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[Hochberg et al, “Neurcnal ensemble control
of prosthetic devices by a human with
tetraplegia”, Nature 2006]
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Different Neural Sensors
e.g. “The Utah Array” or
“The Michigan Probe”
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Inductive Coupling % System Trade-Offs: Transmitter System Trade-Offs: Recelver

 Principle: ) J Limitations: d Maximizing V¢ X Qg Product of receive coil / circuit
d External source creates magnetic field Q Maximum magnetic field at transmitter (IEEE C95.1) 0 Maximizing V. > maximizing Ngy and Axy (= maximizing L)
- Magnetic field induces voltage at receive © 3 System Implications: 0 Fixed R, of receiver reduces Q. if L is too large
O side which is used to power implant O Same happens when frequency is too high

_ o  Large transmit coil increases field at receiver, but lowers overall
 Equivalent Circuit: power transfer efficiency

Mormalized Max. Power vs. for Different Coil Geometries Mormalized bax. Power vs. Frequency for Different Coil Geometries
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= received power/max power ratio
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power for fixed transmit current
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Experiments: Verifying Theory Implementation: Transmitter Implementation: Recelver

 Building a variety of transmit and receive COIlS g 1 Discrete class-E power oscillator 1 A possible architecture [Peters07]
to verify analytical inductor model using O High efficiency due to class E operation Q requires V,, > V,, S
standard 4-layer PCB technology O Feedback eliminates loss due to mismatch between -l no voltage drop 1
 Measuring coupling between IS, switching and tank resonant frequency across rectifier
different coils to verify il S
coupling model
 Optimizing final coil geometries
and deriving specification
for RF-DC conversion
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[Ziaie et al 2001] Transistor voltage and current waveforms of
low-order class-E amplifier [Sokal 2001]
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