aware). The results indicate that
considering entities as plain text does not help in the classification task, while
the proposed approaches can improve the results by a significant amount.

In the future we can work on integrating a user model with the semantic
information of some other external sources, such as knowledge bases, ontologies
and word-nets.

We are currently working on the collection of a large real dataset that can
help further improve and better evaluate the techniques proposed in this area.

References

[1] A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to rank networked
entities. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 14–23. ACM, 2006.

[2] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search

23

ranking by incorporating user behavior information. In SIGIR ’06: Pro-
ceedings of the 29th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 19–26, New York,
NY, USA, 2006. ACM.

[3] S. Agrawal and S. Chaudhuri. Automated ranking of database query re-
sults. In In CIDR. Citeseer, 2003.

[4] Barbara Bazzanella, Themis Palpanas, and Heiko Stoermer. Towards a
general entity representation model. In IRI, pages 431–432, 2009.

[5] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt
Deeds, Nicole Hamilton, and Gregory N. Hullender. Learning to rank using
gradient descent. In ICML, pages 89–96, 2005.

[6] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking objects by ex-
ploiting relationships: computing top-k over aggregation. In SIGMOD
Conference, pages 371–382. Citeseer, 2006.

[7] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic rank-
ing of database query results. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 888–899. VLDB En-
dowment, 2004.

[8] T. Cheng and K.C.C. Chang. Entity search engine: Towards agile best-
effort information integration over the web. In Proc. of CIDR, pages 108–
113. Citeseer, 2007.

[9] T. Cheng, X. Y., and K. C. Chang. Supporting entity search: a large-scale
prototype search engine. In SIGMOD Conference, pages 1144–1146, 2007.

[10] T. Cheng, X. Yan, and K.C.C. Chang. Entityrank: searching entities di-
rectly and holistically. In Proceedings of the 33rd international conference
on Very large data bases, pages 387–398. VLDB Endowment, 2007.

[11] Tao Cheng, Hady Wirawan Lauw, and Stelios Paparizos. Fuzzy matching
of web queries to structured data. In ICDE, pages 713–716, 2010.

[12] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A
comparison of string distance metrics for name-matching tasks. In Pro-
ceedings of the IJCAI-2003 Workshop on Information Integration on the
Web (IIWeb-03), pages 73–78, 2003.

[13] William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to
order things. J. Artif. Intell. Res. (JAIR), 10:243–270, 1999.

[14] N. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bo-
hannon, S. Keerthi, and S. Merugu. A web of concepts. In PODS, pages
1–12, 2009.

[15] Gianluca Demartini, Claudiu S. Firan, Tereza Iofciu, and Wolfgang Nejdls.
Semantically enhanced entity ranking. In WISE, pages 176–188, 2008.

[16] X. Dong and A. Y. Halevy. Indexing Dataspaces. In SIGMOD, pages 43–54,
2007.

[17] X. Dong, A. Y. Halevy, and J. Madhavan. Reference Reconciliation in
Complex Information Spaces. In SIGMOD, pages 85–96, 2005.

24

[18] Georges Dupret and Benjamin Piwowarski. A user browsing model to pre-
dict search engine click data from past observations. In SIGIR, pages 331–
338, 2008.

[19] Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. In ICML, pages
170–178, 1998.

[20] K.P. FRS. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572, 1901.

[21] Fan Guo, Chao Liu 0001, and Yi Min Wang. Efficient multiple-click models
in web search. In WSDM, pages 124–131, 2009.

[22] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael J. Taylor, Yi Min
Wang, and Christos Faloutsos. Click chain model in web search. In WWW,
pages 11–20, 2009.

[23] Shihao Ji, Ke Zhou, Ciya Liao, Zhaohui Zheng, Gui-Rong Xue, Olivier
Chapelle, Gordon Sun, and Hongyuan Zha. Global ranking by exploiting
user clicks. In SIGIR, pages 35–42, 2009.

[24] Thorsten Joachims. Making large-scale support vector machine learning
practical. In Advances in Kernel Methods, pages 169–184, Cambridge, MA,
USA, 1999. MIT Press, MIT Press.

[25] Thorsten Joachims. Optimizing search engines using clickthrough data. In
KDD, pages 133–142, 2002.

[26] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, and
Geri Gay. Accurately interpreting clickthrough data as implicit feedback.
In SIGIR, pages 154–161, 2005.

[27] Thorsten Joachims and Filip Radlinski. Search engines that learn from
implicit feedback. IEEE Computer, 40(8):34–40, 2007.

[28] Diane Kelly and Jaime Teevan. Implicit feedback for inferring user prefer-
ence: a bibliography. SIGIR Forum, 37(2):18–28, 2003.

[29] Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rank-
ings. In WWW, pages 571–580, 2010.

[30] H.L. Lau and W. Ng. A multi-ranker model for adaptive xml searching.
The VLDB Journal, 17(1):57–80, 2008.

[31] T.Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset
for research on learning to rank for information retrieval. In Proceedings of
SIGIR 2007 workshop on learning to rank for information retrieval, pages
3–10. Citeseer, 2007.

[32] C.D. Manning, P. Raghavan, and H. Schutze. Introduction to information
retrieval, volume 1. Cambridge University Press Cambridge, 2008.

[33] Zoltán Miklós, Nicolas Bonvin, Paolo Bouquet, Michele Catasta, Daniele
Cordioli, Peter Fankhauser, Julien Gaugaz, Ekaterini Ioannou, Hristo
Koshutanski, Antonio Maña, Claudia Niederée, Themis Palpanas, and
Heiko Stoermer. From web data to entities and back. In Proceedings of the

25

22nd international conference on Advanced information systems engineer-
ing, CAiSE’10, pages 302–316, Berlin, Heidelberg, 2010. Springer-Verlag.

[34] Jeffrey Pound, Stelios Paparizos, and Panayiotis Tsaparas. Facet discovery
for structured web search: a query-log mining approach. In SIGMOD
Conference, pages 169–180, 2011.

[35] Filip Radlinski and Thorsten Joachims. Query chains: learning to rank
from implicit feedback. In KDD, pages 239–248, 2005.

[36] Stephen E. Robertson and Steve Walker. Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval. In SIGIR,
pages 232–241, 1994.

[37] Anish Das Sarma, Xin Luna Dong, and Alon Y. Halevy. Data integration
with dependent sources. In EDBT, pages 401–412, 2011.

[38] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web
Revisited. IEEE Intelligent Systems, 21(3):96–101, 2006.

[39] C. Spearman. The proof and measurement of association between two
things. The American journal of psychology, 15(1):72–101, 1904.

[40] http://developer.yahoo.com/geo/geoplanet. Yahoo! geoplanet.

[41] http://disi.unitn.eu/~mottin/ida/.

[42] http://entitycube.research.microsoft.com. Entitycube.

[43] http://ilps.science.uva.nl/trec-entity/. Trec 2011 entity track.

[44] http://semsearch.yahoo.com. Yahoo! semantic search.

[45] http://sindice.com. Sindice.

[46] http://www.inex.otago.ac.nz/tracks/entity-ranking/

entity-ranking.asp. Inex 2010 entity ranking track.

[47] http://www.okkam.biz. Okkam enterprise.

[48] Ji-Rong Wen, Jian-Yun Nie, and HongJiang Zhang. Clustering user queries
of a search engine. In WWW, pages 162–168, 2001.

[49] W.E. Winkler. The state of record linkage and current research problems.
In Statistical Research Division, US Census Bureau. Citeseer, 1999.

[50] Jun Xu and Hang Li. Adarank: a boosting algorithm for information
retrieval. In SIGIR, pages 391–398, 2007.

[51] Zhaohui Zheng, Keke Chen, Gordon Sun, and Hongyuan Zha. A regres-
sion framework for learning ranking functions using relative relevance judg-
ments. In SIGIR, pages 287–294, 2007.

26

http://developer.yahoo.com/geo/geoplanet
http://disi.unitn.eu/~mottin/ida/
http://entitycube.research.microsoft.com
http://ilps.science.uva.nl/trec-entity/
http://semsearch.yahoo.com
http://sindice.com
http://www.inex.otago.ac.nz/tracks/entity-ranking/entity-ranking.asp
http://www.inex.otago.ac.nz/tracks/entity-ranking/entity-ranking.asp
http://www.okkam.biz

	Introduction
	Motivating example
	Related work
	Problem statement
	Proposed approach
	Entity Set Comparison
	Entity Centric IR (ECIR)
	Induced popularity (IP)
	Traditional IR

	Evaluation Measures
	IR Measures
	Average Entity Precision (AEP)

	Experimental Evaluation
	Datasets
	D-Okkam datasets
	D-Top, D-Mid, D-Low datasets

	Ranking Quality
	Classification Model
	Time Performance

	Conclusions

