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Abstract. Euclidean metric is frequently used in Computer Vision, mostly ad-hoc without any justifica-
tion. However we have found that other metrics like double exponential metric or Cauchy one provide better
results, in accordance with the maximum likelihood approach. In this paper we experiment with different
modeling functions for similarity noise and compute the accuracy of different methods using these modeling
functions in three kinds of applications: content-based image retrieval from a large database, stereo matching
and video sequences. We provide a way to determine the modeling distribution which fits best the similarity
noise distribution according to the ground truth. In the optimum case, when one has chosen the best modeling
distribution, its corresponding metric will give the best ranking results for the ground truth provided.
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1 Introduction

In general, image retrieval by content requires algorithms
for extracting and comparing features. Extracted features
from the imagery may be associated with entire digital im-
ages, or perhaps with specific regions of interest that are
identified interactively, semi-automatically, or in a com-
pletely automatic manner. The QBIC effort ([6], [1]) is
one project that has developed several methods for doing
this. As an example, the texture of an image is represented
by a feature vector that can be compared to texture feature
vectors from other database images using Euclidean dis-
tance, thereby allowing the retrieval of images with ”sim-
ilar” textures.

Another feature vector, color content, is typically de-
scribed using a histogram. In [8], a histogram of the col-
ors contained in each image is computed, and a L� met-
ric is used to compare these color histograms. Also, in
[7], efficient techniques for comparing histograms using
quadratic measures of similarity have been proposed. A
method for calculating the similarity between two digital
images using a global signature which includes the tex-
ture, shape and color content is described in [4]. A nor-
malized distance between probability density functions of
feature vectors is used to match signatures. The authors
present four possible distances that can be used to com-
pare signatures without discussing how each of these dis-
tances influences the retrieval results.

In [3] the authors compare different retrieval meth-
ods, using feature vectors composed of projections, Lo-
cal Binary Pattern and 2D-Trigrams, and evaluate image
indexing and retrieval performance for similarity matches
in a large database, as a function of the database size. Sim-
ilar in [5] different methods for image copy location are

compared and evaluated, taking into account their compu-
tational efficiency and accuracy with respect to real noise
experiments.

In some of these applications it was assumed that the
distribution of the similarity noise, defined like pixel-by-
pixel difference between two similar images or their cor-
responding feature elements, is gaussian. In other appli-
cations, even when other metrics than L� were consid-
ered, there were no arguments why these were better.

A general application involving similarity matching
might follow the scheme presented in figure 1. First one
has to establish ground truth and extract the feature vec-
tors to be used for comparison. The associated similarity
noise distribution can be approximated with a modeling
distribution and its associated metric (Lk). In the opti-
mum case, when one has chosen the best modeling distri-
bution, its corresponding metric will give the best ranking
results for the ground truth provided.

1.1 Image Retrieval

In image retrieval the problem of finding the optimum
modeling distribution for the similarity noise distribution
is burdened by the fact that defining a ground truth and de-
termining a testset is difficult. This difficulty is due to the
subjectivity of the task: different users may have a com-
pletely different idea about the similarity of two images.
To have a complete system for the evaluation of the per-
formance of content-based similarity matching one would
like:

� to have a clear definition of similarity

� a noise threshold to distinguish similar from dissim-
ilar
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Figure 1: The steps in a similarity matching algorithm

� to have the right modeling function for similarity
noise, resulting in a corresponding metric to base
ranking on.

Choosing the right modeling function for the noise
is a problem of robust estimation and consists of finding
the maximum likelihood estimator for the defined ground
truth.

1.2 Stereo Matching

This approach could be applied not only to the applica-
tions where the ground truth is defined according to sub-
jectivity but, also in cases where a ground truth is al-
ready known. For instance, in stereo datasets the ground
truth for matching corresponding points may be provided
by the laboratory where these images were taken. This
ground truth is a result of mapping the world coordinates,
in which the camera is moving, to the image coordinates,
using the 3D geometry relations of the scene. In this case
one can test automatic stereo matchers that are able to de-
tect the corresponding point pairs registered in stereo im-
ages of the testset scenes. For this stereo matcher one can
determine the best metric when comparing different im-
age regions to find the similar ones. The optimum metric
in this case will give the most accurate stereo matcher.

1.3 Video sequences

The same approach can be also used for video sequences.
Here we have a dynamic scene due to the camera move-
ment or due to the movement of some objects in the scene.
We have therefore, the neighboring images from the se-
quence being correlated and the closer we get to the cur-
rent image in the sequence, the higher the correlation will
be. The similarity matching in a video sequence can be
used for example in detecting the movement of the objects
in the image and also for obtaining occlusion maps. In this
case the proper metric will also provide the most accurate
results.

Section 2 describes the mathematical support for
maximum likelihood approach. In Section 3 we apply
these theoretical results to determine the influence of the
similarity noise model on the accuracy of the retrieval

methods in a large database. In Section 4 we study the
similarity noise model to be chosen in a stereo matching
application. The same approach is then applied on a video
sequence (Section 5). Conclusions are given in Section 6.

2 Maximum likelihood estimator

From the mathematical-statistical point of view, the prob-
lem of finding the right model for the similarity noise
comes down to the maximization of the similarity prob-
ability.

Consider first, two subsets of M images from the
database (D) : X � D, Y � D which according to the
ground truth are similar:

X � Y (1)

This can be written:

xi � yi� i � �� ����M (2)

where xi � X, yi � Y represent the images from the cor-
responding subsets.

The equation (2) can be further written as:

xi � yi � ni� i � �� ����M (3)

where ni represent the “noise” image obtained as the dif-
ference between the other two images.

In this context the similarity probability can be de-
fined:

P �X�Y � �

MY

i��

fexp����xi� yi��g (4)

where function � is the negative logarithm of the proba-
bility density of the noise.

According to (4) we have to find the probability den-
sity function of the noise that maximizes the similarity
probability: maximum likelihood estimator for the noise
distribution ([2]).

We can further suppose that this noise distribution is
valid for all the database, so using it for all the images in
the database one obtains the best possible ranking results.

In all above considerations, we were talking about
images but this notion can be extended to feature vectors
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associated with the images when we are working with im-
age features or, even, can be extended to pixel values in
the images in the case of stereo matching.

Taking the logarithm of (4) we find that we have to
minimize the expression:

MX

i��

��xi� yi� (5)

In this case, according to (3), the function � depends not
independently on its two arguments, query image xi and
the predicted one yi, but only on their difference. We have
thus a local estimator and we can replace (5) with:

MX

j��

��z� (6)

where z � xi-yi and the operation “-” denotes pixel by
pixel difference between the images, or an equivalent op-
eration in feature space.

We define the derivative of ��z� to be a function
��z� � d��z�

dz
which will occur as a weighting function

when we find the minimum of the expression (5).
In case the noise is gaussian distributed:

Probfxi � yig � exp��xi � yi�
�� (7)

then
��z� � z� ��z� � z (8)

If the errors are distributed as a double or two-sized expo-
nential, namely

Probfxi � yig � exp��jxi � yij� (9)

then, by contrast,

��z� � jzj ��z� � sgn�z� (10)

In this case the maximum likelihood estimator is obtained
by minimizing the mean absolute deviation, rather than
the mean square deviation. Here the tails of the distrib-
ution, although exponentially decreasing, are asymptoti-
cally much larger than any corresponding Gaussian.

A distribution with even more extensive - therefore
sometimes even more realistic - tails is the Cauchy distri-
bution,

Probfxi � yig �
�

a� � �xi � yi��
(11)

where a is a parameter which determines the height and
the tails of the distribution.

This implies

��z� � log�a� � z�� ��z� �
z

a� � z�
(12)

3 Similarity noise in a large image database

One of the problems with query information retrieval sys-
tems is that the result of a query is simply a group of items
that are hopefully interesting to the user (a group of im-
ages that are similar to the query image). Some addi-
tional information, such as similarity scores produced by
the comparison process, might also be returned to allow a
user to gauge the correctness of the result. It is, therefore,
reasonable for a user to pose a question such as, ”Why do
these images look similar ?”. Using a probability density
function approach one can give an objective answer to this
question.

We applied the theoretical results described in Sec-
tion 2 in order to determine the influence of similarity
noise model on the similar image retrieval performance
in the Leiden ��th Century Portrait Database (LCPD).

The LCPD is currently composed of 10165 images
taken during the ��th century, and will be continually
expanded until at least 50,000 images are in the data-
base. Some images are copies of each other. However,
due to different storage conditions, the copies have vary-
ing kinds and differing amounts of degradation. The
degradation varies from intensity and moisture damage to
scratches and writing on the images.

For our experiments we used 268 image pairs from
the database as the ground truth for similarity. They rep-
resent near-copies due to the following reasons:

� all portraits are digitized on a scanner and sam-
pled; the digitization process introduces sampling ar-
tifacts, noise and a number of geometric and photo-
metric degrees of freedom;

� copies within an original set deteriorated differently
over time: some have faded more then others, some
are handled more so they became dirtier or some de-
veloped stains;

� some copies got written on, or have labels pasted on;

� some got cut in size to make them better fit for the a
photo album

According to this ground truth, we determined the
real distribution of the similarity noise considering three
different spaces: intensity space, gradient and features
space. For each of them we tried to match this real distri-
bution best with one of the known distributions: normal,
double exponential, cauchy. We then applied the corre-
sponding similarity noise model to the entire database and
inspected how it affected the retrieval results.

For comparing the retrieval results we used the per-
formance measures given in [3]. We consider the visi-
ble fraction (Fv) that counts how many of the test-pairs
T have counterparts that appear in the top L � �log� n�
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Figure 2: Similarity noise distribution in intensity space modeled by three theoretical distributions

ranks: the number of these visible test-pairs are called
(Tv) and n � database size. So

Fv � Tv�T (13)

and is normalized to lie within [0,1].
A second performance measured is the visible posi-

tion (Pv) that is defined like the ranking accuracy within
the display window.

Pv � �L�Rv���L� �� (14)

whereRv is the average rank for visible test-pairs. Pv lies
within [0,1]; 0 when Rv � L (all test pairs just visible)
and is 1 when Rv � � (all visible test-pairs on top).

Finally as a global measure we use the combined re-
trieval quality Qr:

Qr � �Fv � Pv��� (15)

We will consider that a method provides better re-
sults when Qr is bigger.

3.1 Intensity space

In figure 2 and table 1 we have the matching of the real
similarity noise distribution in the intensity space consid-
ering the three distributions. The dotted lines represent
the measured noise distribution. The approximation er-
ror for the measured noise distribution was calculated us-
ing the Euclidean distance between the two corresponding
distributions.

gauss exp cauchy
0.033 0.013 0.012

Table 1: The approximation error for the measured noise
distribution in intensity space using different modeled dis-
tributions

As one can notice the tails of the real distribution are
prominent so the gaussian distribution cannot be a good
match. Instead, the double exponential distribution and
also, the Cauchy one are more suitable as approximations.
These observations are in accordance with the theory de-
scribed in the section 2.

One expects, therefore, to obtain better overall re-
trieval results using anLc orL� metric than with a ranking
based on L�. As one can see in the first three columns of
table 4 the results according to (13), (14) and (15) confirm
this supposition.

But related to the theory, one could ask about the
value of the parameter a in the Cauchy distribution that
should be used to obtain the best results using this distri-
bution.

We consider the following steps to solve this prob-
lem:

� perform the matching between the measured noise
distribution and the one modeled by a Cauchy dis-
tribution and determine the value of the parameter a
that minimizes the difference between these distrib-
utions.

� use this value of parameter a in the corresponding
metric, Lc.

We were also interested about how the value of this para-
meter will influence the retrieval quality when we use the
Cauchy distribution as a model. This is illustrated in fig-
ure 5(a). One can observe that for a wide scale of values
for parameter a the results usingLc are better that the one
using L�. One can also notice that around the optimum
value for the parameter a (a� 14) the results are the best;
even better that the ones obtained using L�.

3.2 Gradient space

The second space where we examine the influence of the
similarity noise model was the gradient space considering
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Figure 3: Similarity noise distribution in gradient space modeled by three theoretical distributions
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Figure 4: Similarity noise distribution in feature space modeled by three theoretical distributions

the gradient images obtained using a Sobel gradient. We
follow the same steps as before.

gauss exp cauchy
0.1203 0.0698 0.0459

Table 2: The approximation error for similarity noise dis-
tribution in gradient space

The measured noise distribution (figure 3) in this
case is steeper. So, consequently, the error using the
gaussian approximation is even bigger. The retrieval
quality measures reflect this (table 4 and figure 5(b)).
From the table 2 we deduce that the results obtained with
Lc can be better that the one obtained with L�, fact illus-
trated in figure 5(b) around the optimum value for the pa-
rameter.

3.3 Projection space

In the feature space we consider the projection features
from the images. We used average row- and column val-
ues (line integrals) as a feature vector. The procedure in
this case will use the difference distribution between the
corresponding feature elements instead of pixel by pixel
difference distribution. In figure 4 one can see that the
gaussian distribution in this case more closely matches the

measured noise distribution so, the results obtained with
L� will be close to the ones obtained with the other met-
rics. Also one can notice that in this case the double expo-
nential distribution matches the measured noise distribu-
tion better than the Cauchy one, illustrated consequently
in figure 5(c).

gauss exp cauchy
0.0306 0.0228 0.0273

Table 3: The approximation error for the measured noise
distribution in feature space

4 Similarity noise in a stereo matching application

Stereo matching is the process of determining correspon-
dences between entities in related images. One can test
automatic stereo matchers that are able to detect these cor-
respondences. The choice of the optimum metric when
compare different image regions in order to find the sim-
ilar ones will give the most accurate stereo matcher.

We used two standard stereo data sets (Castle set
and Tower set) provided by Carnegie Mellon University.
These datasets contain multiple images of static scenes
with accurate information about object locations in 3D.
The images were taken with a scientific camera in an in-
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Figure 5: Retrieval quality

PbyP-int PbyP-grad Proj-intMethods
L� L� Lc L� L� Lc L� L� Lc

Fv 0.614 0.635 0.650 0.650 0.708 0.750 0.614 0.625 0.620
Pv 0.830 0.872 0.865 0.826 0.903 0.902 0.830 0.851 0.850
Qr 0.722 0.753 0.757 0.738 0.805 0.826 0.722 0.738 0.735

Table 4: Similar image retrieval performance

door setting, the Calibrated Imaging Laboratory at CMU.
The 3D locations are given in X-Y-Z coordinates with a
simple text description (at best accurate to 0.3 mm), and
the corresponding image coordinates (the ground truth)
are provided for all eleven images taken for each scene.
For each image there are provided 28 points as ground
truth in Castle set and 9 points in Tower set.

In this case we already know the ground truth so, ac-
cording to figure 1 we can skip the first two blocks. Even
though in this case the ground truth does not consist of
similar images in a database, we can apply directly the
theory described in section 2. In this case the role of the
database will be played by the total amount of pixels in all
eleven images and the corresponding pixels in these im-
ages will constitute the ground truth. In each of the im-
ages we consider the points which are given by the ground
truth and we want to find the proper similarity noise which
will assure the best accuracy in finding the corresponding
points according to the ground truth.

We cannot use single pixel information but have to
use a region around it. So we will perform template
matching. Our automatic stereo matcher will match a
template defined around one point from an image with the
templates around points in the other images in order to
find similar ones. If the resulting points are equivalent to
those provided by the ground truth we consider that we
have a hit, otherwise we have a miss. The accuracy is
given by the number of the hits divided by the number of
possible hits (number of corresponding point pairs).

Because the ground truth is provided with subpixel

accuracy we consider therefore that we have a hit when
the corresponding point found lies in the neighborhood of
one pixel around the point provided by the ground truth.

The first step is to compute the similarity noise dis-
tribution according to the ground truth. In this case the
similarity noise is defined as the difference between two
corresponding pixels. The following step is to match this
distribution with one of the three distribution and to find
out which fits the best.

Image set gauss exp cauchy
Castle stereo set 0.0486 0.0286 0.0246
Tower stereo set 0.0649 0.0475 0.0387

Table 5: The approximation error for the corresponding
point noise distribution in stereo matching for three dis-
tribution models

We present the corresponding point matching distri-
bution in figure 6. As one can see from the table 5 the
Cauchy distribution fits the the real distribution best. So
one expects the accuracy to be biggest when usingLc (ta-
ble 6). The best values for the accuracy using Lc are ob-
tained around the optimum value computed for the match-
ing step (figure 7).

As one can see from the table 5 the double exponen-
tial and Cauchy distribution results are almost identical
using the first dataset and deviate a bit more using the sec-
ond test set; this is illustrated in the figure 7.
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Figure 6: Noise distribution in the stereo matcher using Castle dataset
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Figure 7: The accuracy of the stereo matcher (%)

Image set gauss exp cauchy
Castle stereo set 91.15 92.53 92.63
Tower stereo set 95.45 96.06 96.46

Table 6: The accuracy of the stereo matcher (%)

5 Similarity noise in a video sequence

We used a video sequence containing 19 images on a talk-
ing head in a static background. For each image in this
video sequence there are provided 14 points as ground
truth.

Unlike in the stereo data sets where we could con-
sider that all the images from a set are similar, here, we
have to take into account that only neighboring images
will be similar. This means that taking a current image in
the sequence the further we consider an image in the se-
quence, the more different it is. In this application we con-
sider only the first order of neighboring (nearest neigh-
bors): we consider to be similar images only the images
which are sequential into the sequence. This means that
for the current image we consider only the previous and

the following one into the sequence.
In this application we also perform a template match-

ing. So we consider a region around one point provided
by the ground truth and try to find automatically the cor-
respondent region in the neighboring images from the se-
quence. If the central pixel of the region found lies in the
neighborhood of one pixel beside the corresponding pixel
provided by the ground truth than we have a hit, otherwise
we have a miss. As in the previous application, the accu-
racy is computed as the number of the hits divided by the
number of possible hits.

We consider the same steps as in the previous appli-
cation. First step is to compute the similarity noise dis-
tribution considering only the corresponding pixel values
into similar regions provided by the ground truth. The fol-
lowing step is then, to find the best fit for this real distrib-
ution taking into account one of the three known distrib-
ution: normal, double exponential, Cauchy. Having now
the right model for the similarity noise we can use conse-
quently the corresponding metric in the similarity match-
ing step. The usage of this metric will assure the best ac-
curacy in matching.

In figure 8 we have the matching of the real similar-
ity noise considering the three distributions. As one can
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Figure 8: Similarity noise distribution in the video sequence modeled by three theoretical distributions (the approxi-
mation error is: (a) 0.0379 ; (b) 0.0376 ; (c) 0.0327)
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sequence (%)

notice the best match is the Cauchy distribution and the
double exponential distribution is a better match than the
normal one. So one expects that the accuracy will be big-
ger when using Lc then when using L� and L�. This is
illustrated in figure 9. One can also notice that the biggest
value for the accuracy when using Lc is obtained around
the value of the parameter a (a=2.88) which assure the
best match between Cauchy distribution and real distrib-
ution.

6 Conclusion

In this paper we showed how to derive a suitable metric
given a visual query problem when ground truth is avail-
able. The final similarity ranking can be improved this
way. From our experienceL� clearly outperformL�. Us-
ing a parametrized metric likeLc one can often further im-
prove the result.

We showed how maximum likelihood estimation can
be successfully applied in content-based query applica-
tions.

It was also shown that the behavior of the perfor-
mance measures given in [3] are in accordance with the
maximum likelihood approach.
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