
A Methodology for Power Consumption Evaluation of Wireless Sensor

Networks

Andrey Somov, Ivan Minakov, Alena Simalatsar, Giorgio Fontana and Roberto Passerone

Dipartimento di Ingegneria e Scienza dell’Informazione

University of Trento, Italy

Emails: {somov, minakov, simalats}@disi.unitn.it, {giorgio.fontana, roberto.passerone}@unitn.it

Abstract

Energy consumption is one of the most constraining re-

quirements for the design and implementation of wireless

sensor networks. Simulation tools allow one to signifi-

cantly decrease the effort and time spent to choose the

right solution. Existing simulators provide varying de-

grees of analysis for communication, application and en-

ergy domains. However, none of them provides enough

flexibility to estimate the consumed power for a wide

range of wireless sensor network (WSN) hardware (HW)

platforms. In this paper we present a flexible and exten-

sible simulation framework to estimate power consump-

tion of sensor network applications for arbitrary HW plat-

forms. This framework allows designers of sensor net-

works to estimate power consumption of the explored HW

platform which permits the selection of an optimal HW so-

lution and software (SW) implementation for the specific

projects.

1 Introduction

The design of WSN systems faces challenges which

are specific to its application domain. For instance, sen-

sor nodes are commonly resource-constrained, battery-

powered embedded devices. Replacing the batteries is,

however, at best inconvenient, and sometimes downright

impossible after the network deployment. Therefore, the

efficiency of using the battery power determines the life-

time of the nodes and of the entire network. Due to these

limitations, energy consumption is one of the most con-

straining requirements for design and implementation of

wireless sensor networks. Thus, power analysis is a criti-

cal step in the sensor network development process. The

choice of the application algorithms, operating systems,

scheduling policies and program style may have a con-

siderable impact on energy consumption. Power analysis

provides a study of critical operations on limited power

sources. It gives the designers a clear idea of how to adapt

their applications in order to prolong the system lifetime.

Reliable and accurate energy evaluation can be achieved

by capturing all relevant low-level details and operating

states of the studied HW platform. Rough approximation

and high abstraction HW modeling fail due to the lack

of such information. However, HW modeling should be

“lightweight” enough and should act on the proper ab-

straction level in order to provide scalable simulation for

numerous sensor nodes.

Several modeling approaches and simulation tech-

niques have been introduced to perform power consump-

tion evaluation from the network point of view [5, 6, 20,

25]. In these approached the system is modeled as a set

of communicating concurrent processes, where each pro-

cess represents the activity of a single node. Existing sim-

ulators [5, 6, 8, 11, 12, 13, 18, 23] provide various de-

grees of analysis for communication, application and en-

ergy domains. Many tools are focused either primarily on

the network or software simulation, without proper care

of detailed HW processing. Others [30] exploit a cycle-

accurate simulation strategy to examine operations with

fine grained details. Such tools normally include support

only for a single HW architecture, without the ability to

extend them. Neither provides enough flexibility to value

energy for a wide range of HW WSN platforms.

In this paper we present a methodology for power con-

sumption evaluation of the individual nodes of a wireless

sensor network. Our methodology supports the Platform

Based Design (PBD) paradigm [16, 28], providing power

analysis for various sensor platforms by defining separate

abstraction layers for application, services, hardware and

power supply modules. It is implemented as a SystemC-

based framework that combines the event-driven simula-

tion engine and HW model composer, and allows a user

to describe the application using a set of service calls and

user functions described in C/C++ language. The pre-

sented methodology allows one to estimate the lifetime of

a node composed of three main parts: transmission mod-

ule, computational module and a battery.

2 Related Work

In this section we are going to present several system-

level design (SLD) methodologies used for the design

space exploration of Wireless Sensor Networks (WSN).

We will also introduce several frameworks for networks

simulations. In addition we will talk about the software

battery models and design tools used to create them.

2.1 SLD Methodologies

PBD is a methodology that combines the specification,

validation and synthesis steps of the design flow, while

maintaining a clear separation between the corresponding

models [16, 28]. By doing so, the designer can operate

separately on the distinctive steps and maintain a global

view of the impact of his/her design decisions on the final

implementation. The methodology includes hardware and

embedded software design, where the design of the system

starts at a high level of abstraction (initial design descrip-

tion) and proceeds to a detailed implementation by map-

ping the executable functional model onto progressively

more detailed architectures under a set of constraints. The

framework presented in this paper follows the design prin-

ciples of PBD methodology.

There exist several SLD methodologies applying PBD

principles developed in the area of WSN design space ex-

ploration. Bonivento et al. have presented a new method-

ology for the design of WSN [14], which is well correlated

with the nature of our research work. They introduced a

framework called Rialto that initially included two basic

platforms, the application interface called Sensor Network

Service Platform (SNSP) and the hardware platform layer

called Sensor Network Implementation Platform (SNIP).

Lately this framework was extended by a third intermedi-

ate layer called Sensor Network Adhoc Protocol Platform

(SNAPP) that defines a library of communication proto-

cols and the interfaces that these protocols offer to the

SNSP. This framework allows the application description

independently from the network architecture. The sen-

sor network service platform is used to describe an appli-

cation in a Rialto Model in terms of logical component

queries and commands. This model is then translated into

RialtoNet format that allows exploration of the possible

sequence of queries and commands from the application.

Later the functional description is mapped into an archi-

tecture platform instance. This work is focused mainly on

high level operating system services, while we will focus

on single node platform power consumption estimation.

The COmmunication Synthesis Infrastructure

(COSY) [25] developed by Alessandro Pinto et al.

is a framework for the design exploration and synthesis

of interconnection networks, where “interconnection

networks” refers to networks on-chip (NoC) as well as

distributed embedded systems. They introduce a general

methodology for the design space exploration of networks

that allows studying of the optimization algorithms, com-

munication protocols, partial designs, and models for

interconnection design in terms of network performance

and cost. We can apply this methodology in the future

while extending our methodology for being used for a

whole WSN power consumption estimation.

2.2 Design Tools

NS-2 simulator: NS-2 [5], perhaps, is the most pop-

ular general purpose network simulator. NS-2 supports

simulation for widely used IP network protocols. These

include TCP, routing and multicasting protocols for con-

ventional wired and wireless networks. NS-2 has a highly

extensible object-oriented architecture with discrete-event

engine. Its object-oriented model allows extension of

simulation functionality by adding customers components

and libraries. The simulation in NS-2 environment is

based on a combination of C++ and OTcl [7] languages

where protocols are implemented in C++. OTcl is used as

a scripting language to describe and control the simulation

process. The complexity of NS-2 object-oriented model

creates substantial dependencies and execution overheads.

It makes impossible to scale simulation for a large num-

ber of network units, which is inherent to WSNs. While

object-oriented model is advantageous in terms of exten-

sibility, it is a restriction for scalability and performance.

Besides, NS-2 does not provide representation for the HW

network components.

OMNet++ simulator: Like NS-2, OMNet++ [6] pro-

vides deep analysis of network activities at the packet

layer. Besides, OMNet++ provides a GUI front-end for

simulation and debugging processes. It has a component-

based architecture with a discrete-event simulation ker-

nel. It exploits modules and channels to implement and

connect simulation components, where components are

connected in a hierarchical fashion via generic interfaces

(gates). OMNet++ has extension for sensor network sim-

ulation, called SenSim [23]. It represents sensor node as

modular hierarchical structure of simple OMNet++ com-

ponents. This simulatorprovides more scalability and runs

faster than NS-2. However, despite the apparent benefits

of OMNet++ and SenSim, there is no precise and accurate

HW model of sensor node. It, in turn, does not allow to

study sensor networks from an energy perspective.

TOSSIM: TOSSIM simulation environment is included

in the TinyOS [11] framework. TinyOS has gained gen-

eral acceptance as a standard operating system for WSN

applications. It has a component-oriented programming

model, based on the nesC language [3]. A TinyOS

program is presented as set of components, where each

componnet is an independent computational entity. The

TinyOS framework includes a simple FIFO task sched-

uler and hardware independent drivers for abstract HW

components. The inter-component communications oc-

cur through command-event mechanism. By changing

a small number of TinyOS components, TOSSIM simu-

lates the behavior of the low-level hardware. It includes

models for CPUs, analog-to-digital converters (ADCs),

clocks, timers, flash memories and radio components. The

network communication over the wireless channel is ab-

stracted as a directed graph, where vertexes and edges

represent nodes and links between them, respectively.

TOSSIM simulation architecture provides high level of

scalability and execution speed for the networks with large

2

number of sensor nodes. However, the abstract HW model

of TOSSIM does not capture low-level details of timings

and interrupts, which can be important for precise power

analysis. In addition, simulation is supported only for the

single HW platform (Micaz [2]). Obviously, it largely re-

stricts the applying scope.

VIPTOS and VisualSense: VIPTOS (Visual Ptolemy

and TinyOS) is a graphical development and simulation

environment for TinyOSbased WSN applications [18].

VIPTOS bridges together the VisualSense [12] simulator

and the TinyOS framework. VisualSense is a Ptolemy

II [9] based graphical simulation environment designed

for WSNs. It exploits the actor-oriented computational

model of Ptolemy II, a general modeling framework for

heterogeneous embedded systems. VisualSense defines

actor-oriented models for sensor node subsystems and

communication channels. However, VIPTOS does not

provide accurate HW representation of sensor node. Sub-

stantially, it focuses more on algorithmic and application

domains. Additionally, VIPTOS has been integrated only

with the first version of TinyOS, which is not currently

supported.

AVRORA: AVRORA [30], like TOSSIM, is one of

the widely used WSN simulation tool. It exploits cycle

accurate instruction-by-instruction manner to run code.

AVRORA runs actual applications without the need to

specially adapt it for simulation. AVRORA represents

each HW component as corresponding object classes thus

as classes of CPUs, Timers, flash memories, ADCs and

off-chip components such as sensors. The HW model of a

single sensor node is the combination of such objects in a

hierarchical manner. The CPU object contains the simula-

tion engine with the event queue for the entire node. This

architecture allows node replication for network simula-

tion, where each node is run as independent computational

entity. However, AVRORA supports solely AVR MCU [1]

cores and does not provide any extensions for others CPU

architectures.

2.3 Battery Models

Several battery models have been designed recently.

However, in most cases each type of the model makes

an emphasis on specific battery purpose and has var-

ious levels of accuracy. Mathematical battery mod-

els [26, 27] apply empirical equations to address the bat-

tery charge/discharge behavior, efficiency, or simulate the

electrochemical or thermal behavior of the battery. In fact,

the mathematical models can not be adopted for circuit

simulation since its accuracy lies in the range of 5-20%

and do not provide one with the current-voltage character-

istic.

Electrochemical models [29, 19] are complex and

require much time for simulation since they typically

present the battery at low level. However, the Electrical

models [22, 15, 21] are the most appropriate for circuit

analysis, simulation and optimization. They are easy to

handle, provide the electrical engineers with the current-

voltage characteristics, and, finally, their accuracy lies

within 5%.

The electrical battery model presented in [17] takes

into consideration all dynamic characteristics of the bat-

tery. It consists of two parts: battery lifetime evalua-

tion and voltage-current characteristics emulation. Bat-

tery lifetime evaluation part contains a resistor, which de-

termines energy loss during long idle period, a capacity

to characterize battery charge, and a current, which is

applied to charge or discharge the battery. The voltage-

current characteristics emulation part of the model con-

tains open-circuit voltage, which is able to change accord-

ing to the state of charge (SOC) of the battery, and an RC

network. This model is both intuitive and capable to pre-

dict an accurate runtime and voltage-current parameters.

We implemented this model in Spice Circuit Simulation

tool [24] and used it to evaluate the life time of a single

node.

3 Methodology

Our methodology is based on the PBD paradigm [16,

28]. In our methodology we distinguish four separate

layers (platforms) as depicted on Figure 1. We start out

description from the platform layer, where we represent

the node HW platform as the composition of several HW

components where the CPU plays the role of a central

component that manages the access to the peripheral com-

ponents such as: transceiver, ADC, several timers, a flash

memory and an IRQ controller. Each of the components

is defined as a finite state machine (FSM), where the num-

ber of states of each particular machine is limited by the

number of possible states (e.g., running, sleeping, hiber-

nate for the CPU) with numerical parameters (e.g., cur-

rent and time) determining the power consumed by this

hardware component in a particular state. The FSMs of

the peripheral components are synchronized only with the

FSM of the CPU by means of a bidirectional channel. Our

framework allows the definition of several standard WSN

platforms composed of a number of hardware components

that build the platform layer. The choice of a HW plat-

form is left to the user to be defined by choosing a specific

platform library that include the energy and timing param-

eters for operations performed by HW components.

The upper layer, called application layer, is used to

present an application through a set of semantic primi-

tives. This is an open layer, where the application de-

scription is left to the user. Each application is presented

as a set of services calls and user functions described in

C/C++ language. At this layer user interacts with hard-

ware by means of services provided by the services layer

in a purely functional way.

The services layer acts as an application interface that

defines a set of services available to the end user to specify

an application. This layer abstracts details of the presented

HW and provides HW independent API for the applica-

tion needs. The services themselves are commands to the

3

Battery

Task 1

Task 2

Task 3

Task n

Task 1

Task 2

Task 3

Task n

Task 1

Task 2

Task 3

Task n

Application – user layer

Service layer

Platform layer

Energy source layer

Figure 1. Methodology

HW modules to perform particular action. Conceptually

they are similar to HW independent drivers. By separat-

ing the platform services from the actual HW platform we

introduce the separation between the system behavior and

its cost/performance thus introducing the flexibility to the

design space exploration.

The total set of services provided by the services layer

is composed of a number of subsets, where each subset is

dedicated to a particular hardware component, and repre-

sents the maximum possible set of services that may be

provided by all possible platform vendors. The choice

of a particular platform defines the subset of the total set

of services by making them available at the application

layer. However, the number of provided services by a

hardware component may vary from one supplier to an-

other, which introduces constraints to the application in-

terpretation. Thus, at the application layer validation of

the tasks composition according to the chosen platform is

taking place. For example, if application requires a ser-

vice that is not specified for a particular platform, the user

will see a compilation error. Thus the user needs to be

aware of the set of available services.

As an example here we present a set of basic services

provided by a Timer component:

void RunTimer(void);

void RunTimerPeriodic(void);

void StopTimer(void);

void SetTimerUPeriod(u_time);

void SetTimerMPeriod(u_time);

void SetTimerParam(uint);

void EnableIrq(bool);

The execution of a service triggers the transitions of

the FSMs representing the dedicated hardware compo-

nent, thus changing the power state of this component.

Besides the components services, there exit some

global services to specify user defined functions as inter-

rupt service routines (ISRs) for every component that may

generate an interrupt (IRQ) event. Inside the ISR the user

can define an arbitrary functionality (e.g., data processing,

MAC layer etc.). Currently, we abstract this functionality

thus it has to be annotated with equivalent time needed to

execute it on the target HW component.

We assume that all the IRQ handlers are atomic and

can not be preempted by other ISRs and that the power

consumed to perform the context switch operation is neg-

ligibly small in comparison to the total power consumed

by the interrupt handlers execution. In addition the shift of

the execution time frame of an IRQ handler withing one

operation cycle has no influence to the total power con-

sumed during this cycle.

In addition to IRQ handlers the CPU may execute some

background computations represented as a main CPU

thread that have no real-time requirements (e.g., light up

a LED). The execution of this main thread will be sus-

pended by any IRQ coming from peripheral components

until the IRQ event handler will complete its execution.

In our case study the main thread includes only one com-

mand that sets the CPU to the idle mode.

As long as we talk about the power consumption, we

introduce an energy source layer, which is currently rep-

resented with a battery. Each hardware component, being

in a particular state will consume certain amount of power,

which is accounted by the battery model. This layer may

also include harvesting components or other sources of

energy, which opens possibility to analyze power manage-

ment techniques.

4 Case Study

In this section we describe the case study simulation of

an abstract WSN application mapped to a model of TelosB

platform. In particular we have studied the influence of

parameters of the real device and application behavior on

the power consumption.

4.1 The Application

A typical application for WSN can be divided into sev-

eral standard functional stages in which it firstly gather

some controlled quantity while sensing the environment,

process this data and form the packets that are then sent

to a base station. The controlling algorithm case study

presented in this paper follows this standard scenario. It

performs the periodical sensing of the environmental tem-

perature, with the period equal to one second, where an

on-board ADC is used to convert the analog value into its

digital interpretation. When the converted data are ready

the application turns on the transceiver (radio), composes

the network packet, waits till the radio is in the transmis-

sion mode and sends the data to an abstract base station.

After the data transmission is over, the radio is switched

to the Power Down state where it stays until it is reawaken

in the following period triggered by means of a timer. The

example of the interrupt handler of the timer used to trig-

ger the ADC conversion is presented here:

void _interrupt Timer_ICR(void* ptr){

SysTop* pSys = (SysTop*)ptr;

pSys->Adc.RunConvertion();

}

The “pSys” represents a particular HW platform that in-

cludes the “ADC” component providing the “RunConver-

tion()” service.

4

The communication algorithm (a network protocol) is

abstracted from the real MAC and routing protocol im-

plementation by annotating the functionality of a network

stack with time needed to perform abstract operations with

data packets. Basically we focus on the HW state transi-

tions during the execution process. The current consump-

tion waveform we obtained is presented as a sequence of

pulses. The example of a zoomed in single pulse is de-

picted on Figure 2.

Figure 2. Example of a zoomed pulse

4.2 The Platform

As a target HW architecture case study that repre-

sents an entity of our platform layer we have chosen

TelosB platform [10] due to its popularity in WSN sys-

tems design. The TelosB mote is composed of the

MSP430Fx1611 microcontroller, external flash memory

chip, CC2420 transceiver, set of the sensors and Leds. It is

powered by two AA batteries, which should provide volt-

age in range from 2.1 to 3.6V.

The HW platforms in our framework are defined using

the preprocessing functions:

#define _TELOSB_MOTE_

The composition of the HW components, energy and

timing parameters for HW operations are included in a

platform library (telosb.lib). On the platform layer this li-

brary defines a set of the simulated HW components and

provides platform specific information to the generic HW

modules. The energy and timing parameters that we used

in the simulation were partially received out of direct mea-

surements and the rest was taken from the components

specifications of the TelosB mote. The table 1 presents

possible energy conditions of the TelosB mote.

States Current consumed CPU

Radio Active (8MHz) 2 mA

Voltage regulator off (OFF) 0.02 uA Active (1MHz) 0.6 mA

Power Down mode (PD) 20 uA ADC-12 conversion 500 uA

Idle mode (IDLE) 400 uA SPI transmission 700 uA

RX 18.8 mA LPM0 300 uA

TX(-25 dBm) 8.5 mA LPM1 80 uA

TX(-15 dBm) 9.9 mA LPM2 20 uA

TX(-10 dBm) 11 mA LPM3 10 uA

TX(-5 dBm) 14 mA LED (each)

TX(0 dBm) 17.4 mA On 2.1 mA

Table 1. Energy states of the Telosb mote

The SystemC module of the TelosB mote is introduced

as a SystemC CPU module that coordinates the work of

the peripheral component, such as an ADC, a transceiver,

timers and an interrupt controller included and initialized

inside the platform SystemC module:

...

SysTop(sc_module_name _name): GCpu(_name),

Adc("Adc"),

Radio("CC2420"),

Timer_1("Timer_A"),

Timer_2("Timer_B"),

IRQ_manager("IRQ")

...

When performing the coordination the CPU is oper-

ating in the active operating state thus consuming more

power comparing to the idle mode, when no interrupts

need to be handled. Most of its time CPU spends in the

power safe idle (LPM0) mode. Thus only about 1% of the

CPU computational/time resources is utilized by the case

study application. The rest of the time application oper-

ates with 2 timers (Timer A and Timer B), ADC (ADC

12), USART (SPI mode) controller and a radio transceiver

(CC2420).

4.3 The Energy Source

The energy layer is represented by a battery model de-

scribed in Section 5. This model is adjusted in accordance

with 1.2 V type NiMH battery specification [4], which

supports up to 1.6 V while recharging. Therefore, the bat-

tery model provides the system with 3.1 voltage level that

is equal to power supply of two batteries connected in se-

ries of 100 mAh of total capacity. Low capacity is cho-

sen to decrease the simulation time of the battery charge-

discharge process. The minimal voltage level required

to supply TelosB platform is defined at 2.1 voltage level.

Thus, in the power consumption estimation framework we

apply the useful voltage range from 2.1 to 3.1V.

5 Spice compatible NiMH battery model

In our work we have implemented the electrical bat-

tery model proposed by Chen [17] using PSpice [24]. Due

to the absence of controllable components in the standard

PSpice library, we started the model development from

controllable resistor and capacitor modeling, so that their

characteristics could be changed in accordance with seven

behavior equations derived by Chen et al. [17]

The Spice model of the controllable resistor(see Fig-

ure 3) is designed in accordance with the derivative of

Ohm‘s law (V = IR). This component has three pins, i.e.,

controllable, input and output. The multiplier component

performs the multiplication of resistance provided by the

controllable pin, and current from current-controlled volt-

age source of the input pin. The desirable voltage appears

at the output pin of the controllable resistor.

The controllable capacitor (see Figure 4) component

contains the same three pins as the controllable resistor

and is designed on the basis of the following equation:

i = C · dV/dT + dC/dT · V (1)

5

Figure 3. Controllable resistor

Figure 4. Controllable capacitor

It contains two terms: the product of capacitance with the

voltage derivative, and the product of voltage with the ca-

pacitance derivative. To get the first term the model mul-

tiplies the capacitance from the controllable pin and dif-

ferentiates the voltage from the voltage-controlled current

source which is connected directly to the input pin. The

second term is derived by multiplying the voltage from the

input pin with the differentiated capacitance from the con-

trollable pin. Finally, the adder component accumulates

both terms. In order to save space and avoid the unde-

sirable interconnections during the model debugging, we

created the sub circuits for controllable components.

In addition, in order to connect both components to

nodes with a voltage other than ground, we applied a lin-

ear transformer with high inductance in parallel to the in-

put and output pins of the controllable components.

To ensure that the controllable models of the resistor

and the capacitor function properly, we simulated both us-

ing Spice. Next, we compared the results with a conven-

tional resistor and capacitor respectively. The simulation

curves of the controllable and conventional components

are equal.

Figure 5. Spice model of a NiMH battery

The PSpice battery model is depicted in Figure 5. The

designations of the components and their interconnections

are performed in accordance with the electrical battery

model [17].

Pins Vbatt+ and Vbatt− are positive and negative poles

of the implemented PSpice model. Pins a-b in the cre-

ated sub circuits are standard input-output pins for pas-

sive components. The Control pin establishes the control-

lable components behavior specified by behavior equa-

tions [17] for each component. Value form (EVALUE)

components E1, E3-E7 determine the value changing of

controllable components. into Ccapacity (battery charge),

Rseries (instantaneous voltage drop of the step response),

Rtransient s, Rtransient l, Ctransient s (short-time con-

stants of the step response), Ctransient l (long-time con-

stants of the step response) models correspondingly. The

values of these components are changing according to

seven behavior equations derived by Chen et al. [17].

Self-discharge resistor R1 represents self-discharge loss

of power when battery is kept for a long time.

5.1 Battery Model Verification

To validate the NiMH battery model developed in

PSpice we have applied a constant current charge and dis-

charge, and two various pulse discharge experiments both

for the model and a real battery. In our experiment, we

used a 200-mAh, 8.4 V NiMH Coop rechargeable battery

(9 V prismatic type). This battery type has the cut-off dis-

charge voltage at 7.0 V level (the gap is 1.4 V) that is more

convenient for battery model verification in comparison to

1.0 V cut-off discharge level of 1.2 V battery type (the gap

is 0.2 V). The first experiment aimed to discharge the bat-

tery with a constant 23 mA current which is the typical

current consumption of TelosB sensor nodes with the ra-

dio turned on. The end-of-charge battery voltage is 7 V.

To record the battery voltage we used (in all cases) an Ag-

ilent 34411 digital multimeter. The discharge profile of

the real battery and of battery model is depicted in Fig-

ure 6. The maximum voltage and runtime error for each

charge/discharge profile are shown in Table 2.

Figure 6. Battery discharging with continu-
ous 23 mA current

6

The second case is a continuous battery charging with

0.1C current, where C is a nominal battery capacity (see

Figure 7). Agilent E3631A DC power supply was applied

to generate the charging current.

Figure 7. Continuous battery charging
(0.1C)

Figure 8. Pulse battery discharging (0.1C)

The last two cases refer to battery discharging with

0.1C and 0.2C current pulses (see Figure 8 and 9 respec-

tively). 0.1C current pulses have a 1000 s pulse width

for a 1200 s pulse period. 0.2C current pulses, in turn,

have a 2000 s pulse width for a 2500 s pulse period. The

pulses were generated by an HP 33220A programmable

pulse generator which handled the Schrack RA 200006

relay to close and break the loop.

The implemented PSpice battery model on the basis

of electrical model proposed in [8] demonstrates accurate

voltage response and runtime prediction.

6 Experimental Results

Figure 10 presents the graph that is composed of two

curves, one dedicated to the battery charge period (during

80000s up to 3.1V) and the other one to its discharge (dur-

ing 93962s down to 2.1 voltage level) using pulses gener-

ated by the SystemC framework simulating the work of a

Figure 9. Pulse battery discharging (0.2C)

Max error Runtime

Comparison type in voltage error, %

(mV)

0.1C continuous charging 43 0.278

23 mA continuous discharging 34 0.099

0.1C pulse discharging 24 0.352

0.2C pulse discharging 26 0.112

Table 2. Battery model validation results

single node with the 100% duty cycle. The battery dis-

charging is quite smooth at 3.1 to 2.4 voltage range. How-

ever, starting from 2.4 V the discharging curve slumps

quickly.

����� ������ ������� ������ ���� ��	���� 	���� �	���� ����	��������	����

��

����

����

����

	���

��

Figure 10. 100% duty cycle

To carry out the energy consumption experiments we

were charging the battery model during 80000 seconds

up to 3.1 V (we imply two cylindrical type NiMH bat-

teries connected in series). The battery model capacity

was defined as 100mAh. The input discharge pulses for

the battery were generated by sensor node state simulator

presented in this paper. The five discharge profiles were

applied in order to estimate the system life time: 100%,

50%, 50% with doubled discharge and idle pulses, 10%

and 1% duty cycles. Table 3 presents the battery run time

under specified duty cycle. It is obvious that 1% duty cy-

cle is the most economical mode for system use. More-

over, in comparison to both of 50% and 10% duty cycle

experiments this mode is more energy efficient in terms

of utilization of battery charge unit per second. Besides,

two various experiments with 50% battery discharge re-

7

Duty cycle Run time (at 2.1 V)

100% 177962 s

50% 347945 s

50% doubled* 346602 s

10% 1744743 s

1% 17449958 s

*time interval and pulse time are doubled

Table 3. Battery run time

veal that short time pulses lead to the battery life time in-

crease. This fact can be explained by the relaxation effect

of the battery. The experimental results presented in Ta-

ble 3 give a general idea how the discharge pulses rate has

an influence on the system long-term operation.

7 Conclusion

In this paper we present a SystemC-based methodol-

ogy for power consumption evaluation of an individual

node of a wireless sensor network that supports the PBD

paradigm. Firstly, we gave a general overview of the

presented methodology. Then we have applied the new

methodology to perform power consumption estimation

of a case study application running on a TelosB mote in

terms of a battery lifetime. We show that with our frame-

work it is possible to capture the influence of the relax-

ation effect to the battery lifetime.

As for the future work we plan to include simulation

of heterogeneous networks by extending the presented

methodology with additional network layer and provide

ability to model and simulate a network of nodes. Fur-

thermore, the simple (linear) customizable battery model

will be implemented/added as a part of the framework. It

will allow quicker analysis/evaluation of power consump-

tion and lifetime estimation. The other interesting area

is the support of already available WSN frameworks and

OSs. Our main focus is on TinyOS due to its popularity in

WSN community. Currently we are looking for possible

ways to joint TinyOS applications with our Service layer.

Acknowledgment

The authors would like to thank Anton Ageev a PhD

student of the University of Trento for the fruitful discus-

sions on WSN applications and platform architectures.

References

[1] Atmel avr cpu. http://www.atmel.com/.
[2] Micaz, mica2, telosb. http://www.xbow.com/index.aspx.
[3] nesc. http://nescc.sourceforge.net/.
[4] NiMH battery specifiation. http://www.eemb.com/NI-

MH NI-CD battery.html.
[5] Ns-2. http://www.isi.edu/nsnam/ns/.
[6] Omnet++. http://www.omnetpp.org/.
[7] Otcl. http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/.
[8] Powertossim. http://www.eecs.harvard.edu/ shnay-

der/ptossim/.

[9] Ptolemy ii. http://ptolemy.berkeley.edu/ptolemyII/.
[10] TelosB platform. http://www.xbow.com/.
[11] Tinyos. http://www.tinyos.net/.
[12] Visualsense. http://ptolemy.eecs.berkeley.edu/visualsense/.
[13] A. Acquaviva, F. Fummi, G. Perbellini, and D. Quaglia.

A systemc-based framework for modeling and simulation

of networked embedded systems. In Proceedings of the

18th ACM Great Lakes symposium on VLSI, pages 49–54,

Stuttgart, Germany, 23-25 Sept 2008.
[14] A. Bonivento, L. P. Carloni, and A. L. Sangiovanni-

Vincentelli. Platform based design for wireless sensor net-

works. MONET, 11:469–485, 2006.
[15] S. Buller, M. Thele, R. W. D. Doncker, and E. Karden.

Impedancebased simulation models of supercapacitors and

li-ion batteries for power electronic applications. IEEE

transactions on Industrial Applications, 41(3):742 – 747,

May/June 2005.
[16] L. P. Carloni, F. D. Bernardinis, A. L. Sangiovanni-

Vincentelli, and M. Sgroi. The art and science of inte-

grated systems design. In Proceedings of the 28
th Eu-

ropean Solid-State Circuits Conference, ESSCIRC 2002,

Firenze, Italy, September 2002.
[17] M. Chen and G. A. Rincon-Mora. Accurate electri-

cal battery model capable of predicting runtime and iv

performance. IEEE transactions on energy conversion,

21(2):504– 511, June 2006.
[18] E. Cheong, E. A. Lee, and Y. Zhao. Viptos: A graphical

development and simulation environment fortinyos-based

wireless sensor networks.
[19] D. Dennis, V. S. Battaglia, and A.Belanger. Electro-

chemical modeling of lithium polymer batteries. J. Power

Source, 110(2):310–320, August 2002.
[20] F. Fummi, D. Quaglia, and F. Stefanni. A systemc-based

framework for modeling and simulation of networked em-

bedded systems. In Proceedings of Forum on Specifica-

tion, Verification and Design Languages, 2008. FDL 2008,

pages 375–378, Orlando, Florida, USA, 2008.
[21] L. Gao, S. Liu, and R. A. Dougal. Dynamic lithium-ion

battery model for system simulation. IEEE Transactions

Compon. Packag. Technol., 25(3):495–505, Sep. 2002.
[22] S. C. Hageman. Simple pspice models let you simulate

common battery types. Electronics Design, Strategy, News,

pages 17–132, Oct. 1993.
[23] D. S. Iyengar. LSU sensorsimulator user manual, February

2006.
[24] OrCAD. OrCAD PSpice A/D. Online Manual, USA, Oc-

tober 1998.
[25] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli.

Cosi: A framework for the design of interconnection net-

works. Design & Test of Computers, IEEE, 25(5):402–415,

Sept.-Oct. 2008.
[26] D. Rakhmatov, S. Vrudhula, and D. A. Wallach. A model

for battery lifetime analysis for organizing applications on

a pocket computer. IEEE transactions on VLSI Systems,

11(6):1019–1030, Dec. 2003.
[27] P. Rong and M. Pedram. An analytical model for predicting

the remaining battery capacity of lithium-ion batteries. In

Proceedings Design, Automation, and Test in Europe Con-

ference and Exhibition, pages 1148–1149, Munich, Ger-

many, March 2003.
[28] A. L. Sangiovanni-Vincentelli. Defining platform-based

design. EEdesign, February 2002.
[29] L. Song and J. W. Evans. Electrochemical-thermal model

of lithium polymer batteries. J. Electrochemical Society,

147:2086–2095, 2000.
[30] B. L. Titzer and D. K. Lee. Avrora: Scalable sensor net-

work simulation with precise timing.

8

