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ABSTRACT
In many real applications that use and analyze networked data, the
links in the network graph may be erroneous, or derived from prob-
abilistic techniques. In such cases, the node classification problem
can be challenging, since the unreliability of the links may affect
the final results of the classification process. In this paper, we
focus on situations that require the analysis of the uncertainty that
is present in the graph structure. We study the novel problem of
node classification in uncertain graphs, by treating uncertainty as
a first-class citizen. We propose two techniques based on a Bayes
model, and show the benefits of incorporating uncertainty in the
classification process as a first-class citizen. The experimental re-
sults demonstrate the effectiveness of our approaches.

1. INTRODUCTION
The problem of collective classification is a widely studied one in
the context of graph mining and social networking applications. In
this problem, we have a network containing nodes and edges. A
subset of the nodes in this network may be labeled. Typically, such
labels may represent some properties of interest in the underlying
network.

In such networks, only a small fraction of the nodes may be labeled,
and these labels may be used in order to determine the labels of
other nodes in the network. This problem is popularly referred to
as collective classification or label propagation [6, 8, 9, 26], and
a wide variety of methods have been proposed for this problem.
The problem of data uncertainty has been widely studied in the
database literature [7, 2, 3], and also presents numerous challenges
in the context of network data [29].

In many real networks, the links1 are uncertain in nature, and are
derived with the use of a probabilistic process, with a probability
value associated to each edge. Consider for example a biological
network, whose links are derived from probabilistic processes and

1In the rest of this paper we use the terms network and graph, as
well as link and edge, interchangeably.
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the edges have uncertainty associated with them; or a human inter-
action network that naturally includes uncertain links.

These networks can be represented as probabilistic networks, in
which we have probabilities associated with the existence of links.
Recent years have seen the emergence of numerous methods for
uncertain graph management [14, 22] and mining [16, 13, 18], in
which uncertainty is used directly as a first-class citizen. However,
none of these methods address the problem of collective graph clas-
sification. One possibility is to use sampling of possible worlds on
the edges in order to generate different instantiations of the under-
lying network. The collective classification problem can be solved
on these different instantiations, and voting can be used in order
to report the final class label. The major disadvantage with this
approach is that the sampling process could result in a sparse or
disconnected network which is not suited to the collective classifi-
cation problem. In such cases, good class labels cannot be easily
produced with a modest number of samples.

In this paper, we investigate the problem of collective classifica-
tion in uncertain networks with a more direct use of the uncer-
tainty information in the network. We design two algorithms for
collective classification. The first algorithm uses a probabilistic ap-
proach, which explicitly accounts for the uncertainty in the links
in the classification. The second algorithm works with the as-
sumption that most of the information in the network is encoded in
high-probability links, and low-probability links sometimes even
degrade the quality. Therefore, the algorithm uses the links with
high probability in earlier iterations, and successively relaxes the
constraints on the quality of the underlying links. The idea is that
a greater caution in early phases of the algorithm ensures conver-
gence to a better optimum. The extended version of this paper can
be found in [1].

In summary, we make the following contributions.

• We introduce the problem of collective classification in un-
certain graphs, where uncertainty is associated with the edges
of the graph, and provide a formal definition for this problem.

• We introduce two algorithms based on iterative probabilistic
labeling that incorporate the uncertainty of edges in their op-
eration. These algorithms are based on a Bayes formulation,
which enables them to capture correlations across different
classes, leading to improved accuracy.

• We perform an extensive experimental evaluation, using two
real datasets from diverse domains. The results demonstrate
the effectiveness of the proposed techniques and serve as
guidelines for the practitioners in the field.



2. COLLECTIVE CLASSIFICATION
We first define uncertain networks, whose characteristic is that their
edges may exist with some probability.

DEFINITION 2.1 (UNCERTAIN NETWORK). An uncertain net-

work is denoted by G = (N,A, P ), with node set N , edge set A
and probability set P . Each edge (i, j) ∈ A is associated with a

probability value pij ∈ P . This is the probability that edge (i, j)
exists in the network.

We assume that the network is undirected, though the method can
easily be extended to the directed scenario. We can assume that the
|N |×|N | matrix P has entries which are denoted by pij and pij =
pji. A node i ∈ N can be associated with a label, representing its
membership in a class. For ease in notation, we assume that node
labels are integers. Given a set of labels S drawn from a set of
integers {1 . . . l}, we denote the label of node i by L(i). If a node
i is unlabeled, the special label 0 is used. We can now introduce
the definition of the collective classification problem on uncertain
graphs.

PROBLEM 2.1 (UNCERTAIN COLLECTIVE CLASSIFICATION).
Given an uncertain network G = (N,A, P ) and the subset of la-

beled nodes T0 = {i ∈ N : L(i) 6= 0}, predict the labels of nodes

in N − T0.

Figure 1 shows an example of an uncertain network. Nodes 1, 2,
and 3 are labeled white, and nodes 5, 7, and 8 are labeled black.
The label of nodes 4 and 6 is unknown. The aim of collective clas-
sification is to assign labels to nodes 4 and 6.
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Figure 1: Example of uncertain network. Nodes {1, 2, 3} are labeled

white and nodes {5, 8, 7} are labeled black, while labels for nodes {4, 6}

are unknown. Edges between nodes exist with some probability.

3. ITERATIVE PROBABILISTIC LABELING

3.1 Bayes Approach
The overall approach for the labeling process uses a Bayesian model
for the labeling. In the rest of the paper, we refer to this algorithm as
uBayes. Given that we have an unlabeled node r, which is adjacent
to s other nodes denoted by t1 . . . ts, how do we determine the label
of the node r? It should be noted that the concept of adjacency is
also uncertain, because the edges are associated with probabilities
of existence. This is particularly true, when the edge probabilities
are relatively small, since the individual network instantiations are
likely to be much sparser and different than the probabilistic de-
scriptions. Furthermore, for each edge (i, j) we need to estimate
the probability of the node j having a particular label value, given
the current value of the label at node i. This is done with the use of
training data containing the labels and edges in the network. These
labels and edges can be used to construct a Bayesian model of how
the labels on the nodes and edges relate to one another.

The algorithm uses an iterative approach, which successively labels
more nodes in different iterations. This is the set T of nodes whose

labels will not be changed any further by the algorithm. Initially,
the algorithm starts off by setting T to the initial set of (already)
labeled nodes T0. The set in T is expanded to T ∪ T+ in each
iteration, where T+ is the set of nodes not yet labeled that are ad-
jacent to the labeled nodes in T . The algorithm terminates when
T+ is empty. The two most important steps are the compu-
tation of the edge-propagation probabilities and the expansion of
the node labels with the use of the Bayes approach. For a given
edge (i, j) we estimate P (L(i) = p|L(j) = q). This is esti-
mated from the data in each iteration by examining the labels of
nodes which have already been decided. Therefore, the training
process is successively refined in each iteration. Therefore, the
value of P (L(i) = p|L(j) = q) can be estimated by examining
those edges for which one end point contains a label of q. Among
these edges, we compute the fraction for which the other end point
contains a label of p. For example, in the network shown in Fig-
ure 1 the probability P (L(6) = black|L(5) = black) is estimated
as (0.3 + 0.9)/(0.3 + 0.9 + 0.2) = 0.85. The label of node 6 is
unknown, and it is not considered in the calculation. Note that this
is simply equal to the probability that both end points of an edge are
black, if one of them is black. Therefore, one can compute the un-
certainty weighted conditional probabilities for this in the training
process of each iteration.

This provides an estimate for the conditional probability. For an
unlabeled node r, whose neighbors i1 . . . is have labels t1 . . . ts,
we estimate its (unnormalized) probability by using the naive Bayes
rule over all the adjacent labeled neighbors:

P (L(r) = p|L(i1) = t1 . . . L(is) = ts) ∝

P (L(r) = p) ·
∏

k

P (L(ik) = tk|L(r) = p)

Note that the above model incorporates the uncertainty probabili-
ties directly within the product term of the equation.

3.2 Iterative Edge Augmentation
The approach mentioned above is not very effective when a large
fraction of the edges are noisy. In particular, if many edges have a
low probability, this can have a significant impact on the classifica-
tion process. Therefore, we use an iterative augmentation process
in order to reduce the impact of such edges, by instead favoring the
positive impact of high quality edges in the collective classification
process. The idea is to activate only a subset of the edges for use on
the modeling process. In other words, edges which are not activated
are not used in the modeling. We call this algorithm uBayes+. We
adopt a model inspired by automatic parameter selection in ma-
chine learning. Note that, analogous to parameter selection, the
choice of a particular subset of high quality links, corresponds to
a configuration of the network, and we would like to determine an
optimal configuration for our approach. In order to do this, we split
the set of labeled nodes T0 into two subsets: a training set denoted
by Ttrain and a hold out set denoted by Thold. The ratio of the T0

nodes that are assigned to the training set Ttrain is denoted by β,
a user-defined parameter. The purpose of the hold out set is to aid
optimal configuration selection by checking the precise value of the
parameters at which the training model provides optimal accuracy
over the set of nodes in Thold. We use labels of nodes in Ttrain for
the learning process, while using labels of nodes in Thold as for the
evaluation of accuracy at a particular configuration of the network.
(Note that a label is never used for both the training and the hold
out set, in order to avoid overfitting.)



We start off considering a small fraction of the high probability
edges, iteratively expanding the subset of active edges by enabling
some of the inactive edges with the highest probabilities. The ra-
tio of active edges is denoted by the parameter θ. Ideally, we want
to activate only the edges that contribute positively to the classifi-
cation of unlabeled nodes. Given a configuration of active edges,
we measure their goodness as the estimated accuracy on labels of
nodes in Thold. The value of θ that leads to the highest accuracy,
denoted by θ∗, is used as the ratio of edges with the highest prob-
ability to activate on the uncertain network G. The resulting net-
work is then used as input for the iterative probabilistic labeling
algorithm (uBayes).

Despite optimizing accuracy by selecting the best ratio of edges to
be considered, the basic model described above is not very efficient,
because it requires multiple evaluations of the iterative probabilistic
labeling algorithm. In particular, it requires us to vary the param-
eter θ and evaluate accuracy, in order to determine θ∗. A more
efficient technique for identifying θ∗ can be obtained by evaluating
the accuracy for different values of θ on a sample of the uncertain
network G (rather than the full network) as follows. We generate
a new uncertain network G′ = (N ′, A′, P ′) by sampling α · |N |
nodes from G uniformly at random, and retaining the edges from
A and probabilities from P referring to these sampled nodes. α
is a user-defined parameter that controls the ratio of nodes sampled
from G and it implies the size of the sampled uncertain network G′.
The optimal configuration of the θ∗ parameter is obtained evaluat-
ing the uBayes+ algorithm on the sampled uncertain network G′.
θ∗ is then used to activate θ∗|N | edges with highest probability in
G before labeling the nodes of G with the uBayes+ method.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed techniques under different
settings, in terms of both accuracy and performance. We imple-
mented all techniques in C++, and ran the experiments on a Linux
machine with Intel Xeon 2.40GHz processor and 16GB of RAM.

Data Sets: In our experiments, we used two data sets derived from
the DBLP and US Patent citation networks. Class labels are de-
rived from the bibliographic conference information and standard
US Patent classification, respectively. Edge probabilities are es-
timated as the normalized edge frequency among either paper au-
thors or patent assignees. We also used perturbed data sets to stress-
test the methods. Perturbed data sets are generated by adding noisy
edges.sets.

Evaluation Methodology: The accuracy is assessed by using re-
peated random sub-sampling validation. We randomly partition the
nodes into training and validation subsets which are denoted by NT

and NV respectively. We use 2/3 of the labeled nodes for training,
and the remaining 1/3 for validation. We compared our tech-
niques to two algorithms, which are the wvRN [20] and Sampling

methods. We limited the running time of these two algorithms to
the time spent by the uBayes method. The wvRN method estimates
the probability of node i to have label j as the weighted sum of class
membership probabilities of neighboring nodes for label j. We ad-
ditionally consider a version of the wvRN algorithm, wvRN-20, that
is not time-bounded, but is bound to terminate after 20 iterations
in the label relaxation procedure. The sampling algorithm samples
networks in order to create deterministic representations. For each
sampled instantiation, the RN algorithm [20] is used.

Classification Quality Results: The first experiment shows the

accuracy by varying the ratio of noisy edges (φ) for the algorithms
uBayes, uBayes+, wvRN, wvRN-20 and Sampling. The results for
the DBLP data set are reported in Figure 2. The Sampling algo-
rithm is the worst performer on both data sets, followed by wvRN

and wvRN-20. The uBayes and uBayes+ algorithms are the best
performers, with uBayes+ achieving higher accuracy on the DBLP

dataset when the ratio of noisy edges is above 200%. We ob-
serve that there is nearly no difference among the uBayes, uBayes+,
wvRN and wvRN-20 algorithms on both datasets when φ = 0,
while the percentage improvement in accuracy from wvRN-20 to
uBayes+ when φ = 5 (500%) is up to 49% for DBLP and 7% for
Patent. It is worth noting that, as the ratio of noisy edges increases,
the accuracy for Sampling increases in the Patent data set. This is
due to the high prior probability of one class (0.434).

In the next experiment, we varied the standard deviation of the
probability of the noisy edges (σ) for algorithms uBayes, uBayes+,
wvRN, wvRN-20 and Sampling. The results for the DBLP data set
are reported in Figure 3. The Sampling algorithm again does not
perform well, followed by the wvRN and wvRN-20 algorithms. The
uBayes+ algorithm is consistently the best performer on the DBLP

dataset, while there is nearly no difference between the uBayes+

and uBayes algorithms on the Patent data set. The higher accu-
racy of uBayes and uBayes+ is explained by their ability to better
capture correlations between different class labels, a useful fea-
ture when processing noisy data sets. The better performance of
uBayes+ is due to its ability to ignore noisy labels that contribute
negatively to the overall classification process. uBayes+ is more
accurate than wvRN-20 with a percentage improvement up to 83%
in the DBLP data set and 10% in the Patent data set, which repre-
sents a significant advantage.

In the following experiment, we evaluate the accuracy when vary-
ing the ratio of labeled nodes (Γ) for algorithms uBayes, uBayes+,
wvRN, wvRN-20 and Sampling. The results are omitted for brevity.
In the DBLP dataset, the wvRN algorithm performs better than
wvRN-20, while there is virtually no difference on the Patent dataset.
The uBayes+ algorithm is consistently the best performer on the
DBLP dataset, while it performs slightly worse than uBayes on the
Patent data set when Γ is below 0.2 (20%). We observe that the
percentage improvement of uBayes+ over wvRN-20 is 50% on the
DBLP dataset and 11% on the Patent dataset. The Sampling algo-
rithm exhibits the lowest accuracy.

Efficiency Results: Figure 4 shows the CPU time required by the
algorithms when varying the ratio of noisy edges for the DBLP data
set. Note that Sampling has the same time performance as uBayes.
The uBayes+ algorithm is nearly three times slower than uBayes.
This is due to the automatic parameter tuning approach employed
by the uBayes+ algorithm. We observe that the performance of
wvRN-20 is almost always considerably worse than both uBayes

and uBayes+. The same observation is true when varying the stan-
dard deviation of the probability of the noisy edges (see Figure 5).
Note that the inference in the wvRN algorithm is based on label-
ing relaxation, whose complexity is proportional to the size of the
network and remains constant across iterations. On the contrary,
the iterative labeling that uBayes and uBayes+ uses for their infer-
ence model becomes faster with each successive iteration, since it
needs to visit a smaller part of the network. As the results show,
the standard deviation does not affect the time performance of the
algorithms. These experiments demonstrate that the two proposed
algorithms effectively combine low running times with high accu-
racy and robustness levels.
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5. RELATED WORK
The problem of node classification has been studied in the graph
mining literature, and especially relational data in the context of
label or belief propagation [23, 25, 26]. Such propagation tech-
niques are also used as a tool for semi-supervised learning with
both labeled and unlabeled examples [27]. Collective classification
[20, 19, 8] refers to semi-supervised learning methods that exploit
the network structure and node class labels to improve the classifi-
cation accuracy. These techniques are mostly based on the assump-
tion of homophily in social networks [21]: neighboring nodes tend
to belong to the same class. A technique has been proposed in [19],
which uses link-based similarity for node-classification in directed
graphs. Recently, collective classification methods have also been
used in the context of blogs [8]. In [9], Bilgic et al. discuss the
problem of overcoming the propagation of erroneous labels by ask-
ing the user for more labels. A method for performing collective
classification of email speech acts has been proposed by Carvalho
et al. in [10], exploiting the sequential correlation of emails. In
[12], Ji et al. integrate the classification of nodes in heterogeneous
networks with ranking. Methods for leveraging label consistency
for collective classification have been proposed in [25, 26, 27]. A
comprehensive review of the proposed models and algorithms can
be found in [5]. The problem of uncertain graph mining has also
been investigated extensively. The most common problems stud-
ied in uncertain graph management are those of nearest neighbor
query processing [22], reachability computation [15] and subgraph
search [24]. In the context of uncertain graph mining, the problems
commonly studied are frequent subgraph mining [28], reliable sub-
graph mining [14], and clustering [13]. Recently, the problem of
graph classification has also been studied for the uncertain scenario
[16], though these methods are designed for classification of many
small graphs, in which labels are attached to the entire graph rather
than a node in the graph.

6. CONCLUSIONS
Uncertain graphs are becoming increasingly popular in a wide vari-
ety of data domains. In this paper, we formulate the collective clas-
sification problem for uncertain graphs, and describe effective and
efficient solutions. We describe an iterative probabilistic labeling
method, based on the Bayes model, that treats uncertainty on the
edges of the graph as first class citizens. In the proposed approach,
the uncertainty probabilities of the links are used directly in the la-
beling process. We have performed an experimental evaluation of
the proposed approach using diverse, real-world datasets. The re-
sults show significant advantages of using such an approach for the
classification process over more conventional methods, which do
not directly use uncertainty probabilities.
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