
DISI - Via Sommarive, 9 - 38123 POVO, Trento - Italy
http://disi.unitn.it

Axiom Pinpointing in Large EL+

Ontologies
via SAT and SMT Techniques

Roberto Sebastiani and Michele Vescovi

April 23, 2015

Technical Report # DISI-15-010 Version 1.0

Under submission to Journal on Artificial Intelligence Research.

Journal of Artificial Intelligence Research 1 (2010) 1-80 Submitted ?/??; published ?/??

Axiom Pinpointing in Large EL+ Ontologies
via SAT and SMT Techniques

Roberto Sebastiani roberto.sebastiani@disi.unitn.it

Michele Vescovi michele.vescovi@disi.unitn.it

DISI, Università di Trento

Via Sommarive 5, I-38123, Povo, Trento, Italy

Abstract

The quest for tractable logic-based languages arising from the field of bio-medical on-
tologies has raised a lot of attention on lightweight (i.e. less expressive but tractable)
description logics, like EL and its family. To this extent, automated reasoning techniques
in these logics have been developed for computing not only concept subsumptions, but
also to pinpoint the (minimal) sets of axioms causing each subsumption. This task, called
axiom pinpointing, allows the user for debugging possibly-huge ontologies, by identifying
the minimal subsets of axioms in the ontology which cause undesired inferences.

In this work we present a novel approach for axiom pinpointing in the logic EL+ and its
sub-logics. In a nutshell, the basic idea is to first encode the full classification of the input
ontology T into a polynomial-size Horn propositional formula φallT ; then, for each subsump-
tion inference ai under analysis, a sequence of sets of literals of φallT —corresponding to
the complete sequence of minimal sets of axioms in the original ontology T from which ai
can be inferred— is enumerated, by exploiting an ad-hoc combination of modern SAT and
SMT techniques.

We have implemented this process into a tool, EL+SAT, and we show in an extensive
empirical evaluation that EL+SAT is extremely efficient in exhaustively enumerating the
minimal sets of axioms, even with huge medical ontologies like Snomed-CT.

1. Introduction

Motivations. In contrast to the trend of the previous two decades (see e.g. Baader,
Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003), in which the research in Descrip-
tion Logic (DL) has focused on investigating increasingly expressive logics, the more recent
quest for tractable logic-based languages arising from the field of bio-medical ontologies
and Semantic Web has attracted in the last years a lot of attention on lightweight (i.e. less
expressive but tractable) Description Logics, like EL and its family (Baader, Brandt, &
Lutz, 2005; Baader, Lutz, & Suntisrivaraporn, 2006b; Baader, Peñaloza, & Suntisrivara-
porn, 2007; Konev, Walther, & Wolter, 2008c; Bienvenu, 2008; Lutz, Toman, & Wolter,
2009; Peñaloza & Sertkaya, 2010b). EL allows for conjunctions, existential restrictions and
supports TBoxes with general concept inclusions; the logic EL+ (Baader et al., 2005, 2006b,
2007) extends EL by adding also complex role-inclusion axioms.

EL+ is of particular relevance due to its algorithmic properties and due to its ca-
pability of expressing several important and widely-used bio-medical ontologies, such as
Snomed-CT (Spackman et al., 1997; Spackman, 2000; Suntisrivaraporn et al., 2007),
NCI (Sioutos et al., 2007), GeneOntology (The G. O. Consortium, 2000) and the major-

c©2010 AI Access Foundation. All rights reserved.

R. Sebastiani & M. Vescovi

ity of Galen (Rector & Horrocks, 1997). For example, according to IHTSDO1, Snomed-
CT2 “is the most comprehensive, multilingual clinical terminology in the world. The use
of a standard clinical terminology makes a significant contribution towards improving the
quality and safety of healthcare by enabling consistent representation of meaning in an elec-
tronic health record.” Notice that some of these ontologies are very large (e.g., Snomed-CT
has more than 300,000 axioms).

Unfortunately, often large ontologies contain incongruences, that is, they may allow for
inferring undesired logical implications, which are not coherent with the domain knowledge
the ontology aims at representing. For instance, in previous versions of Snomed-CT, the
concept “Amputation of finger” could be established to imply “Amputation of upper limb”
(see Baader & Suntisrivaraporn, 2008). (This bug was eventually fixed in later editions of
the ontology.) Obviously the presence of such incongruences can be a very-serious problem
in actual applications of ontologies like Snomed-CT. (E.g., consider a hypothetical legal
controversy between an insurance company and a finger amputee who, in principle, could
claim the much-higher reimbursement for an upper-limb amputation.) It is thus of primary
importance to have automated devices able not only to efficiently derive implications be-
tween concepts, but also to precisely and efficiently identify the erroneous sets of axioms
causing an undesired implication.

The Problem. Given an EL+ ontology T , concept subsumption is the problem of deciding
if a concept C is a subconcept of another concept D in T (e.g., “is Amputation-of-Finger
a subconcept of Amputation-of-Upper-Limb in Snomed-CT?”). Classification is the
problem of inferring all the subsumptions among atomic concepts which can be derived
from the axioms. Both concept subsumption and classification can be done, e.g., by inferring
from T the subsumption(s) in the form C v D by means of applying ad-hoc completion
rules (Baader & Suntisrivaraporn, 2008). Notice that, once the classification is computed,
concept subsumption reduces to checking if a subsumption is contained in the classification.

Axiom pinpointing is the problem of finding one (respectively some or all)minimal subset
of axioms in T from which C v D can be inferred (e.g., “Find a minimal set of axioms in
Snomed-CT which are responsible for the fact that Amputation-of-Finger is established
to be a subconcept of Amputation-of-Upper-Limb?”, Baader & Suntisrivaraporn, 2008).
Following Baader and colleagues, we call these sets “MinA”s (“Minimal Axiom sets)”.
More informally, axiom pinpointing is the problem of finding one (respectively some or
all) minimal explanation(s) for a (typically undesired) concept-subsumption relation which
can be derived from the ontology. Importantly, in EL+ not only concept subsumption and
classification, but also the problem of finding one MinA are tractable (Baader et al., 2007;
Peñaloza & Sertkaya, 2010b). Therefore, axiom pinpointing in EL+ is used for debugging
complex bio-medical ontologies, like those mentioned above (see, e.g., Baader, Lutz, &
Suntisrivaraporn, 2006a; Baader & Suntisrivaraporn, 2008; Suntisrivaraporn, 2009).

Goals and Proposed Approach. We start noticing that the problem of axiom pinpoint-
ing in EL+ is characterized by the simplicity of the logical constructors of EL+ on the
one hand, and by the potential huge dimensions of the ontologies on the other hand. This
suggests that SAT-based techniques should be natural candidates to approach this problem.

1. International Health Terminology Standards Development Organization, http://www.ihtsdo.org/.
2. Systematized NOmenclature of MEDicine - Clinical Terms.

2

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

In this work —which was presented in a preliminary form at CADE-22 conference (Se-
bastiani & Vescovi, 2009b)— we build on previous work from the literature of EL+ reasoning
(Baader et al., 2006b, 2007; Baader & Suntisrivaraporn, 2008) and of SAT and SMT (see
e.g. Biere, Heule, van Maaren, & Walsh, 2009; Barrett, Sebastiani, Seshia, & Tinelli, 2009),
and we propose a novel approach to axiom pinpointing in EL+ and its sub-logics, which
exploits an ad-hoc combination of SAT and SMT techniques.

Our idea is to first encode the full classification of the input ontology T into a polynomial-
size Horn propositional formula φallT , representing the deduction steps performed by the
classification algorithms proposed by Baader et al. (2006b, 2007). φallT is such that

• atomic propositions label concepts and inferred subsumption relations from T , and

• Horn clauses encode subsumption relations and applications of completion rules.

(Importantly, φallT is computed only once.) Then concept subsumption and, more interest-
ingly, axiom pinpointing is directly performed by Boolean reasoning steps on φallT :

(i) Concept-subsumption checks are performed by simply asserting axiom-labelling propo-
sitions and by applying standard Boolean Constraint Propagation (BCP) (Moskewicz,
Madigan, Zhao, Zhang, & Malik, 2001), on φallT , exploiting the SAT under assumptions
technique by Eén and Sörensson (2004).

(ii) For each subsumption relation ai derivable from T , (the labelling propositions of) one
minimal subset of axioms in T which allow to derive ai (a MinA) is computed very
efficiently by exploiting conflict analysis under assumptions (Moskewicz et al., 2001;
Eén & Sörensson, 2004), using an ad-hoc technique which is inspired by those used
for the extraction of unsatisfiable cores in SAT and in SMT (e.g. Lynce & Silva, 2004;
Cimatti, Griggio, & Sebastiani, 2011).

(iii) The enumeration of some or all MinAs for ai is performed efficiently by an ad-hoc
technique which is inspired to the All-SMT approach of (Lahiri, Nieuwenhuis, & Oliveras,
2006), where the ontology T plus other information is implicitly used as background
“theory”.

Notice that (iii) requires building a polynomial-size formula φallT , in contrast to the exponential-
size formula required by the process described in (Baader et al., 2007).

In the short version of the paper (Sebastiani & Vescovi, 2009b), we implemented the
three functionalities above into a tool called EL+SAT and performed a preliminary em-
pirical evaluation on the available ontologies. The results showed empirically that, thanks
to the exploitation of the techniques implemented inside a modern SAT solver, concept
subsumption (i) and one-MinA discovery (ii) are both performed instantaneously even with
huge ontologies, confirming thus the potential of our novel approach. Unfortunately, the
performances in the full enumeration of MinAs (step (iii)) were far from satisfactory yet.

In this paper we have refined the techniques for single-MinA pinpointing (ii) and, more
importantly, we have aggressively attacked the problem of full enumeration of MinAs (iii).

First, we have developed and implemented a new SAT-based modularization technique
—which we call Cone-of-influence (COI) Modularization because it is inspired to the cone-
of-influence reduction used in Model Checking (see e.g. Clarke, Grumberg, & Peled, 1999)—

3

R. Sebastiani & M. Vescovi

computing instantaneously from φallT the subset of (the labeling propositions of) all the
axioms which are potentially relevant for the inference of a goal subsumption ai. This
aims at drastically reducing the search space in the enumeration of MinAs. We also show
both theoretically and empirically that the axiom subset obtained by COI modularization
is always a subset of that computed by the modularization technique introduced by Baader
& Suntisrivaraporn, 2008; Suntisrivaraporn, 2009.

Second, we have developed and implemented a SMT-like theory propagation technique (see
e.g., Sebastiani, 2007) which allows for discovering the MinAs much earlier.3

Third, we have decomposed All-MinA enumeration into a three-phase process: (a) com-
pute the subset T ′ of all potentially-relevant axioms by COI modularization; (b) compute
from scratch from T ′ the new formula φallT ′ ; (c) perform the All-MinA enumeration (iii) on
φallT ′ instead of on φallT . Notice that typically T ′ and φallT ′ are order of magnitude smaller
than T and φallT respectively, so that step (b) is immediate and hence All-MinA enumeration
requires exploring a dramatically-smaller search space.

We have run a very-extensive empirical evaluation of EL+SAT on the four ontologies
above, comparing the various versions of EL+SAT with one another and with the state-of-
the-art tool CEL (Baader et al., 2006a), showing that the renewed version of EL+SAT is
extremely efficient in exhaustively enumerating all MinAs, even with huge ontologies.

Content. The rest of the paper is organized as follows. In Section 2 we give the necessary
background for the comprehension of this work; in particular, in Section 2.1 we introduce the
description logic EL+ and we present the previous approach to classification, modularization
and axiom pinpointing in the logic EL+; in Section 2.2 we provide the necessary notions
about SAT and All-SMT techniques. In Section 3 we present the basic version of our
SAT-/All-SMT-based procedures for concept subsumption and axiom pinpointing (both for
extracting one or for enumerating all the MinAs). In Section 4 we introduce important
improvements to our techniques for enumerating all the MinAs. In Section 5 we present an
extensive empirical evaluation of our MinA-enumeration techniques. In Section 6 we survey
the main related work. Finally, in Section 7 we summarize the main contributions of this
work and we draw our conclusions.

For conciseness and readability, we have moved the proofs of all the theoretical results
into Appendix A and the less-prominent part of our empirical results into Appendix B.
Note for reviewers. This paper is quite long, mostly due to the following facts.

First, we have included a very long background section (Section 2). This is due to the
fact that this work bridges the expertise of the DL and SAT/SMT communities, and we
cannot assume that one reader from one community has also the necessary background in
the other. (However, a reader can easily skip a part which is already on his/her expertise.)

Second, to improve comprehension, the paper contains more than 20 incremental exam-
ples, which help introducing progressively the main concepts and algorithms.

Third, for the reviewers’ convenience, we have included a very long appendix (A and
B), containing the proofs of the theorems, and 10 pages of tables of empirical results (which
are summarized in the main sections). If this paper is accepted, this appendix will be moved
into an online appendix, drastically reducing the size of the camera-ready version.

3. The main ideas about theory propagation were also suggested in (Sebastiani & Vescovi, 2009b), but they
were not implemented there.

4

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

2. Background

In this section we provide the background knowledge on the reasoning in the description
logic EL+ (Section 2.1) and on the Boolean reasoning techniques (Section 2.2) which is
necessary for the full understanding of the paper.

2.1 Classification, Subsumption and Axiom Pinpointing in EL+

We overview the main notions concerning the logic EL+ and the problem of solving concept
subsumption, classification, and axiom pinpointing in it.

2.1.1 The Logic EL+.

The description logic EL+ belongs to the EL family, a group of lightweight description
logics which allow for conjunctions, existential restrictions and support general concept
inclusions’ TBoxes (Baader et al., 2006b); EL+ extends EL adding complex role inclusion
axioms. In more details, the concept descriptions in EL+ are inductively defined through
the constructors listed in the upper part of Table 1 at p. 7, starting from a set of primitive
concepts and a set of primitive roles. (We use the uppercase letters X, Xi, Y , Yi, to denote
generic concepts, the uppercase letters C, Ci, D, Di, E, Ei to denote concept names and
the lowercase letters r, ri, s to denote role names.)

An EL+ TBox (or ontology) is a finite set of general concept inclusion (GCI) and role
inclusion (RI) axioms as defined in the lower part of Table 1 at p. 7. If A is a generic set
of concept inclusions, we denote by |A| (the size of A) the number of axioms in A. Given
a TBox T , we denote with PCT the set of the primitive concepts for T , i.e. the smallest
set of concepts containing: (i) the top concept >, and (ii) all concept names used in T . We
denote with PRT the set of the primitive roles for T , i.e. the set of all the role names used
in T . We use the expression X ≡ Y as an abbreviation of the two GCIs X v Y and Y v X.
The peculiarity of EL+ w.r.t. its sub-logic EL is that it allows for complex role inclusion
axioms with composition. This is of particular relevance because it can be used to express
not only role hierarchy (e.g., r v s) but also important role properties such us transitivity
(e.g., r ◦ r v r) and right or left-identity (e.g., respectively r ◦ s v r or s ◦ r v r). With a
small abuse of notation, in the examples we represent role inclusions with the symbol vr,
in order to better distinguish RIs from GCIs axioms.

Formally, the signature of a concept [resp. role, axiom, axiom set], denoted with signature(),
is the set of all the concept and role names occurring in the description of the concept [resp.
role, axiom, axiom set]. In particular the signature of a TBox T , signature(T), is the set of
concept and role names occurring in T : signature(T) = PCT ∪ PRT .

5

R. Sebastiani & M. Vescovi

Example 2.1. We consider the following small EL+ ontology in the medical domain
adapted from the one proposed by Suntisrivaraporn (2009), which we also call Omed.

4

Appendix v BodyPart u ∃partOf.Intestine a1

Endocardium v Tissue u ∃partOf.HeartValve a2

Pericardium v Tissue u ∃containedIn.Heart a3

Appendicitis v Inflammation u ∃hasLocation.Appendix a4

Endocarditis v Inflammation u ∃hasLocation.Endocardium a5

Pericarditis v Inflammation u ∃hasLocation.Pericardium a6

Inflammation v Disease u ∃actsOn.Tissue a7

Disease u ∃hasLocation.Heart v HeartDisease a8

HeartDisease v ∃hasState.NeedsTreatement a9

partOf ◦ partOf vr partOf a10

hasLocation ◦ containedIn vr hasLocation a11

The signature of the whole ontology Omed is signature(Omed) = {Appendix,BodyPart, Intes-
tine, Endocardium, Tissue, HeartValve, Pericardium, Heart, Appendicitis, Inflammation, Endo-
carditis, Pericarditis, Disease, HeartDisease, NeedsTreatement} ∪ {partOf, containedIn, actsOn,
hasLocation, hasState}.

The ontology expresses the relations between some kinds of inflammatory disease and
body parts or their states. Notice that the ontology is made of nine GCIs and two RIs. In
particular the RI axiom a10 express the transitivity of partOf while a11 is a right-identity
which express the fact that everything that has location in some body part which is con-
tained in a more general body part is located also in that second body part. 3

The semantics of EL+ is defined in terms of interpretations. An interpretation I is a
couple I = (∆I , ·I), where ∆I is the domain, i.e. a non-empty set of individuals, and ·I is
the interpretation function which maps each concept name C to a set CI ⊆ ∆I and maps
each role name r to a binary relation rI ⊆ ∆I ×∆I . In the right-most column of Table 1
at p. 7 the inductive extensions of ·I to arbitrary concept descriptions are defined. An
interpretation I is a model of a given TBox T if and only if the conditions in the Semantics
column of Table 1 at p. 7 are respected for every GCI and RI axiom in T . A TBox T ′ is a
conservative extension of the TBox T if every model of T ′ is also a model of T , and every
model of T can be extended to a model of T ′ by appropriately defining the interpretations
of the additional concept and role names.

Given the concepts X and Y , Y subsumes X w.r.t. the TBox T , written X vT Y (or
simply X v Y when it is clear to which TBox we refer to), iff XI ⊆ Y I for every model
I of T . The computation of all subsumption relations between concept names occurring
in T is called classification of T . Concept subsumption and classification in EL+ can be
performed in polynomial time (Baader et al., 2005, 2007). In particular, Baader et al. (2005,
2007) solved the problem of classifying an EL+ TBox as a subcase of the polynomial-time

4. We stress that all the sample ontologies included in this work are used only to clarify some points of the
exposition. We neither care they are completely inclusive of their specific domains nor we care care about
the correctness of these (sub)ontologies, both from the medical and the ontology-design perspective.

6

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Syntax Semantics

top > ∆I

conjunction X u Y XI ∩ Y I

existential restriction ∃r.X {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ XI}
general concept inclusion X v Y XI ⊆ Y I

role inclusion r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIk ⊆ sI

Table 1: Syntax and semantics of EL+.

algorithm for concept subsumption in which all the possible concept subsumptions in the
TBox are deduced.

2.1.2 Normalization.

In EL+ it is convenient to establish and work with a normal form of the input problem,
which helps to make explanations, proofs, reasoning rules and algorithms simpler and more
general. Usually the following normal form for the EL+ TBoxes is considered (Baader et al.,
2005, 2006b; Baader & Peñaloza, 2007; Baader et al., 2007):

(C1 u ... u Ck) v D k ≥ 1 (1)

C v ∃r.D (2)

∃r.C v D (3)

r1 ◦ · · · ◦ rn v s n ≥ 1 (4)

such that C1, . . . , Ck, D ∈ PCT and r1, . . . , rn, s ∈ PRT . A TBox T can be turned into
a normalized TBox T ′ that is a conservative extension of T (Baader et al., 2005), by
introducing new concept names. In a nutshell, normalization consists in rewriting axioms
in the form C v C1 u . . . u Cn into C v C1, . . . , C v Cn, and in substituting, when
needed, instances of complex concepts of the forms ∃r.C and C1u ...uCk with fresh concept
names (namely, C ′ and C ′′), adding the axioms C ′ v ∃r.C [resp. ∃r.C v C ′] and C ′′ v
C1, . . . , C

′′ v Ck [resp. (C1 u . . . u Ck) v C ′′] for every complex concept substituted in
the right [resp. left] part of an axiom. The normal TBox T ′ resulting from this process is
composed of two kinds of axioms:

• some top-level axioms representing the original axioms of T (with complex sub-
concepts substituted by the fresh concept names);

• some definition axioms representing the labeling of complex sub-concepts with the
newly introduced concept names.

If a complex concept appears on the same side (left or right) of different axioms only one
definition axiom is necessary.

Normalization can be performed in linear time w.r.t. the size of T , and the size of T ′

is linear w.r.t. that of T (Baader et al., 2005). We call normal concept of a normal TBox
T ′ every non-conjunctive concept description occurring in the concept inclusions of T ′; we
call NCT ′ the set of all the normal concepts of T ′. (I.e., the set NCT ′ consists in all the
concepts of the form C or ∃r.C, with C ∈ PCT ′ and r ∈ PRT ′ .)

7

R. Sebastiani & M. Vescovi

Example 2.2. The following set of axioms, that we call Omilk, is adapted from a fragment
of the ontology not-Galen, and represents some facts and relationships concerning the
concept Milk:

BodyFluid v Fluid m1

Liquid v Fluid m2

BodyFluid ≡ BodySubstance u ∃hasPhysicalState.liquidState m3

BodySubstance v Substance m4

Milk v BodySubstance m5

Milk v ∃hasPhysicalState.liquidState m6

Milk v ∃isActedOnSpecificallyBy.(Secretion u ∃isFunctionOf.Breast) m7

SecretedSubstance ≡ Substance u ∃isActedOnBy.Secretion m8

Liquid ≡ Substance u ∃hasPhysicalState.liquidState m9

liquidState ≡ PhysicalState u ∃hasState.liquid m10

isActedOnSpecificallyBy vr isActedOnBy m11

We consider the normalization of axioms m3 and m7. Since m3 is an equivalence, it is split
into a couple of inclusion axioms:

BodyFluid v BodySubstance u ∃hasPhysicalState.liquidState m3a

BodySubstance u ∃hasPhysicalState.liquidState v BodyFluid m3b.

Then we split m3a into two distinct axioms and introduce a primitive concept N labeling
∃hasPhysicalState.liquidState. The resulting normalization is:

BodyFluid v BodySubstance

BodyFluid v N

N v ∃hasPhysicalState.liquidState
BodySubstance u N v BodyFluid

∃hasPhysicalState.liquidState v N.

The first, second and fourth axioms are top-level ones, whilst the third and fifth are defini-
tions of N.

The normalization of m7 requires the introduction of another fresh concept name M
labeling (Secretion u ∃isFunctionOf.Breast). The definition ofM is then split into two axioms:

Milk v ∃isActedOnSpecificallyBy.M
M v Secretion

M v ∃isFunctionOf.Breast.

3

8

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Subsumption assertions (. . . ∈ A) TBox’s axioms (. . . ∈ T) ... added to A
X v C1, X v C2, . . . , X v Ck k ≥ 1 C1 u · · · u Ck v D X v D

X v C C v ∃r.D X v ∃r.D
X v ∃r.E, E v C ∃r.C v D X v D

X v ∃r.D r v s X v ∃s.D
X v ∃r1.E1, . . . , En−1 v ∃rn.D n ≥ 2 r1 ◦ · · · ◦ rn v s X v ∃s.D

Table 2: Completion rules of the concept subsumption algorithm for EL+. A rule reads
as follows: if the assertions/axioms in the left column belong to A, the GCI/RI
of the central column belongs to T , and the assertion of the right column is not
already in A, then the assertion of the right column is added to A.

2.1.3 Concept Subsumption in EL+.

Given a normalized TBox T over the set of primitive concepts PCT and the set of primitive
roles PRT , the subsumption algorithm for EL+ proposed by Baader et al. (2007) gener-
ates and extends a set A of assertions through the completion rules defined in Table 2
at p. 9. By “assertion” we mean every known or deduced subsumption relation between
normal concepts of the TBox T . The algorithm starts with the initial set A = {ai ∈
T | ai is a GCI} ∪ {C v C, C v >| C ∈ PCT } and extends A using the rules of Table 2 at
p. 9, until no more assertions can be added. (Notice that a rule is applied only if it extends
A.) We call propositional completion rules the first two completion rules in Table 2 at p. 9,
and non-propositional completion rules the other three rules.

Example 2.3. We report all the subsumption relations that can be inferred in Omed (Ex-
ample 2.1 at p. 5) from its original axioms. Once Omed is turned into normal form its full
classification AOmed

is the following:

Appendix v BodyPart a′1 Appendix v ∃partOf.Intestine a′′1

Endocardium v Tissue a′2 Endocardium v ∃partOf.HeartValve a′′2

Pericardium v Tissue a′3 Pericardium v ∃containedIn.Heart a′′3

Appendicitis v Inflammation a′4 Appendicitis v ∃hasLoc.Appendix a′′4

Endocarditis v Inflammation a′5 Endocarditis v ∃hasLoc.Endocardium a′′5

Pericarditis v Inflammation a′6 Pericarditis v ∃hasLoc.Pericardium a′′6

Inflammation v Disease a′7 Inflammation v ∃actsOn.Tissue a′′7

Disease t New v HeartDisease a′8 ∃hasLoc.Heart v New a0

HeartDisease v ∃hasState.NeedsTreat. a9

Appendicitis v Disease b1 r1(a
′
4, a

′
7) Appendicitis v ∃actsOn.Tissue b2 r2(a

′
4, a

′′
7)

Endocarditis v Disease b3 r1(a
′
5, a

′
7) Endocarditis v ∃actsOn.Tissue b4 r2(a

′
5, a

′′
7)

Pericarditis v Disease b5 r1(a
′
6, a

′
7) Pericarditis v ∃actsOn.Tissue b6 r2(a

′
6, a

′′
7)

Pericarditis v ∃hasLoc.Heart b7 r5(a
′′
6 , a

′′
3 , a11) Pericarditis v New b8 r3(b7, a0)

Pericarditis v HeartDisease b9 r1(b5, b8, a
′
8) Pericarditis v ∃hasState.NeedsTreat. b10 r2(b9, a9)

In particular, the first seventeen GCIs (a′1, a
′′
1, . . . , a

′
8, a0, a9 in the first nine rows) plus the

two RIs a10
def
= partOf ◦ partOf v partOf and a11

def
= hasLocation ◦ containedIn v hasLocation

compose the normalization of Omed. We labeled a′i (and a′′i) the normal-form top-level

9

R. Sebastiani & M. Vescovi

axiom(s) resulting from the normalization of the original axiom ai (see Example 2.1 at p. 5),
while we labeled a0 the new definition axiom introduced in order to normalize a8. Next we
labeled bj every other subsumption relation (assertion) inferred through the classification
algorithm above exposed, with j = 1, 2, . . . 10 following the inference order of the algorithm.
In particular, for each new assertion inferred we show the index of the completion rule of
Table 2 at p. 9 applied (r1 for the first rule, r2 for the second, and so on and so forth) and
the label of its necessary premises in between parenthesis. For instance, the new assertion
b9 is inferred applying a ternary instance of the first completion rule of Table 2 at p. 9,
where the premises of the rule are the other assertions b5, b8 and the axiom a′8. Finally,
notice that three premises are necessary in order to infer b8 via the third completion rule
r3, but the second assertion is the trivial inclusion Heart v Heart. 3

Baader et al. (2005) proved the soundness and the completeness of the algorithm together
with the fact that the algorithm terminates after polynomially-many rule applications, each
of which can be performed in polynomial time. Intuitively, since the number of concept and
role names is linear in the size of the input TBox, the algorithm cannot add to A more than
the cardinality of PCT ×PCT ×PRT assertions. Thus, since no rule removes assertions from
A, the algorithm stops after at most a polynomial number of rule applications. Moreover,
every rule application can be performed in polynomial time.

Once a complete classification of the normalized TBox is computed and stored in some
ad-hoc data structure, if C,D ∈ PCT , then C vT D iff the pair C,D can be retrieved from
the latter structure. The problem of computing X vT Y s.t. X,Y 6∈ PCT can be reduced
to that of computing C vT ∪{CvX,YvD} D, s.t. C and D are two new concept names.

2.1.4 Axiom Pinpointing in EL+.

We recall one important definition (Baader et al., 2007).

Definition 1 (nMinA, MinA). Consider the subsumption relation Ci vT Di, with Ci, Di ∈
PCT . If Ci vS Di for some set S ⊆ T of axioms, then S is called an axiom set (nMinA) for
Ci v Di w.r.t. T . If Ci 6vS′ Di for every S ′ s.t. S ′ ⊂ S, then S is called a minimal axiom
set (MinA) for Ci v Di w.r.t. T .

Example 2.4. In the ontologyOmilk of Example 2.2 at p. 8, a MinA forMilk v SecretedSubstance
w.r.t. Omilk is given by the original axioms {m4,m5,m7,m8,m11}.5 In particular, m4 and
m5 are necessary to infer Milk v Substance, while from (the normalization of) m7 and m11,
it follows that Milk v ∃isActedOnBy.Secretion. Finally Milk v SecretedSubstance can be
inferred from the two previous premises and the definition of SecretedSubstance in m8. 3

Baader et al. (2007) proposed a technique for computing all MinAs for Ci vT Di w.r.t.
T : during the classification of T , a pinpointing formula (namely ΦCivT Di) is built, which

is a monotone propositional formula 6 on the set of variables PT
def
= {s[axj] | axj ∈ T }

s.t., for every O ⊆ T , O is a MinA for Ci vT Di iff {s[axi] | axi ∈ O} is a minimal

valuation of ΦCivT Di . In a nutshell, the process of building ΦCivT Di works as follows. Every
axiom axj ∈ T is encoded with a propositional variable s[axj] and every deduced assertion

5. This is the only MinA for this subsumption in Omilk.
6. A monotone propositional formula is a propositional formula whose only connectives are ∧ and ∨.

10

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

aj ∈ A is encoded into a monotone propositional formula. Consider each application of a
completion rule r during the classification of T , and let φr be the conjunction of the labels
(i.e. variables and monotone formulas) of the axioms and the assertions in the preconditions
of r (respectively). If a new assertion is deduced as consequence of r, then it is labeled with
the formula φr. Otherwise, if the assertion in the consequence of r is already in A and it is
labeled with ψ, then its label is updated with ψ∗ = ψ ∨ φr, unless φr |= ψ.

The Baader et al.’s (2007) all-MinAs algorithm consists thus in (i) building ΦCivT Di

and (ii) computing all minimal valuations of ΦCivT Di . This algorithm, however, has serious
limitations in terms of complexity: first, the algorithm for generating ΦCivT Di requires in-
termediate logical checks, each of them involving the solution of an NP-complete problem;
second, the size of ΦCivT Di can be exponential w.r.t. that of T (Baader et al., 2007). More
generally, Baader et al. (2007) proved also that there is no output-polynomial algorithm for
computing all MinAs (unless P=NP). (To the best of our knowledge, there is no publicly-
available implementation of the all-MinAs algorithm above.) Consequently, Baader et al.
(2007) concentrated the effort on finding polynomial algorithms for finding one MinA at a
time, proposing a linear-search minimization algorithm which allowed for finding MinAs for
full-Galen efficiently. This technique was further improved by Baader and Suntisrivara-
porn (2008) by means of a binary-search minimization algorithm, and by a novel algorithm
exploiting the notion of reachability-modules, which allowed to efficiently find MinAs for the
much bigger Snomed-CT ontology. We refer the readers to the literature (Baader et al.,
2007; Baader & Suntisrivaraporn, 2008) for a detailed description.

Furthermore, Suntisrivaraporn, 2009 solved the all-MinAs problem with a different ap-
proach based on the techniques of the Hitting Set Tree (HST), where the universal set is
the whole ontology and the set of the all MinAs is collection of the minimal subsets to be
found. In particular the hitting set tree is expanded along the algorithm computing, at the
end, all the MinAs for the given subsumption. In this approach the optimized algorithm
and the linear minimization algorithm exposed above are used as subroutines to initialize
the algorithm and to minimize the resulting sets respectively. However, also this techniques
has the major drawback of performance in large-scale ontologies.

Therefore, the above technique has been implemented in combination with the reachability-
based module-extraction technique (Suntisrivaraporn, 2009), which drastically reduces the
search space of the HST algorithm. We briefly describe such technique in Section 2.1.5,
referring the readers to the literature (Suntisrivaraporn, 2009) for a much more detailed
explanation.

2.1.5 Axiom Pinpointing with Reachability-based Modularization in EL+

Real-world (medical) EL+ ontologies are often huge in size (e.g., Snomed-CT’09 has more
than 300,000 axioms). Thus, despite the low complexity of the pinpointing problem in EL+,
the handling of such ontologies is out of the reach of the pinpointing algorithms described
in previous sections.

Luckily, for a given subsumption assertion ai
def
= Ci v Di which can be derived from

T , it is typically the case that only a minority of the axioms in T may have any role
in any derivation of ai. Thus, a key idea is to identify a priori a strict subset Mai of
T which is sufficient to perform every possible derivation of ai. (Hence Mai contains

11

R. Sebastiani & M. Vescovi

every MinA for ai.) Mai is called a module and the process of producing it is called
modularization. Different forms of modularization have been proposed in literature (Noy
& Musen, 2003; Seidenberg & Rector, 2006; Grau, Horrocks, Kazakov, & Sattler, 2007;
Konev, Lutz, Walther, & Wolter, 2008a, 2008b; Suntisrivaraporn, Qi, Ji, & Haase, 2008),
including semantic or syntactic and logic-based or not. In particular, in order to improve the
efficiency of axiom-pinpointing algorithms in EL+ described in previous sections, Baader and
Suntisrivaraporn (2008) proposed the reachability-based modularization technique (see also
Suntisrivaraporn, 2009) that has been lately extended to harder logics by Suntisrivaraporn
et al. (2008).

We recall from the work of Suntisrivaraporn (2009) the basic facts about reachability-
based modularization.

Definition 2 (Σ-reachable symbols, axioms, reachability-based module). Given an EL+

TBox T and a signature Σ ⊆ signature(T), the set of the Σ-reachable symbols of T is
recursively defined as follows:

(i) every symbol x ∈ Σ is Σ-reachable;

(ii) for every axiom Ĉ v D̂ of T , if all the symbols in signature(Ĉ) are Σ-reachable, then
all symbols y ∈ signature(D̂) are Σ-reachable.

Given the set of the Σ-reachable symbols, an axiomn Ĉ v D̂ ∈ T is a Σ-reachable axiom of
T if x is Σ-reachable for every symbol x ∈ signature(Ĉ). The Σ-reachability-based module
for Σ in T , denoted by Mreach

Σ , is the set of all the Σ-reachable axioms of T . 3

(With a little abuse of notation, if Σ consists only of a single concept name C, then we
denote its reachability-based module by Mreach

C rather than by Mreach
{C} .)

Example 2.5. Consider again the ontology Omed in Example 2.1 at p. 5. The reachability-
based module for the signature ΣPericarditis is Mreach

Pericarditis = {a3, a6, a7, a8, a9, a11}. In fact,
starting from the symbol Pericarditis, axiom a6 is included in the module and the symbols
Pericarditis, Inflammation, hasLocation and Pericardium are marked as ΣPericarditis-reachable.
From Pericardium and Inflammation, axioms a3 and a7 are included in the module and hence
Tissue, containedIn, Heart Disease, actsOn are added to the ΣPericaridits-reachable symbols.
The three left-side symbols of a8 (i.e. Disease, hasLocation, Heart) are now ΣPericaridits-
reachable, so that a8 is also added to the module. Hence HearthDisease becomes ΣPericaridits-
reachable, so that a9 is added to the module, making HasState, NeedsTreatment ΣPericaridits-
reachable. Moreover, since both containedIn and hasLocation are ΣPericaridits-reachable, then
also a11 is added to the module. No other axiom can then be added to the module. 3

Intuitively, an axiom ax of T is included in the reachiability-based module Mreach
Σ for Σ

if and only if the symbols of Σ syntactically refer to the symbols in ax, either directly or
indirectly via other axioms of T . All the axioms which are thus “syntactically connected”
to Σ are included in the reachability-based module for Σ.

Notice that the reachability-based modularization is a purely syntactic technique, be-
cause the semantic of the axioms and of the operators involved are not considered in the
construction of the modules. Moreover, notice that this modularization techiniques is fully
independent from the completion rules used in the classification of T . In the following

12

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

we will refer to this technique either calling it reachability-based modularization or (more
generically) syntactic modularization.

Property 1. Let Σ be a signature on the TBox T , and let Ĉ, D̂ be arbitrary EL+ concept
descriptions such that signature(Ĉ) ⊆ Σ. Then Ĉ vT D̂ if and only if Ĉ vMreach

Σ
D̂. 3

Thus, for every subsumption relation C vT D, the process of axiom pinpointing plus
reachability-based modularization for ai consists in:

(i) computing the reachability-based module Mreach
C ,

(ii) applying the axiom pinpointing algorithm to Mreach
C instead than to T .

Suntisrivaraporn (2009) computes reachability-based modules through a queue-based al-
gorithm which iteratively adds axioms to the initially empty module, starting from the
given input signature. The algorithm is shown to be quadratic w.r.t. |T |. However, if
|Mai | << |T | (as it is often the case), then the modularizatin process can drastically
improve the efficiency of the pinpointing process.

2.2 Basics on CDCL SAT Solving

For the best comprehension of the content of the next sections, we recall some notions on
SAT and Conflict-Driven Clause-Learning (CDCL) SAT solving which are necessary for the
comprehension of our work. For a much deeper description, and for other advanced SAT
techniques which are not useful for our discourse, we refer the reader to the literature (e.g.,
Silva & Sakallah, 1996; Zhang & Malik, 2002; Eén & Sörensson, 2004; Lynce & Silva, 2004;
Eén & Biere, 2005; Biere, 2008).

2.2.1 Basics on SAT and Notation.

We assume the standard syntactic and semantic notions of propositional logic. Given a
non-empty set of primitive propositions P = {p1, p2, . . .}, the language of propositional
logic is the least set of formulas containing P and the primitive constants > and ⊥ (“true”
and “false”) and closed under the set of standard propositional connectives {¬,∧,∨,→,↔}.
We call a propositional atom (also called propositional variable) every primitive proposition
in P, and a propositional literal every propositional atom (positive literal) or its negation
(negative literal). We implicitly remove double negations: e.g., if l is the negative literal ¬pi,
by ¬l we mean pi rather than ¬¬pi. We represent a truth assignment µ as a conjunction
of literals

∧
i li (or analogously as a set of literals {li}i) with the intended meaning that a

positive [resp. negative] literal pi means that pi is assigned to true [resp. false]. We say
that {µ1, ..., µk} is a complete set of partial truth assignments satisfying ϕ iff (i) µi |= ϕ for
every i and (ii) every total assignment µ s.t. µ |= ϕ is such that µi ⊆ µ for some i.

A propositional formula is in conjunctive normal form, CNF, if it is written as a conjunc-
tion of disjunctions of literals:

∧
i

∨
j lij . Each disjunction of literals

∨
j lij is called a clause.

Notationally, we often write clauses as implications: “(
∧

i li) → (
∨

j lj)” for “
∨

i ¬li∨
∨

j lj”;
also, if η is a conjunction of literals

∧
i li, we write ¬η for the clause

∨
i ¬li, and vice versa.

A unit clause is a clause with only one literal. A Horn clause is a clause containing
at most one positive literal, and a Horn formula is a conjunction of Horn clauses. Notice

13

R. Sebastiani & M. Vescovi

SatValue DPLL (formula ϕ) {
1. µ = ∅; vars = Atoms(ϕ);
2. Preprocess(ϕ, µ);
3. while (1) {
4. while (1) {
5. status = BCP(ϕ, µ);
6. if (status == unknown) {
7. if (TooManyClauses(ϕ)) {
8. DeleteSomeInactiveClauses(ϕ); }
9. break; }
10. if (status == sat) {
11. return sat; }
12. else { // status == conflict
13. ψ = FalsifiedClause(ϕ, µ);
14. ψ′ = AnalyzeConflict(ϕ, µ, ψ);
15. ϕ = ϕ ∧ ψ′; // ψ′ learned temporarily

16. Backtrack(ψ′,µ,ϕ);
17. if (DecisionLevel(µ) == 0) {
18. return unsat; }
19. } }
20 DecideNextBranch(ϕ, µ);
21. } }

Figure 1: Schema of a CDCL DPLL SAT solver.

that Horn clauses are either unary positive clauses, or they contain at least one negative
literal. A definite Horn clause is a non-unary Horn clause containing exactly one positive
literal and at least one negative one, and a definite Horn formula is a conjunction of definite
Horn clauses. (Intuitively, definite Horn formulas represents sets of implications between
propositional variables (

∧n
i=1 pi) → p s.t. n > 0.)

Notice that a definite Horn formula φ is always satisfiable, since it is satisfied by both
the assignments µ> and µ⊥ which assign all variables to true and to false respectively. No-
tice also that, for every subset {pi}i of propositional variables in φ, φ∧

∧
i pi and φ∧

∧
i ¬pi

are satisfied by µ> and µ⊥ respectively. Thus, in order to falsify a definite Horn formula φ,
it is necessary to conjoin to it at least one positive and one negative literal.

The problem of detecting the satisfiability of a propositional CNF formula, also referred
as the SAT problem, is NP-complete. A SAT solver is a tool able to solve the SAT problem.
The problem of detecting the satisfiability of a propositional Horn formula, also referred as
the Horn-SAT problem, is polynomial.

14

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

2.2.2 CDCL SAT Solving.

Most state-of-the-art SAT procedures are evolutions of the Davis-Putnam-Longemann-
Loveland (DPLL) procedure (Davis & Putnam, 1960; Davis, Longemann, & Loveland,
1962) and they are based on the CDCL paradigm (Silva & Sakallah, 1996; Zhang, Madi-
gan, Moskewicz, & Malik, 2001). A high-level schema of a modern CDCL DPLL engine is
shown in Figure 1 at p. 14. The propositional formula ϕ is in CNF; the assignment µ is
initially empty, and it is updated in a stack-based manner. DPLL considers all and only
the Boolean variables in vars

def
= Atoms(ϕ) (if not specified otherwise).

Initially, Preprocess simplifies ϕ as much as possible, and updates µ accordingly (see
e.g., Eén & Biere, 2005; Biere, 2008). In the main loop, after the inner loop, DecideNextBranch
chooses an unassigned literal l from ϕ according to some heuristic criterion, and adds it to
µ. (This operation is called decision, l is called decision literal and the number of decision
literals in µ after this operation is called the decision level of l.) In the inner loop, BCP
iteratively deduces literals l from the current assignment and updates ϕ and µ accordingly;
this step is repeated until either (i) µ falsifies some clause in ϕ, or (ii) no more Boolean
variable in vars can be assigned (s.t. µ satisfies ϕ), or (iii) no more literals can be deduced,
returning conflict, sat or unknown respectively. If status is unknown, then DPLL exits the
inner loop, looking for the next decision. (We temporarily ignore steps 7-8, which we will
discuss later.) If status is sat, then DPLL returns sat. If status is conflict, then, starting
from the falsified clause ψ, AnalyzeConflict detects the subset η of µ which caused the

falsification of ψ (conflict set), and returns ψ′ def
= ¬η. (This process is called conflict analy-

sis, and is described in more details below.) ψ′ is then temporarily added to ϕ (this process
is called learning). Then Backtrack uses ψ′ to decide the decision level to backtrack to
(namely blevel), and then it backtracks to blevel, popping out of µ all literals whose
decision level is strigtly greater than blevel, and updating ϕ accordingly (this process is
called backjumping). If blevel is 0, then a conflict exists even without branching, so that
DPLL returns unsat.

BCP is based on Boolean Constraint Propagation, that is, the iterative application of unit
propagation: if a unit clause l occurs in ϕ, then l is added to µ, all negative occurrences
of l are declared false and all clauses with positive occurrences of l are declared satisfied.
Current CDCL SAT solvers include extremely fast implementations of BCP based on the
two-watched-literals scheme (Moskewicz et al., 2001). The two-watched-literals scheme is
based on the idea that if a clause has more than two unassigned literals, then a single
application of unit propagation will not produce a new unit clause. Thus, in order to
efficiently detect unit clauses to be propagated, it is not necessary to visit all the clauses.
This scheme maintains the property that only two different unassigned literals on each
clause are watched by a pointer. When a watched literal is assigned to false, the pointer
moves looking for another unassigned literal to watch; if none is found, then a new unit
clause is detected. Satisfied clauses are not removed; rather, they are lazily detected and
ignored when performing propagations. This scheme requires, for every literal, only the
storage of its current assignment status (true, false, unassigned) and the list of the pointers
to the clauses it watches (which, in this way, are immediately accessible from the literal).

Importantly, a complete run of BCP requires an amount of steps which is linear in the
number of clauses containing the negation of some of the propagated literals. Also, if ϕ is

15

R. Sebastiani & M. Vescovi

a Horn formula, then one run of BCP is sufficient to decide its satisfiability: if BCP(ϕ, {})
returns conflict, then ϕ is unsatisfiable; otherwise ϕ is satisfiable because, since all unit
clauses have been removed from ϕ, all remaining clauses contain at least one negative
literal, so that assigning all unassigned literals to false would satisfy ϕ.

AnalyzeConflict works as follows (Silva & Sakallah, 1996; Moskewicz et al., 2001;
Zhang et al., 2001). Each literal is tagged with its decision level, e.g., the literal correspond-
ing to the nth decision and the literals derived by unit-propagation after it are labeled with
n; each non-decision literal l in µ is also tagged by a link to the clause ψl causing its unit-
propagation (called the antecedent clause of l). When a clause ψ is falsified by the current
assignment —in which case we say that a conflict occurs and ψ is the conflicting clause— a
conflict clause ψ′ is computed from ψ s.t. ψ′ contains only one literal lu whose negation has
been assigned at the last decision level. ψ′ is computed starting from ψ′ = ψ by iteratively
resolving ψ′ with the antecedent clause ψl of some literal l in ψ′ (typically the last-assigned
literal in ψ′, see Zhang & Malik, 2002), until some stop criterion is met. E.g., with the
1st-UIP Scheme the last-assigned literal in ψ′ is the one always picked, and the process
stops as soon as ψ′ contains only one literal lu assigned at the last decision level; with the
Decision Scheme, ψ′ must contain only decision literals, including the last-assigned one.
Consequently, Backtrack jumps up to the smallest decision level s.t. all but one literals in
ψ′ is falsified, and hence unit-propagates the remaining literal (i.e., the literal lu above).

Intuitively, with backjumping DPLL goes back to the oldest decision where it would
have acted differently if ψ′ had been known, undoing all decisions and unit-propagations
performed after then. Notice that, unlike classic chronological backtracking, backjumping
allows for jumping up many decision levels, significantly pruning the search. Learning
prevents DPLL from generating again in future the conflict set η

def
= ¬ψ′: as soon as all but

one literals in η are in µ, then the remaining literal is assigned to false by BCP on ψ′. (To
this extent, ψ′ is also called blocking clause.) Consequently, learning allows for significantly
pruning the search space.

One potential problem with learning is that it may require adding to ϕ up to an expo-
nential number of clauses. If so, this could cause a blowup in space, and a drastic slowdown
of BCP. However, it is not necessary to add permanently the conflic clause ψ′ to ϕ; rather,
it is sufficient to keep it only as long as it is active, that is, as long as it is the antecedent
clause of some literal in the current assignment. Since there may be at most |Atoms(ϕ)|
active clauses, if clauses are discharged when they are no more active, then the blowup in
the number of learned clauses is avoided. The only drawback of clause discharging is that
the same conflict set can in principle be generated more than once. Nevertheless, this is
guaranteed to preserve the correctness, completeness and termination of the algorithm (see,
e.g., (Zhang et al., 2001; Nieuwenhuis, Oliveras, & Tinelli, 2006; Lahiri et al., 2006)).

In practice, typically CDCL SAT solvers discharge inactive clauses lazily: when an exces-
sive number of learned clauses is revealed, then some of the inactive clauses are discharged
according to some heuristic criterium (steps 7-8 in Figure 1 at p. 14).7 This typically guar-
antees a very good compromise between the benefits of learnead clauses for pruning future
branches and the overhead due to their maintenance.

7. Notice that different SAT solvers may implement different clause-discharging strategies, so that Steps
7-8 are not necessaily placed after BCP as in Figure 1 at p. 14.

16

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

2.2.3 CDCL SAT Solving Under Assumptions.

The schema in Figure 1 at p. 14 can be adapted to check also the satisfiability of a CNF

propositional formula ϕ under a set of assumptions L def
= {l1, ..., lk}. (From a purely-logical

viewpoint, this corresponds to check the satisfiability of
∧

li∈L li∧ϕ.) This works as follows:
l1, ..., lk are initially assigned to true, they are tagged as decision literals and added to µ,
then the decision level is reset to 0 and DPLL enters the external loop. If

∧
li∈L li ∧ ϕ is

consistent, then DPLL returns sat; otherwise, DPLL eventually backtracks up to level 0 and
then stops, returning conflict. Importantly, if AnalyzeConflict uses the Decision Scheme
mentioned above, then the final conflict clause will be in the form

∨
lj∈L′ ¬lj s.t. L′ is the

(possibly much smaller) subset of L which actually caused the inconsistency revealed by
the SAT solver (i.e., s.t.

∧
lj∈L′ lj ∧ ϕ is inconsistent). In fact, at the very last branch,

AnalyzeConflict will iteratively resolve the conflicting clause with the antecedent clauses
of the unit-propagated literals until only decision literals are left: since this conflict has
caused a backtrack up to level 0, these literals are necessarily all part of L.

This technique is very useful in some situations. First, sometimes one needs checking
the satisfiability of a (possibly very big) formula ϕ under many different sets of assumptions
L1, ...,LN . If this is the case, instead of running DPLL on

∧
li∈Lj

li ∧ϕ for every Lj —which
means parsing the formulas and initializing DPLL from scratch each time— it is sufficient
to parse ϕ and initialize DPLL only once, and run the search under the different sets of
assumptions L1, ...,LN . This is particularly important when parsing and initialization times
are relevant w.r.t. solving times. In particular, if ϕ is a Horn formula, solving ϕ under
assumptions requires only one run of BCP, whose computational cost depends linearly only
on the clauses where the unit-propagated literals occur.

Second, this technique can be used in association with the use of selector variables: all
the clauses ψi of ϕ can be substituted by the corresponding clauses si → ψi, all sis being
fresh propositional variables, which are initially assumed to be true (i.e., L = {si | ψi ∈ ϕ}).
If ϕ is unsatisfiable, then the final conflict clause will be of the form

∨
sk∈L′ ¬sk, s.t.

{ψk |sk ∈ L′} is the actual subset of clauses which caused the inconsistency of ϕ. This
technique is used to compute the unsatisfiable cores of CNF propositional formulas in SAT
(Lynce & Silva, 2004), and it has been extended to work with SMT (see Cimatti et al., 2011).

2.2.4 CDCL SAT solving for SMT and All-SMT

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a (typ-
ically quantifier-free) first-order formula with respect to some decidable first-order theory.
If we look at SMT from a SAT perspective, then the problem is equivalent to searching for
a truth assignment µ satisfying a propositional formula ϕ which is consistent w.r.t.some
propositional theory T .8 To this extent, most SMT solvers are based on the lazy SMT
paradighm, where a CDCL SAT solver is used to enumerate propositional truth assignments

8. From a more standard SMT perspective, given an input quantifier-free first-order formula ϕfo and some
decidable first-order theory Tfo, the problem consists in searching for a set of literals µfo in ϕfo whose
conjunction tautologically entails ϕfo and is consistent in Tfo. Thus, the propositional formula ϕ is the
Boolean abstraction of the input quantifier-free first-order formula ϕfo, in which each first-order atom is
substituted by a fresh propositional atom, and the propositional theory T is the Boolean abstraction of
the set of clauses which can be built on atoms occurring in ϕfo and are valid in the first-order theory

17

R. Sebastiani & M. Vescovi

...

if (status == sat) {
η = T -solver(µ);
if (η == ∅) // µ consistent w.r.t. T

{ return sat; }
else { // µ inconsistent w.r.t. T

ψ = ¬η;
ψ′ = AnalyzeConflict(ϕ, µ, ψ);
ϕ = ϕ ∧ ψ′; //ψ′ learned temporarily

Backtrack(ψ′,µ,ϕ);
if (DecisionLevel(µ) == 0)

return unsat;
} }
...

...

if (status == sat) {
η = T -solver(µ);
if (η != ∅) // µ inconsistent w.r.t. T

{ ψ = ¬η; }
else // µ consistent w.r.t. T

{ ψ = ¬µ; }
ψ′ = AnalyzeConflict(ϕ, µ, ψ);
ϕ = ϕ ∧ ψ′; //ψ′ learned temporarily

Backtrack(ψ′,µ,ϕ);
if (DecisionLevel(µ) == 0)

return;
}
...

Figure 2: Left: SMT variant of Steps 10-11 in Figure 1 at p. 14. Right: All-SMT variant
of Steps 10-11 in Figure 1 at p. 14. (The last five steps are identical to steps
14-18 in Figure 1 at p. 14.)

µ1, µ2, ... satisfying ϕ. Consider Figure 2 at p. 18 left. Every time a satisfying assignment
µ is generated, µ is fed to a theory solver (T -solver) which checks its consistency w.r.t. T ;
if µ is consistent w.r.t. T , then the whole procedure returns sat; if µ is inconsistent w.r.t.
T , then the theory solver returns (the negation η of) one clause ψ valid in T (called theory
lemma) which is violated by µ, which is then used by the CDCL SAT solver as a conflicting
clause for triggering the backjumping and learning mechanism. The process is repeated
until either a consistent assignment is found —so that ϕ is consistent w.r.t. T— or no more
truth assignment can be enumerated — so that ϕ is inconsistent w.r.t. T . Notice that the
efficiency of the whole process strongly benefits from the fact that T -solver returns minimal
T -inconsistent subsets η.

This technique is further improved by means of early pruning and theory-propagation:
the theory solver is invoked also on partial assignments µ which do not satisfy ϕ yet; if µ
is found T -inconsistent, then a theory lemma is produced and the SAT solver backtracks
without further expanding µ; if instead µ is found T -consistent, and if the theory solver
is able to perform some deduction in the form T ∧ µ′ |= l, s.t. µ′ ⊆ µ and l is a literal
representing a truth assignment to some unassigned atom in ϕ, then l is unit-propagated
by the SAT solver and the theory lemma µ → l can be learned. We refer the reader to
(Sebastiani, 2007; Barrett et al., 2009) for a survey on SMT and SMT-solving techniques.

An important extension of SMT is All-SMT (Lahiri et al., 2006), in which it is enu-
merated a complete set {µi}i of (possibly-partial) T -consistent truth assignment satisfying
ϕ. This technique modifies the lazy SMT schema as follows (see Figure 2 at p. 18 right):
whenever a (possibly-partial) propositional model µ is generated and µ is found consistent

Tfo. Typically the theory solver reasons at first-order level, checking the consistency in Tfo of the
corresponding set of first-order literals µfo.

18

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

in T by T -solver, then ψ
def
= ¬µ is treated as a conflicting clause, and AnalyzeConflict

is applied, generating a conflict clause which is used to backjump, and then to continue
the search. At the end of the search, the models µ1, ..., µn found [resp. the conflict sets
η1, ..., ηk returned by T -solver] subsume all T -consistent [resp. T -inconsistent] total truth
assignments propositionally satisfying ϕ.

As with the pure SAT case of Figure 1 at p. 14, it is not necessary to add permanently
to ϕ each conflict clause ψ′; rather, it is sufficient to keep it only as long as it is active,
preserving the correctness, completeness and termination of the enumarating algorithm (see,
e.g., (Zhang et al., 2001; Nieuwenhuis et al., 2006; Lahiri et al., 2006)), while avoinding
the blowup in the number of learned clauses.9 As before, the only drawback of clause
discharging is that the same model or conflict set can in principle be generated more than
once, potentially worsening the global efficiency. As before, implementing the “lazy” clause-
discharging approach of Steps 7-8 in Figure 1 at p. 14 represents a good compromise.
According to the empirical evaluation of Lahiri et al. (2006), redundancies in enumeration
appear to be rare and have low impact on performances.

3. Axiom Pinpointing via Horn SAT and Conflict Analysis

In this section we start presenting our novel contributions. In order not to break the flow
of the discourse, the proofs of the new results have been moved to Appendix A at p. i.

3.1 Classification and Concept Subsumption via Horn SAT solving

We temporarily assume that T is the result of a normalization process, as described in
Section 2.1. (We will consider some issues related to the normalization at the end of
Section 3.2.) We consider first the problem of concept subsumption. Then we can build a
Horn propositional formula φT representing the classification of the input ontology T .

Definition 3 (EL+2sat(ai), φT). Let T be an EL+ TBox in normal form and let A be
the classification of T . We introduce the set of propositional variables {p[X] | X ∈ NCT },
that we call concept variables, s.t. each concept variable p[X] is uniquely-associated to the
respective concept X. For each assertion ai ∈ A, we define the propositional encoding of
ai, written EL+2sat(ai), as follows:

(p[C1] ∧ ... ∧ p[Ck]) → p[D] if ai is of type (C1 u ... u Ck) v D, k ≥ 1; (5)

EL+2sat(ai)
def
= p[C] → p[∃r.D] if ai is of type C v ∃r.D ; (6)

p[∃r.C] → p[D] if ai is of type ∃r.C v D . (7)

Then we define the following CNF Horn propositional formula:

φT
def
=

∧
ai∈A

EL+2sat(ai). (8)

Notice that we do not encode trivial axioms of the form C v C and C v > because they
would generate valid clauses like p[C] → p[C] and p[C] → >. 3

9. Here we assume that the output models/conflict sets are produced in output one-by-one and then possibly
deleted, otherwise we need al least the possibly-exponential space to store all them.

19

R. Sebastiani & M. Vescovi

Since the clauses (5)-(7) are definite Horn clauses, φT is a definite Horn formula. Thus,
φT is satisfiable, and it is necessary to conjoin it with at least one positive and one negative
literal in order to make it unsatisfiable.

Theorem 1. Given an EL+ TBox T in normal form, for every pair of concept names
C,D in PCT , C vT D if and only if the Horn propositional formula φT ∧ p[C] ∧ ¬p[D] is
unsatisfiable.

In practice, in order to build φT , we initially set it to an empty set of clauses; then we
run the classification algorithm of Section 2.1: for every (non-trivial) original axiom of T
or every deduced assertion ai of the form (1)-(3) which is added to A, we add to φT the
clause EL+2sat(ai).

Remark 1. Notice that, since the classification algorithm of Section 2.1 terminates after a
polynomial number of rule applications and |A| ≤ |PCT |2 · |PRT | (see Section 2.1.3), φT is
worst-case polynomial in size w.r.t. |T | and can be generated in polynomial time. 3

Once φT has been generated, in order to perform concept subsumption, we exploit the
technique of CDCL SAT solving under assumptions described in Section 2.2: once φT is
parsed and DPLL is initialized, each subsumption query Ci vT Di corresponds to solving φT
under the assumption list Li

def
= {p[Ci],¬p[Di]}. This corresponds to one single run of BCP,

whose cost depends linearly only on the clauses where the unit-propagated literals occur.
In practice, if Ci vT Di then φT contains the clause p[Ci] → p[Di], so that BCP stops as soon
as p[Ci] and ¬p[Di] are unit-propagated.

Example 3.1. Consider the classification AOmed
in Example 2.3 at p. 9.10 Then we have:

φOmed

def
= p[Appendix] → p[BodyPart] a′1 ∧ p[Appendix] → p[∃partOf.Intestine] a′′1

∧ p[Endocardium] → p[Tissue] a′2 ∧ p[Endocardium] → p[∃partOf.HeartValve] a′′2

∧ p[Pericardium] → p[Tissue] a′3 ∧ p[Pericardium] → p[∃containedIn.Heart] a′′3

∧ p[Appendicitis] → p[Inflammation] a′4 ∧ p[Appendicitis] → p[∃hasLocation.Appendix] a′′4

∧ p[Endocarditis] → p[Inflammation] a′5 ∧ p[Endocarditis] → p[∃hasLocation.Endocardium] a′′5

∧ p[Pericarditis] → p[Inflammation] a′6 ∧ p[Pericarditis] → p[∃hasLocation.Pericardium] a′′6

∧ p[Inflammation] → p[Disease] a′7 ∧ p[Inflammation] → p[∃actsOn.Tissue] a′′7

∧ p[Disease] ∧ p[New] → p[HeartDisease] a′8 ∧ p[∃hasLocation.Heart] → p[New] a0

∧ p[HeartDisease] → p[∃hasState.NeedsTreatement] a9

∧ p[Appendicitis] → p[Disease] b1 ∧ p[Appendicitis] → p[∃actsOn.Tissue] b2

∧ p[Endocarditis] → p[Disease] b3 ∧ p[Endocarditis] → p[∃actsOn.Tissue] b4

∧ p[Pericarditis] → p[Disease] b5 ∧ p[Pericarditis] → p[∃actsOn.Tissue] b6

∧ p[Pericarditis] → p[∃hasLocation.Heart] b7 ∧ p[Pericarditis] → p[New] b8

∧ p[Pericarditis] → p[HeartDisease] b9 ∧ p[Pericarditis] → p[∃hasState.NeedsTreatement] b10

The clauses in the first nine rows represent the encoding of the (normalized) axioms of
Omed, while the clauses in the last five rows represent the encoding of the other subsumption

10. In this section and in the following ones, with a small abuse of notation, we use the names Omed and
Omilk to identify both the original ontology and its normalized version.

20

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

relations deduced from the axioms of Omed. We use the same labeling of Example 2.3 at
p. 9.

For instance, performing concept subsumption on the query Pericarditis v HeartDisease
corresponds to solve φOmed

under the assumption list {p[Pericarditis],¬p[HeartDisease]}, which is
clearly unsatisfiable because clause b9 of φOmed

is falsified by the two assumed literals.
Instead, if the query is Appendicitis v HeartDisease, this corresponds to solve φOmed

under the assumptions {p[Appendicitis],¬p[HeartDisease]}. This leads to the unit-propagation
in φOmed

of p[Inflammation] and p[∃hasLocation.Appendix] from a′4 and a′′4 respectively, then to the
unit-propagation of p[Disease] and p[∃actsOn.Tissue] from a′7 and a′′7 (or equivalently from b1
and b2) respectively. After that, no more atom can be unit-propagated and no clause is
falsified. Thus, since φOmed

is a Horn formula, we can conclude that it is satisfiable, and
that Appendicitis v HeartDisease is not a subsumption relation deducible from Omed. 3

3.2 Computing single and all MinAs via Conflict Analysis

We consider the general problem of generating all MinAs. We build a more-general Horn
propositional formula φallT representing the complete classification DAG of the input nor-
malized ontology T .11 The size of φallT is polynomial w.r.t. that of T .

3.2.1 Building the formula φallT .

In order to make the explanation simpler, we assume wlog. that in all the axioms of T all
u’s and ◦’s are binary, i.e., that 1 ≤ k ≤ 2 in (2) and 1 ≤ n ≤ 2 in (4). This is not restrictive,
since, e.g., each GCI axiom of the form C1 u ... u Ck v D in T can be rewritten into the
set {C1 uC2 v C1:2, C1:2 uC3 v C1:3, ..., C1:k−1 uCk v D}, and each RI axiom of the form
r1◦· · ·◦rn v s can be rewritten into the set {r1◦r2 v r1:2, r1:2◦r3 v r1:3, ..., r1:n−1◦rn v s},
each C1:i and r1:j being a fresh concept name and a fresh role name respectively.12

Definition 4 (φallT , φT (so), φ
all
T (po)). Let T be an EL+ TBox in normal form and let A be

the classification of T . We consider the concept variables {p[X] | X ∈ NCT }. We introduce

the set of propositional variables PA
def
= {s[ai] | ai ∈ A}, that we call assertion [resp. axiom]

selector variables. Then we define φallT
def
= φT (so) ∧ φallT (po), where

• φT (so) is the conjunction of all the clauses:

{s[ai] → EL+2sat(ai) | ai ∈ A} (9)

that we call assertion clauses, and

• φallT (po) is the conjunction of all the clauses:

{(s[ai] ∧ s[ai′] ∧ s[aj]) → s[ak] | ai, ai′ , ak ∈ A, aj ∈ T and r(ai, ai′ , aj , ak)} (10)

that we call rule clauses. With r(ai, ai′ , aj , ak) we mean that r is one of the completion
rules of the classification algorithm of Section 2.1 and ai, ai′ , aj , ak are valid instances

11. Here “complete” means “including also the rule applications generating already-generated assertions”.
12. Notice, however, that this is just a simplyfying assumption to make our explanation easier: in practice

our encodings and algorithms deal with n-ary operators.

21

R. Sebastiani & M. Vescovi

of (respectively) the preconditions (left and central columns of Table 2 at p. 9) and of
the conclusion (right column of Table 2 at p. 9) of r. (Some require only one assertion
ai and one axiom aj as premises of the rule r; in these cases let s[ai′] be >.) 3

Notice that (9) and (10) are definite Horn clauses and, hence, φallT is a definite Horn formula.

Proposition 2. The size of the formula φallT defined in Definition 4 at p. 21 is worst-case
polynomial in the size of the TBox T .

The result in Theorem 1 at p. 20 extends straightforwardly to φallT , as described in the
following.

Theorem 3. Given an EL+ TBox T in normal form, for every S ⊆ T and for every pair
of concept names C,D in PCT , C vS D if and only if the Horn propositional formula
φallT (po) ∧

∧
axi∈S s[axi] ∧ ¬s[CvD] is unsatisfiable.

Theorem 4. Given an EL+ TBox T in normal form, for every S ⊆ T and for every pair
of concept names C,D in PCT , C vS D if and only if the Horn propositional formula
φallT ∧

∧
axi∈S s[axi] ∧ p[C] ∧ ¬p[D] is unsatisfiable.

Corollary 5. Given an EL+ TBox T in normal form, for every pair of concept names C,D
in PCT , C vT D if and only if the Horn propositional formula φallT ∧

∧
axi∈T s[axi]∧p[C]∧¬p[D]

[resp. φallT (po) ∧
∧

axi∈T s[axi] ∧ ¬s[CvD]] is unsatisfiable.

Intuitively, φallT (po) mimics the whole classification process, each rule clause representing

one rule application. Thus, if a SAT solver is fed the formula φallT (po)∧
∧

axi∈S s[axi]∧¬s[CvD]

of Theorem 3 at p. 22 (or φallT (po) under the assumption list {¬s[CvD]} ∪ {s[axi] | axi ∈ S}),
then all the variables s[aj] s.t. aj can be deduced from S are instantly unit-propagated. If
(and only if) C vS D, then also s[CvD] is unit-propagated, causing a conflict. Similarly,

if the formula φallT ∧
∧

axi∈S s[axi] ∧ p[C] ∧ ¬p[D] of Theorem 4 at p. 22 is fed to the SAT
solver, then if (and only if) C vS D, then s[CvD] is unit-propagated, which causes a conflict

against the assertion clause s[CvD] → (p[C] → p[D]) in φ
all
T and the unit clauses p[C] ∧¬p[D].

Notice that, in general, there may be more than one way of deducing C v D from S.
This corresponds to the fact that there may be more than one unit-propagation sequence
leading to the propagation of s[CvD]. (We will investigate this issue in Section 3.2.3.)

Remark 2. Theorem 4 at p. 22 suggest that, once the formula φallT is generated, it is
possible to reason in terms of every subset S of T by “selecting” all and only the axioms
we are interested in. This requires no new formula generation or computation on S or T .
Rather, it is sufficient to restrict the list of the assumptions for each query on φallT to the
set of the selector variables of the axioms of S and to the selector variable of the query. 3

22

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Example 3.2. Consider the ontology Omed in Examples 2.1 at p. 5 and 2.3 at p. 9. Then

φallOmed

def
= φOmed(so) ∧ φ

all
Omed(po)

:

φOmed(so)
def
= s[a1] → (p[Appendix] → p[BodyPart]) ∧ s[a1] → (p[Appendix] → p[∃partOf.Intestine])

∧ s[a2] → (p[Endocardium] → p[Tissue]) ∧ s[a2] → (p[Endocardium] → p[∃partOf.HeartValve])

∧ s[a3] → (p[Pericardium] → p[Tissue]) ∧ s[a3] → (p[Pericardium] → p[∃containedIn.Heart])

∧ s[a4] → (p[Appendicitis] → p[Inflammation]) ∧ s[a5] → (p[Appendicitis] → p[∃hasLocation.Appendix])

∧ s[a5] → (p[Endocarditis] → p[Inflammation]) ∧ s[a5] → (p[Endocarditis] → p[∃hasLocation.Endocardium])

∧ s[a6] → (p[Pericarditis] → p[Inflammation]) ∧ s[a6] → (p[Pericarditis] → p[∃hasLocation.Pericardium])

∧ s[a7] → (p[Inflammation] → p[Disease]) ∧ s[a7] → (p[Inflammation] → p[∃actsOn.Tissue])

∧ s[a8] → (p[Disease] ∧ p[New] → p[HeartDisease]) ∧ s[a0] → (p[∃hasLocation.Heart] → p[New])

∧ s[a9] → (p[HeartDisease] → p[∃hasState.NeedsTreatement])

∧ s[b1] → (p[Appendicitis] → p[Disease]) ∧ s[b2] → (p[Appendicitis] → p[∃actsOn.Tissue])

∧ s[b3] → (p[Endocarditis] → p[Disease]) ∧ s[b4] → (p[Endocarditis] → p[∃actsOn.Tissue])

∧ s[b5] → (p[Pericarditis] → p[Disease]) ∧ s[b6] → (p[Pericarditis] → p[∃actsOn.Tissue])

∧ s[b7] → (p[Pericarditis] → p[∃hasLocation.Heart]) ∧ s[b8] → (p[Pericarditis] → p[New])

∧ s[b9] → (p[Pericarditis] → p[HeartDisease]) ∧ s[b10] → (p[Pericarditis] → p[∃hasState.NeedsTreatement])

φall
Omed(po)

def
= s[a4] ∧ s[a7] → s[b1] ∧ s[a4] ∧ s[a7] → s[b2]

∧ s[a5] ∧ s[a7] → s[b3] ∧ s[a5] ∧ s[a7] → s[b4]

∧ s[a6] ∧ s[a7] → s[b5] ∧ s[a6] ∧ s[a7] → s[b6]

∧ s[a6] ∧ s[a3] ∧ s[a11] → s[b7] ∧ s[b7] ∧ s[a0] → s[b8]

∧ s[b5] ∧ s[b8] ∧ s[a8] → s[b9] ∧ s[b9] ∧ s[a9] → s[b10].

Notice that s[a10] and s[a11] refer to the RI axioms a10 and a11 in Example 2.1 at p. 5, so
that no corresponding assertion rule occurs in φOmed(so).

Consider the formula φallOmed
∧
∧

i=0,...,11 s[ai]∧p[Pericarditis]∧¬p[HeartDisease]. The propagation
of p[Pericarditis] and ¬p[HeartDisease] causes the propagation of ¬s[b9] from the last but one clause
of φOmed(so). The propagation of s[a0], s[a3], s[a6], s[a7] and s[a11] causes that of s[b5], s[b7] and

hence of s[b8] (from the fifth, seventh and eighth clauses of φallOmed(po)
). Thus, since also

s[a8] is propagated, the nine-th clause in φallOmed(po)
is falsified. Thus, we conclude that

Pericarditis vOmed
HeartDisease.

It is easy to see, instead, that the formula φallOmed
∧
∧

ai∈Omed
s[ai]∧p[Appendicitis]∧¬p[HeartDisease]

is satisfiable, from which we conclude that Appendicitis 6vOmed
HeartDisease. 3

Example 3.3. We report some sample clauses from the formula φallOmilk(po)
for the ontology

Omilk of Example 2.2 at p. 8. (On the right side we show the mapping between the ax-
iom/assertion selector variables included in the sample clauses and the concept inclusions

23

R. Sebastiani & M. Vescovi

they represent.)

φall
Omilk(po)

def
= . . . ∧ . . . m0 = ∃hasPhysState.liquidState v N

s[m5] ∧ s[m4] → s[n1] ∧ . . . m1 = BodyFluid v Fluid n1 = Milk v Substance

s[m6] ∧ s[m0] → s[n2] ∧ . . . m2 = Liquid v Fluid n2 = Milk v N

s[m5] ∧ s[n2] ∧ s[m3] → s[n3] ∧ . . . m3 = BodySubstance u N v BodyFluid n3 = Milk v BodyFluid

s[n1] ∧ s[n2] ∧ s[m9] → s[n4] ∧ . . . m4 = BodySubstance v Substance n4 = Milk v Liquid

s[n3] ∧ s[m1] → s[n5] ∧ . . . m5 = Milk v BodySubstance n5 = Milk v Fluid

s[n4] ∧ s[m2] → s[n5] ∧ . . . m6 = Milk v ∃hasPhysState.liquidState

. . . m9 = Substance u N v Liquid

We notice that, assuming all the s[mi]’s, there are two distinct chains of unit-propagations
leading to propagate s[n5]: one from {s[m0], s[m1], s[m3], s[m5], s[m6]}, propagating s[n2], s[n3]

and s[n5], and another from {s[m0], s[m2], s[m4], s[m5], s[m6], s[m9]}, propagating s[n1], s[n2],
s[n4] and s[n5], corresponding respectively to the deduction of n2, n3 and n5 from the axioms
{m0,m1,m3,m5,m6} and to that of n1, n2, n4 and n5 from {m0,m2,m4,m5,m6,m9}. Thus
we can conclude that {m0,m1,m3,m5,m6} and {m0,m2,m4,m5,m6,m9} are two nMinAs

for n5
def
= Milk vOmilk

Fluid. Since they are also minimal, they are also MinAs for n5. 3

In practice, in order to build the formula φallT , we run an extended version of the classi-
fication algorithm of Section 2.1, whose pseudo-code representation is presented in Figure 3
at p. 25, and which is based on the following main steps:

1. initially set φT (so) and φ
all
T (po) to the empty set of clauses. Then for every non-trivial

GCI axiom ai ∈ T , add to φT (so) the corresponding assertion clause of type (9);

2. for every newly-deduced assertion ai ∈ A, add to φT (so) the corresponding assertion
clause of type (9);

3. for every possible rule instantiation r(ai, ai′ , aj , ak) of a completion rule r of Table 2
at p. 9 (either extending A or not), add to φallT (po) the corresponding rule clause of

type (10).

(Notice that step 3. is novel w.r.t. the classification algorithm of Section 2.1 when applied
to already-generated assertions in A.) We perform step 2. and 3. in a queue-based manner,
which ensures that every possible distinct (i.e. with different antecedents) rule application
is applied only once. This is achieved with the following strategy: initially all GCI axioms
are added to a queue Q and all axioms are included in A. At each iteration one assertion ah
is dequeued, and steps 2. and/or 3. are applied to all and only the rule applications whose
antecedents are exactly ah and one or two of the previously-dequeued axioms/assertions
a1, ..., ah−1. The novel assertions ak which are deduced by the rule applications in step 2
are enqueued into Q and added to A. This process ends when Q is empty.

The algorithm exposed above requires a polynomial amount of steps w.r.t. the size of T .
In fact, it avoids to repeat the same rule application (i.e. with exactly the same antecedents
and consequence) more than once, and each rule application leads to the introduction of
one or two clauses. Therefore the algorithm requires linear time w.r.t. the size of φallT that,
in Proposition 2 at p. 22, has been proved to be at most polynomial in the size of T .

24

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

ClauseSet build-φallT (NormalizedOntology T)

// Initialization of Q, A, φT (so), φallT (po)

1. Q = ∅; A = ∅; φT (so) = ∅; φallT (po) = ∅;
2. for each primitive concept C in T {
3. add C v C and C v > to A; introduce s[CvC] = s[Cv>] = >;
4. enqueue {C v C,C v >} into Q; }
5. for each GCI or RI axiom ax in T {
6. add ax to A; introduce s[ax];

7. if (ax is a non-trivial GCI axiom) then {
8. add the clause (s[ax] → EL+2sat(ax)) to φT (so);

9. enqueue ax into Q; }}
// Updating A,B and Q (B is the set of already-handled assertions)

10. B = ∅;
11. while (Q is not empty) {
12. dequeue ah from Q;
13. for each rule instance r(ai, ai′ , aj , ak) such that {ai, ai′ , aj} \ B = {ah} {
14. if ak 6∈ A then {
15. add ak to A; introduce s[ak];

16. add the clause (s[ak] → EL+2sat(ak)) to φT (so);

17. enqueue ak into Q; }
18. add the clause ((s[ai] ∧ s[ai′] ∧ s[aj]) → s[ak]) to φallT (po); }
19. B = B ∪ {ah}; }
20. return φallT

def
= φT (so) ∧ φallT (po);

Figure 3: Polynomial-time algorithm building the formula φallT . Q is a queue of assertions,
A and B are sets of assertions.

3.2.2 Computing single MinAs.

We consider some sub-ontology S ⊆ T . Once φallT is generated, in order to compute single
MinAs, we can exploit the technique of CDCL SAT solving under assumptions adopting the
Decision Scheme, as described in Section 2.2. Theorem 4 at p. 22 guarantees that, given
the set of the axiom selector variables PS

def
= {s[axj] | axj ∈ S}, after φallT is parsed and DPLL

is initialized, deciding if Ci vS Di holds is equivalent to solving φallT under the assumption

list Li
def
= PS ∪ {p[Ci],¬p[Di]}, which corresponds to a single run of BCP and possibly one

run of AnalyzeConflict and Backtrack, whose cost depends linearly only on the clauses
where the unit-propagated literals occur. If BCP does not return conflict, then sat is returned
without even performing conflict analysis. If BCP returns conflict, as explained in Section 2.2,
then AnalyzeConflict produces a conflict clause ψCi,Di

S∗
def
= p[Di] ∨¬p[Ci] ∨

∨
ai∈S∗ ¬s[ai] s.t.

S∗ is an nMinA for Ci vS Di. In fact, since φallT is a definite Horn formula, the presence of
both p[Ci] and ¬p[Di] in Li is necessary for causing the conflict, so that, due to the Decision
Scheme, the conflict set necessarily contains both of them. (Intuitively, AnalyzeConflict
implicitly spans upward the classification sub-DAG rooted in Ci v Di and having S∗ as

25

R. Sebastiani & M. Vescovi

variable-list ComputeOneMinA(formula φallT (po), variable-list PS, literal ¬s[CivDi])

1. if (DpllUnderAssumptions(φallT (po), PS ∪ {¬s[CivDi]}) == unsat) { // if Ci vS Di

2. PS∗ = {s[ai] | ai ∈ S∗};
// s.t. ψCi,Di

S∗
def
= s[CivDi] ∨

∨
ai∈S∗ ¬s[ai] is the conflict clause returned

3. for each axiom selector variable s[axj] in PS∗ {
4. L = PS∗ \ {s[axj]};
5. if (DpllUnderAssumptions(φallT (po), L) == unsat) // if Ci vS∗\{axj} Di

6. PS∗ = L; }
7. return PS∗ \ {¬s[CivDi]}; }
8. else
9. return ∅;

Figure 4: SAT-based variant of the MinA-extracting algorithm of Baader et al. (2007).

leaf nodes, which contains all and only the nodes of the assertions which have been used to
generate Ci v Di.)

Analogously, by Theorem 3 at p. 22, deciding if Ci vS Di holds corresponds also to
solving φallT (po) under the assumption list Li

def
= PS ∪ {¬s[CivDi]}, so that the algorithm for

pinpointing is changed only in the fact that φallT (po) and {¬s[CivDi]} are used instead of φallT

and {p[Ci],¬p[Di]} respectively, returning the clause ψCi,Di

S∗
def
= s[CivDi]∨

∨
ai∈S∗ ¬s[ai] s.t. S∗

is an nMinA for Ci vS Di. Thus, wlog. in the remaining part of this section we will reason
using φallT (po) and {¬s[CivDi]}. (The same results, however, can be obtained using φallT and

{p[Ci],¬p[Di]} instead.)

In order to produce a minimal set of axioms, we can apply the SAT-based variant of the
linear minimization algorithm of Baader et al. (2007) in Figure 4 at p. 26. Given φallT (po),
the set of the axiom variables PS and the query selector variable s[CivDi], ComputeOneMinA
computes the set of the axiom selector variables representing one MinA S∗ if Ci vS Di, or
returns the empty set otherwise. (As before, we assume that φallT (po) has been parsed and

DPLL has been initialized.) First, as described above, φallT (po) is solved under the assumption

list Li
def
= PS ∪ {¬s[CivDi]}. If satisfiable, the whole procedure returns the empty set.

Otherwise, DpllUnderAssumptions return unsat, producing the conflict clause ψCi,Di

S∗ and
hence the set PS∗ = {s[ai] | ai ∈ S∗} s.t. S∗ is an nMinA. Then the algorithm tries to
remove one-by-one (the selection variables of) the axioms axjs in S∗, each time checking
whether the reduced set of axioms S∗ \ {axj} is still such that Ci vS∗\{axj} Di. To this
extent, the minimization algorithm in rows 3-6 is identical to that in (Baader et al., 2007),
except that the check Ci vS∗\{axj} Di is performed by invoking DpllUnderAssumptions

over φallT (po) and PS∗ \ {s[axj]}, as justified by Theorem 3 at p. 22.

This minimization schema can be further improved as follows. If DPLLUnderAssumptions
in row 5 performs also conflict analysis and returns (the conflict clause corresponding to)
an nMinA S ′ s.t. S ′ ⊂ S∗ \ {axj}, then in row 6 PS∗ is assigned to PS′ rather than to L,
so that all axioms in (S∗ \ {axj}) \ S ′ will not be selected in next loops. As an alternative

26

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

choice, one can implement instead a SAT-based version of the binary-search variant of the
minimization algorithm presented in (Baader & Suntisrivaraporn, 2008).

3.2.3 Computing all MinAs.

We consider some sub-ontology S ⊆ T . We describe a way of generating all MinAs for
Ci vS Di from φallT (po) and {¬s[CivDi]}. (As before, the same results can be obtained if φallT
and {p[Ci],¬p[Di]} are used instead.) The idea is to enumerate all minimal truth assignments

on the axiom selector variables in PS
def
= {s[axj] | axj ∈ S} which cause the inconsistency of

the formula ¬s[CivDi]∧φallT (po). The novel procedure, which is presented in Figure 5 at p. 28,

is a straightforward variant of the All-SMT technique of Lahiri et al. (2006) of Figures 1 at
p. 14 and 2 at p. 18 described in Section 2.2.4. (We assume that AnalyzeConflict adopts
the Decision Scheme, so that all conflict clauses are built on decision literals only.)

The procedure works as follows. We consider a propositional CNF formula ϕ on the
set of axiom selector variables PS . ϕ is initially set to > (i.e., the empty set of clauses).13

One top-level instance of DPLL (namely “DPLL1”) is used to enumerate a complete set of
truth assignments {µ1, ..., µk} on the axiom selector variables in PS which satisfy ϕ. (To
this extent, the external loop, the call to BCP, and the handling of the “unknown” and
“conflict” cases in Figure 5 at p. 28 are identical to those in Figure 1 at p. 14, and will
not be described again here; thus we focus on the “sat” case of Steps 9-23.) Every time
that a novel assignment µ is generated, we extract the subset µ+ of the positive literals
in µ, and we pass µ+ and {¬s[CivDi]} to an ad-hoc “theory solver” checking if µ+ falsifies

the formula ¬s[CivDi] ∧ φallT (po). As theory solver we use the concatenation of the functions
PositiveLiteralsOf, which selects the positive literals in µ, and ComputeOneMinA of Fig-
ure 4 at p. 26. (To this extent, here ¬s[CivDi] ∧ φallT (po) plays the role of the propositional

theory T .) Notice that we consider only the positive literals in µ because, by construction,
all atoms in PS occur only negatively in φallT (po), so that the negative literals cannot have

any role in falsifying ¬s[CivDi] ∧ φallT (po).

If µ+ ∧ ¬s[CivDi] ∧ φallT (po) |= ⊥, then µ+ represents an nMinA for Ci vS Di, and

ComputeOneMinA returns a minimal subset η of µ+ which caused such inconsistency. By

construction, S∗ def
= {axj ∈ S | s[axj] ∈ η} is a MinA. The clause ψ

def
= ¬η =

∨
axj∈S∗ ¬s[axj]

is then permanently added to ϕ as a blocking clause and it is used as a conflicting clause
for driving next backjumping and learning steps. Otherwise, ComputeOneMinA returns and

ψ
def
= ¬µ+ is used as a “fake” conflicting clause for driving next backjumping and learning

steps. As usual, the whole process terminates when Backtrack back-jumps to blevel zero.
The set of all MinAs {η1, ..., ηk} computed in this way is returned as output.

Comparing Steps 9-23 of Figure 5 at p. 28 with Figure 2 at p. 18 right, it is straight-
forward to notice that ComputeAllMinAs is a slight variant of the All-SMT procedure of
Section 2.2.4, ¬s[CivDi] ∧ φallT (po) being the propositional theory T and the concatenation

PositiveLiteralsOf/ComputeOneMinA being the theory solver, with only one slight dif-
ference: ¬η is also learned permanently; although this step is not strictly necessary (see

13. Notice that DPLL does not require that all Boolean variables in vars actually occur in ϕ. If the idea of
enumerating truth assignments for the > formula puzzles the reader, however, he/she may pretend ϕ is

initially a valid propositional formula on all the atoms in PS , e.g., ϕ
def
=

∧
Ai∈PS

(Ai ∨ ¬Ai).

27

R. Sebastiani & M. Vescovi

MinA-Set ComputeAllMinAs (Variable-list PS, literal {¬s[CivDi]})
// the formula φallT (po) is global, and it is already initialized

1. ϕ = >; µ = ∅; vars = PS; MinAs = ∅;
2. while (1) {
3. while (1) {
4. status = BCP(ϕ, µ);
5. if (status == unknown) {
6. if (TooManyClauses(ϕ)) {
7. DeleteSomeInactiveClauses(ϕ); }
8. break; }
9. if (status == sat) {
10. µ+ = PositiveLiteralsOf(µ);
11. η = ComputeOneMinA(φallT (po), µ+, ¬s[CivDi]);

12. if (η != ∅) { // µ+ contains a MinA

13. MinAs = MinAs ∪ η;
14. ψ = ¬η;
15. ϕ = ϕ ∧ ψ; } // ψ learned permanently

16. else { // µ+ contains no MinA

17. ψ = ¬µ; }
18. ψ′ = AnalyzeConflict(ϕ, µ, ψ);
19. ϕ = ϕ ∧ ψ′; // ψ′ learned temporarily

20. Backtrack(ψ′,µ,ϕ);
21. if (DecisionLevel(µ) == 0) {
22. return MinAs;

23. } }
24. else { // status == conflict
25. ψ = FalsifiedClause(ϕ, µ);
26. ψ′ = AnalyzeConflict(ϕ, µ, ψ);
27. ϕ = ϕ ∧ ψ′; ψ′ learned temporarily

28. Backtrack(ψ′,µ,ϕ);
29. if (DecisionLevel(µ) == 0) {
30. return MinAs;

31. } }
32. }
33. DecideNextBranch(ϕ, µ);
34. } }

Figure 5: All-SMT-based algorithm generating “all MinAs” w.r.t. the given query Ci vT
Di.

Figure 2 at p. 18 right), it further guarantees that we do not generate redundant MinAs,
and that no redundant calls to the possibly-expensive process of minimization is performed.

28

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Therefore, the correctness, completeness and termination of this algorithm comes directly
from that of the All-SMT (see Nieuwenhuis et al., 2006; Lahiri et al., 2006). As discussed
in Section 2.2.4, the only drawback of clause discharging is that the same conflict clause ψ′

—but not the MinA ¬η, which is learned permanently— can in principle be generated more
than once, potentially worsening the global efficiency. As before, implementing the “lazy”
clause-discharging approach represents a good compromise.

An important improvement is based on the following consideration. If an assignment
µ

def
= µ+ ∪µ− does not cause the generation of a MinA, then obviously no assignment in the

form µ′
def
= (µ+ \ {si1, ..., sik}) ∪ (µ− ∪ {¬si1, ...,¬sik} s.t. {si1, ..., sik} ⊆ µ+ can generate a

MinA as well. Thus, since all the enumerated assigments µ are total, no assigment which
is a superset of µ−

def
= µ \ µ+ has any chance of generating a MinA. Hence, we can safely

improve the algorithm of Figure 5 by substituting instructions 16-17 with the following:

16. else { // µ+ contains no MinA

17. ψ = ¬(µ \ µ+); }

which prevents the top-level Boolean search from enumerating any of the 2|µ
+| assignments

extending µ−. This greatly helps pruning the top-level Boolean search space.

A few more facts are important for the overall efficiency. First, DecideNextBranch al-
ways assigns the new assigned variables to true. This guarantees that the first-generated
assignments contain a larger number of enabled selector variables, so that it is more likely
that they include new nMinAs. To this extent, notice that the first assignment is µ1

def
=

{s[axi] | axi ∈ PS}, and it always leads to the discovery of the first MinA. Second, the expen-

sive steps of parsing φallT (po) and initializing the two DPLL instances inside ComputeAllMinAs

and ComputeOneMinA (namely “DPLL2”) respectively are performed only once, before the
whole process starts, and both ComputeAllMinAs and ComputeOneMinA are always invoked
incrementally. Thus it is possible to perform different calls to ComputeAllMinAs with dif-
ferent axiom-variable lists and queries without reinitializing the procedure from scratch.

Example 3.4. We want to find all the MinAs for the subsumption Milk vOmilk
Fluid in

the ontology Omilk (Examples 2.2 at p. 8, 3.3 at p. 23). We run the procedure in Fig-
ure 5 at p. 28 on the formula φallOmilk(po)

and w.r.t. the query s[MilkvFluid].
14 The top-level

DPLL1 enumerates all the truth assignments on the variables POmilk

def
= {s[mi] | mi ∈ Omilk},

satisfying the formula ϕ initially set to >. The first truth assignment produced is µ+1 =
µ1 = POmilk

= {s[mi] | mi ∈ Omilk}: running ComputeOneMinA on φallOmilk(po)
and the in-

put assumptions µ1 and {¬s[MilkvFluid]} leads to the identification of the first MinA, e.g.,

Omilk
∗
1

def
= {m0,m2,m4,m5,m6,m9}.15 Thus the blocking clause ψ1

def
= (¬s[m0] ∨ ¬s[m2] ∨

¬s[m4]∨¬s[m5]∨¬s[m6]∨¬s[m9]) is added to ϕ, which becomes ϕ = ψ1. Since ψ1 contains (the
negation of) no unit-propagated literal, the procedure backjumps on ψ′

1 = ψ1, generating
another truth assignment µ2, which we suppose wlog. to be POmilk

∪{¬s[m5]}\{s[m5]}, so that

14. Here we only simulate the execution of the procedure without showing the encoding φall
Omilk(po)

, whose
significant clauses can be found in Example 3.3 at p. 23. Our purpose, in fact, is only to show the steps
of the procedure in a concrete case.

15. With m0 we represent all the new definition axioms introduced during the normalization of the ontology,
which label complex sub-concepts with fresh concept names (see Section 2.1.2 and Section 3.2.4).

29

R. Sebastiani & M. Vescovi

µ+2
def
= POmilk

\ {s[m5]}. Since φallOmilk(po)
∧ µ+2 ∧ {¬s[MilkvFluid]} is satisfiable, ComputeOneMinA

returns the empty set, and ψ′
2 = ψ2 = ¬(µ2 \ µ+2) = s[m5] is used by DPLL1 as a fake con-

flicting clause, driving the backjumping.16 Then DPLL1 generates a third assignment µ3,
which we suppose µ3 = POmilk

\ {s[m4]} ∪ {¬s[m4]} so that µ+3 = POmilk
\ {s[m4]}. In this

case ComputeOneMinA identifies the new MinA Omilk
∗
2

def
= {m0,m1,m3,m5,m6}, producing

ψ3
def
= (¬s[m0] ∨ ¬s[m1] ∨ ¬s[m3] ∨ ¬s[m5] ∨ ¬s[m6]), which is permanently added to ϕ, and

ψ′
3 = ψ3 drives the next backjumping step. Since now ϕ = ψ1 ∧ ψ3 and no other MinA for

Milk vOmilk
Fluid other than Omilk

∗
1 and Omilk

∗
2 exists, the procedure will proceed until ter-

mination enumerating only truth assignments which do not falsify ¬s[MilkvFluid] ∧ φallOmilk(po)
.

3

One further remark is in order. The reason why we use two nested instances of DPLL is
that we must distinguish unit-propagations of negated axiom selector variables ¬s[axi] on

learned clauses from those performed on the clauses in φallT (po): on the one hand, we want to
allow the former ones because they prevent exploring the same assignments more than once;
on the other hand, we want to avoid the latter ones (or to perform them in a controlled way,
as explained in Section 4.2 for the theory propagation variant) because they may prevent
generating some counter-model of interest.

3.2.4 Handling normalization.

The normalized TBox T def
= {ax1, ..., axN} can result from normalizing the non-normal

TBox T̂ def
= {âx1, ..., âxN̂} by means of the process hinted in Section 2.1; |T | is O(|T̂ |).

Each original axiom ˆaxi is converted into a set of normalized axioms {axi1, ..., axini}, and
each normalized axiom axj can be reused (in the case of a definition axiom) in the conversion
of several original axioms âxj1, ..., âxjmj . In order to handle non-normal TBoxes T̂ , one
variant of the technique of Baader et al. (2007) can be adopted: for every ˆaxi, we add
to φallT (po) [resp. φallT] the set of clauses {s[ˆaxi] → s[axi1], ..., s[ˆaxi] → s[axini

]}, and then we

use PT̂
def
= {s[âx1], ..., s[âxN̂]} as the novel set of axiom selector variables for the one-MinA

and all-MinAs algorithms described above. Thus AnalyzeConflict finds conflict clauses
in terms of variables in PT̂ rather than in PT . (In practice, we treat normalization
as the application of a novel kind of completion rules.) Since PT̂ is typically smaller
than PT , this may cause a significant reduction in the search space that the DPLL1 must
explore during the all-MinAs procedure of Figure 5 at p. 28. (Notice that when one axj is
shared by âxj1, ..., âxjmj , the clause set {s[âxj1] → s[aj], ..., s[âxjmj

] → s[aj]} is equivalent to

(s[âxj1] ∨ ... ∨ s[âxjmj
]) → s[aj].)

Alternatively, a more compact solution we adopted allows for using directly and only
the selector variables referring to the original axioms T̂ = {âx1, ..., âxN̂}. In such a way no
extra clause is added to the encoding and a smaller number of selector variables is used. In
fact, every non-normal axiom of T is normalized into two sets of normal axioms: (i) a set of
top-level axioms in which complex concept descriptions are substituted by newly introduced

16. In fact m5
def
= Milk v BodySubstance is a key axiom included in any MinA for Milk vOmilk Fluid. To be a

BodySubstance is necessary both in order to be a BodyFluid (m3) and in order to be (a Substance first
and then) a Liquid (m4 and m9).

30

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

concept names, and which keep representing the original concept inclusions, (ii) and a set
of definition(s) (axioms) which represent the relations between the fresh concept names
and the corresponding complex concept descriptions. For example the concept inclusion
∃r.Au∃s.B v CuD is normalized into the set of top-level normal axioms: {X v C,X v D}
and the set of definition axioms: {∃r.A v Y,∃s.B v Z, Y u Z v X}, which define Y as
∃r.A, Z as ∃s.B and X as Y u Z.

The idea, which is inspired to the work of Plaisted and Greenbaum (1986), is to:

(i) use the same original axiom selector variable s[âxi] for all the top-level normal axioms
coming out from the normalization of âxi;

17

(ii) associate the same unique selector variable s[a0] to all the description axioms intro-
duced.

An informal explanation of this latest choice is that definition axioms play the role of
labeling for complex concepts, so they take part in the deduction of a queried subsumption
only in consequence of top-level axioms. Further, queries are always expressed in terms
of original concept names, so we are ensured that the top-level selector variables of the
original axioms are always (and firstly) involved in the search. The single selector variable
s[a0], instead, is used to represent and enable all the axioms defining the new concept names
coming out from the normalization. Thus, the presence of s[a0] in a MinA is not of interest,
it only indicates that at-least one of the axiom included in the MinA has been normalized.
Finally, notice that some definitions can be (partially) shared among many different original
axioms, but the above-exposed solution is transparent w.r.t. these situations. This schema
for handling normalization has been already used in Examples 3.2 at p. 22 and 3.4 at p. 29.

(Hereafter we will call T the input TBox, assuming that it is in normal form, no matter
if it is resulting from a normalization process or not and if we use the selector variables
referring to the original axioms or to the normalized ones.)

3.3 Discussion

We first compare our all-MinAs technique for EL+ of Section 3.2 with that presented by
Baader et al. (2007). By comparing the pinpointing formula ΦCivT Di of Baader et al. (2007)
(see also Section 2.1) with φallT (po), and by analyzing the way they are built and used, we
highlight the following differences:

(i) ΦCivT Di is built only on axiom selector variables in PT
def
= {s[axj] | axj ∈ T }, whilst

φallT (po) is build on all selector variables in PA
def
= {s[aj] | aj ∈ A} (i.e., of both axioms

and inferred assertions);

(ii) the size of ΦCivT Di and the time to compute it are worst-case exponential in |T |
(Baader et al., 2007), whilst the size of φallT (po) and the time to compute it are worst-

case polynomial in |T |;

(iii) the algorithm for generating ΦCivT Di of (Baader et al., 2007) requires intermediate
logical checks, whilst the algorithm for building φallT (po) does not;

17. Notice that more than one top-level axiom can result from the normalization of an equivalence relation
or from the normalization of a right-side conjunction.

31

R. Sebastiani & M. Vescovi

(iv) each MinA is amodel of ΦCivT Di , whilst it is (the projection to PT of) a counter-model
of φallT (po).

Moreover, our process can reason directly in terms of (the selector variables of) the input
axioms, no matter whether normal or not.

In accordance with Baader et al. (2007) and Peñaloza and Sertkaya (2010b), also our
approach is not output-polynomial, because in our proposed all-MinAs procedure even the
enumeration of a polynomial amount of MinAs may require exploring an exponential amount
of models. In our proposed approach, however, the potential exponentiality is completely
relegated to the final step of our approach, i.e. to our variant of the all-SMT search, since
the construction of the SAT formula is polynomial. Thus we can build φallT (po) once and then,
for each sub-ontology S ⊆ T of interest and for each Ci vS Di of interest, run the all-SMT
procedure until either it terminates or a given timeout is reached: in the latter case, we can
collect the MinAs generated so far. (Notice that the fact that DPLL1 selects positive axiom
selector variables first tends to anticipate the enumeration of over-constrained assignments
w.r.t. to that of under-constrained ones, so that it is more likely that counter-models, and
thus MinAs, are enumerated during the first part of the search. In particular it is assured
that it finds one MinA in polynomial time.) With the all-MinAs algorithm of Baader et al.
(2007), instead, it may take an exponential amount of time to build the pinpointing formula
ΦCivT Di before starting the enumeration of the MinAs.

We stress the fact that, once φallT (po) is generated, in order to evaluate different sub-
ontologies S, it suffices to assume different axiom selector variables, without modifying the
formula. Similarly, if we want to compute one or all MinAs for different deduced assertions,
e.g. C1 vS D1, . . . , Ci vS Di, . . ., we do not need recomputing φallT (po) each time, we just

need assuming (i.e. querying) each time a different axiom selector variable, e.g. respectively:
¬s[C1vSD1], . . . ,¬s[CivSDi], Same discourse holds for φallT and {p[Ci],¬p[Di]}. Notice that
this fact allows for a more fine-grained debugging of ontologies. In particular, it allows for
testing the interactions among only some selected parts of an ontology, or for working in
terms of refutable and irrefutable axioms (see, e.g., Baader et al., 2007). In fact, in many
applications it is necessary to partition an ontology into trusted (i.e., irrefutable) axioms,
whose correctness is established, and untrusted (i.e., refutable) ones, whose correctness is
still uncertain to the designer (or to the user) of the ontology. For example, if an already
well-established ontology is extended, one might view the new axioms as refutable, and
trust the previously existing part of the ontology.

4. Improving the All-MinA Enumeration

As far as full All-MinA enumeration is concerned, the techniques described in Section 3.2
are still naive to some extents, and their efficiency is not yet satisfactory. (See the empirical
results in the short version of this paper (Sebastiani & Vescovi, 2009b).) In particular,
most real-world problems are too large to be entirely enumerated by our approach, so we
must try to reduce the search space as much as possible. In this section we describe some
important novel enhancements which greatly improve the performances of our technique.
For the sake of clarity, in the following we use the full ontology T , and hence the full list of

32

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

axiom selection variables PT , although the same techniques can be always applied to φallT (po)

(or φallT) considering some sub-ontology S/PS instead of T /PT .

4.1 Cone-of-influence Modularization

The most important improvement we have introduced is a SAT-based form of modular-
ization, which we call Cone-of-influence Modularization for its analogy with the cone-of-
influence reduction used in model checking (see, e.g., Clarke et al., 1999). This technique
is similar in aim —but different in content and results— to that proposed by Baader and
Suntisrivaraporn (2008), Suntisrivaraporn (2009) which we have described in Section 2.1.5:
the idea is to isolate the set PCivDi

T of the selector variables in φallT (po) labeling all the axioms
in T which might have a role in the inference of a given query Ci vT Di, so that we can
restrict our All-SMT process to these selector variables only.

Definition 5. Let T be an EL+ TBox in normal form, Ci vT Di be an existing subsumption
relation in T , φallT (po) be the encoding of T in Definition 4 and PT

def
= {s[axi]|axi ∈ T } the

set of the axiom selector variables for T . Then the set of selector variables PCivDi
A and the

set of rule clauses φCivDi
T are defined inductively as follows:

base: s[CivDi] ∈ PCivDi
A ;

induction:

• if s[ai] ∈ PCivDi
A , then every clause (

∧
j s[aj]) → s[ai] in φ

all
T (po) is also in φCivDi

T ;

• if (
∧n

j=1 s[aj]) → s[ai] is in φ
CivDi
T , then s[aj] ∈ PCivDi

A for every j ∈ 1, ..., n.

PCivDi
A and φCivDi

T are called cone-of-influence (COI) and COI formula respectively. Fur-

thermore, we define COI Module’s Assumptions for Ci vT Di w.r.t. φ
all
T (po), namely PCivDi

T ,

the set of axiom selector variables PCivDi
T

def
= PCivDi

A ∩ PT . Finally, the COI Module for
Ci vT Di w.r.t. φallT (po), namely Mc.o.i.

CivDi
, is the set Mc.o.i.

CivDi
⊆ T of axioms such that

Mc.o.i.
CivDi

def
= {axi | s[axi] ∈ PCivDi

T }. 3

Example 4.1. We compute the COI module Mc.o.i.
PericarditisvHeartDisease w.r.t. the encoding

φallOmed(po)
from Example 3.2 of the sample ontology Omed of Examples 2.1 and 2.3.

φall
Omed(po)

def
= s[a4] ∧ s[a7] → s[b1] ∧ s[a4] ∧ s[a7] → s[b2] (a)

∧ s[a5] ∧ s[a7] → s[b3] ∧ s[a5] ∧ s[a7] → s[b4] (b)

∧ s[a6] ∧ s[a7] → s[b5]
:::

∧ s[a6] ∧ s[a7] → s[b6] (c)

∧ s[a6] ∧ s[a3] ∧ s[a11] → s[b7]
:::

∧ s[b7] ∧ s[a0] → s[b8]
:::

(d)

∧ s[b5] ∧ s[b8] ∧ s[a8] → s[b9]
:::

∧ s[b9] ∧ s[a9] → s[b10] (e)

The query Pericarditis vOmed
HeartDisease corresponds to the assumption b9. We un-

derline the selector variables involved by the COI for b9: (i) positive literals are wavy

33

R. Sebastiani & M. Vescovi

underlined, (ii) assertion selector variables are singly underlined and (iii) axiom selec-
tor variables are doubly underlined. The set of all the axiom/assumption selector vari-
ables marked (ii) and (iii) represent the COI PPericarditisvHeartDisease

Omed
, the set of clauses

containing underlined variables represent the COI formula φPericarditisvHeartDisease
Omed

, and the
set of the axioms represented by the selector variables marked (iii) represent the module
Mc.o.i.

PericarditisvHeartDisease = {a0, a3, a6, a7, a8, a11}. The module is inductively defined back-
ward from the positive literal s[b9]. Due to the first clause in row (e) also the literals
s[b8], s[b5] are involved in the cone of influence and a8 is added to the initially-empty mod-
ule; due to s[b8] (second clause of row (d)), also s[b7] is part of the cone and a0 of the
module while, similarly, the other axioms a6 and a7 are part of the module consequently
to the clauses implying s[b5] (first clause of row (c)). Finally, also axioms a3 and a11 are
incorporated due to the clause involving s[b7] (first clause of row (d)).

Notice that, a9 is not included in the COI module for Pericarditis v HeartDisease, unlike
in the reachability-based module for Pericarditis (see Example 2.5 for the computation of
Mreach

Pericarditis). 3

The following result is a straightforward consequence of Definition 5 and Theorem 3,
and it is formally proved in Appendix A.

Theorem 6. Given an EL+ TBox T in normal form and the formula φallT (po) as defined in
Definition 4, for every pair of concept names C,D in PCT , the following facts hold:

(i) C vT D if and only if C vMc.o.i.
CvD

D;

(ii) if S is a MinA for C vT D, then S ⊆ Mc.o.i.
CvD,

where Mc.o.i.
CivDi

⊆ T is the COI module for C v D w.r.t. φallT (po), as defined in Definition 5.

Notice that point (i) of Theorem 6 is a direct consequence of point (ii), but we distin-
guished them because (i) states that the COI module preserves the subsumption relation
for which the module is computed, whilst (ii) states that the COI module contains all the
possible MinAs responsible of such a subsumption relation.

The computation of the COI Module can be performed straightforwardly through the
simple queue-based algorithm of Figure 6. ComputeCOIModule traverses breadth-first the
COI PCivDi

A and the COI formula φCivDi
T starting from the positive selector variable

s[CivDi], mirroring their inductive definition in Definition 5.
Importantly, Step 5 of the algorithm in Figure 6 can be performed efficiently if we exploit

the two-watched-literals technique (Moskewicz et al., 2001) (see Section 2.2) implemented
in all the modern state-of-the-art SAT solvers. In fact, since all the clauses in φallT (po) are

definite Horn clauses (see Section 3.2) they are all implications having exactly one positive
literal (that is s[ai] in our exposition). Therefore, at loading/parsing time, we can force the
only positive literal of each clause to be one of its two watched literals. This ensures that at
Step 5, through the two-watched-literal scheme, we can obtain the set φai of all the clauses
in which the literal s[ai] appears positively in linear time w.r.t. the cardinality of φai itself.

Proposition 7. Given the Horn propositional formula φallT (po), the set of assumptions PT
and the query s[CivDi], the algorithm of Figure 6 executes in linear time w.r.t. the number

of clauses of the COI subformula φCivDi
T .

34

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

variable-list ComputeCOIModule (formula φallT (po), variable-list PT , literal s[CivDi])

1. Q = ∅; PCivDi
T = ∅ ;

2. enqueue s[CivDi] in Q; mark s[CivDi] as reached;

3. while Q is not empty {
4. dequeue s[ai] from Q;

5. let φai be the set of all the clauses of the form s[ai] ∨
∨

j ¬s[aj];
6. for each clause c ∈ φai {
7. for each ¬s[aj] occurring in c {
8. if (s[aj] is not reached)

9. { enqueue s[aj] in Q; mark s[aj] as reached; }
10. if (s[aj] ∈ PT)

11. PCivDi
T = PCivDi

T ∪ {s[aj]};
12. }
13. }
14. }
15. return PCivDi

T

Figure 6: Schema of the SAT-based COI Modularization algorithm.

Since the COI Modularization algorithm is computationally cheap and, most important,
the modules computed are typically orders of magnitude smaller than T , this technique
improves dramatically the performance of our approach (see Section 5).

Remark 3. Importantly, this technique works directly on the propositional input formula
φallT (po), with no need for re-computing anything from T , or for performing any other form

of EL+ reasoning. From the perspective of our approach, this is a point in favor of our
COI modularization since we can solve every query working directly on the SAT formula
regardless the original ontology. Furthermore, with exactly the same procedure we can
obtain the COI module’ assertions PCivDi

S for any desired sub-ontology S of T : once

PCivDi
A has been computed from φallT (po), we have simply PCivDi

S
def
= PCivDi

A ∩ PS . 3

Although similar in aim, COI Modularization and Reachability-based Modularization
(see Section 2.1.5) present substantial differences.

First, differently from Reachability-based Modularization, in which modules are ex-
tracted from the original axioms of T proceeding forward on the basis of syntactic in-
teractions between the signatures of the axioms (starting from the given signature), COI
Modularization extracts modules in a SAT-based manner proceeding backward according
to the propositional interactions between the clauses of the encoding φallT (po) (starting from

the query selector variable). Therefore, even if COI Modularization relies directly on the
propositional encoding instead of reasoning in terms of description logic, it is a seman-
tic modularization technique. In fact, the SAT formula φallT (po) includes (and hides) the
semantics of T handled during the construction of the formula.

Second, Reachability-based Modularization does not depend on the specific set of com-
pletion rules adopted, whilst the COI technique does. In fact, reachability-based modules

35

R. Sebastiani & M. Vescovi

are computed before the classification independently from the completion rules, while COI
modules are computed after the classification —and thus exploiting the information which
is produced by the classification— on the basis of the encoding φallT (po), whose definition
depends on the specific set of completion rules adopted. A different COI modules would be
produced if a different set of completion rules was used.

Third, we state that our approach is more precise than the reachability-based one, i.e.,
that it extracts smaller or equal modules. We have the following fact.

Proposition 8. Given an EL+ TBox T in normal form and the formula φallT (po) as defined

in Definition 4, for every pair of concept names C,D in PCT we have that Mc.o.i.
CvD ⊆ Mreach

C ,

where Mreach
C and Mc.o.i.

CvD are, respectively, the reachability-based module (Definition 2) and
COI module (Definition 5) for C v D.

In fact, whilst Reachability-based Modularization computes a module “dependent” only
from Ci, COI Modularization computes a module “dependent” from both Ci and Di (i.e.
dependent from the subsumption relation Ci v Di). For example, the reachability-based
module computed for the query Ci v Di is the same computed for the query Ci v Ei,
because it in both cases it includes everything is syntactically reachable from Ci; more
precisely, it also includes in the module everything else is syntactically reachable either
from Di or from Ei. (This fact makes us conjecture that some kind of combination of
a forward reachability from Ci and a backward one from Di might be used to refine the
reachability-based technique.)

Example 4.2. The following example shows in the ontology not-Galen the differences
between the reachability-based module Mreach

Lithium and the COI module Mc.o.i.
L.vC.S. for the

existing subsumption relation Lithium vnot-Galen ChemicalSubstance.

Lithium v ElementalChemical
Lithium v Metal hasFeature vr FeatureStateAttribute

ElementalChemical v ChemicalSubstance FeatureStateAttribute vr ModifierAttribute
Metal v ComplexChemicals ModifierAttribute vr DomainAttribute

ComplexChemicals v ChemicalSubstance DomainAttribute vr Attribute
ChemicalSubstance v Substance infinitelyDivisible v mass

Substance v GeneralisedSubstance mass v CountabilityStatus
GeneralisedSubstance v DomainCategory CountabilityStatus v AbstractStatus

DomainCategory v TopCategory AbstractStatus v Status
Substance v ∃hasCountability.infinitelyDivisible Status v Aspect

hasCountability vr StructuralAppearanceModifier Aspect v ModifierConcept
StructuralAppearanceModifier vr StructuralModifierAttribute ModifierConcept v DomainCategory

StructuralModifierAttribute vr hasFeature

While Mreach
Lithium consists of all the 24 listed axioms of not-Galen, Mc.o.i.

L.vC.S. consists of only
the first 5 axioms (listed above the separation line).

4.2 Theory Propagation

Another important improvement to the ComputeAllMinAs procedure of Figure 5 we have
introduced in the new version of EL+SAT is that of exploiting early pruning and theory prop-
agation, two well-known techniques from SMT which we briefly described in Section 2.2.4.
(In (Sebastiani & Vescovi, 2009b) we already suggested the potential applicability of these

36

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

techniques, but they were not implemented in the first version of EL+SAT.) The idea is
that the “theory solver” ComputeOneMinA can be invoked also when status = unknown,
that is, when µ is a partial truth assignments on PS . If µ

+ is enough to falsify the “theory”
¬s[CivDi] ∧ φallT (po), then ComputeOneMinA computes and returns one MinA, without explor-

ing all possible extensions of µ. If µ+ does not falsify ¬s[CivDi] ∧φallT (po), then it may be the

case that inside ComputeOneMinA µ+ causes the unit-propagation on φallT (po) of one (or more)

literal ¬s[axj] s.t. s[axj] ∈ PS and s[axj] is unassigned. If this is the case, then µ+ ∧ s[axj]

represents a non-minimal truth assignment falsifying ¬s[CivDi] ∧ φallT (po). Consequently, (i)

the main procedure can unit-propagate ¬s[axj], and (ii) µ+ ∧ s[axj] can be minimized by
ComputeOneMinA to compute one novel MinA. Notice that such MinA is necessarily novel,
because the negation of all previous MinAs have been learned permanently, so that, if
µ+∧s[axj] contained a previous MinA, then ¬s[axj] would have been unit-propagated before
invoking ComputeOneMinA.

Example 4.3. We consider a slight variant of Example 3.4 at p. 29. We want to find
all the MinAs for the subsumption Milk vOmilk

Fluid in the ontology Omilk of Example 2.2
at p. 8, using the encoding φallOmilk(po)

of Example 3.3 at p. 23. The query above is la-

beled by s[n5]. Suppose ComputeAllMinAs enumerates the partial assignment µ = µ+
def
=

{s[m0], s[m1], s[m2], s[m3], s[m4], s[m5]}, and ComputeOneMinA is invoked on φallOmilk(po)
, µ+ and

¬s[n5]. This causes the unit-propagation on φallOmilk(po)
of s[n1], ¬s[n3], ¬s[n2], and hence ¬s[m6].

Thus µ ∪ {s[m6]} falsifies ¬s[n5] ∧ φallOmilk(po)
, and is then minimized by ComputeOneMinA into

the set η
def
= {s[m0], s[m1], s[m3], s[m5], s[m6]} (corresponding to the MinAOmilk

∗
2 in Example 3.4

at p. 29). Then ComputeAllMinAs learns permanently the clause ¬η and adds ¬s[m6] to µ
by unit-propagation, and the search proceeds.

4.3 Working on Smaller Ontologies: EL+SAT×2

We have already noticed that COI modules are typically much smaller, up to orders of
magnitude smaller, than the original ontologies. This suggest our last enhancement, which
separates the modularization and the enumeration of all MinAs into two distinct executions
of EL+SAT on two different formulas. We first exploit COI modularization to extract
a query-dependent sub-ontology on which, subsequently, we run our complete EL+SAT
approach (i.e. both the encoding and the all-MinAs search phases).

Given a query Ci v Di, the process, which we call EL+SAT×2, consists in three phases:

1. after loading the formula φallT (po), extract the query-dependent sub-ontology Ti
def
=

Mc.o.i.
CivDi

by invoking ComputeCOIModule;

2. build from scratch a new classification formula φallTi(po) from the sub-ontology Ti;

3. enumerate all MinAs applying ComputeAllMinAs to φallTi(po) rather than of to φallT (po).

Implementation-wise, it is convenient to run two distinct instances of EL+SAT:

37

R. Sebastiani & M. Vescovi

(i) a first instance implementing Step 1., which loads only once φallT (po), and then, for every

query Ci vT Di
18 given as input, performs COI Modularization, producing Ti

def
=

Mc.o.i.
CivDi

;

(ii) a second “dynamic” instance of EL+SAT implementing Steps 2. and 3. for each sub-
ontology Ti, producing φallTi(po) and then using it to enumerate all MinAs for Ci v Di.

We remark a few facts. First, with the first EL+SAT instance (i), once φallT (po) has been
loaded, a COI module Ti can be computed in negligible time for an unlimited number of
queries Ci v Di, with no need for reloading φallT (po). Second, since each sub-ontology Ti is
typically much smaller than the original ontology T (e.g., up to a hundred axioms w.r.t.
up to hundreds of thousands axioms), the time taken by the second instance of EL+SAT
(ii) to produce the new formulas φallTi(po) is typically negligible. Third, overall, EL+SAT×2
allows for a faster enumeration of the MinAs. In fact, while phases 1. and 2. are expected
to take negligible time even for really huge input ontologies, in phase 3. the second instance
of EL+SAT runs over the classification of ≈ 10/100 axioms instead of ≈ 10, 000/100, 000
axioms. This can strongly reduce the overhead of every internal call to ComputeOneMinA

during the MinAs enumeration, leading to a drastic enhancement overall.

5. An Extensive Experimental Evaluation

We have implemented in C++ the procedures of Sections 3 and 4 into a tool —hereafter
referred as EL+SAT— which includes a customized versions the SAT solver MiniSat2.0
070721 (Eén & Sörensson, 2004). We have performed a very extensive experimental evalu-
ation on the five ontologies introduced in Section 1: Snomed-CT’09, NCI, GeneOntol-
ogy, not-Galen and full-Galen.19 The latter two ontologies are derived from Galen:
not-Galen is a stripped-down version of Galen with no role functionality that has been
widely used for benchmarking several standard DL-reasoners, and full-Galen represents
the full Galen medical ontology, excluding role inverses and functionalities. In Table 3 we
present some numerical informations on the structure and size of these ontologies.

For all these ontologies, we have compared different versions of EL+SAT and the other
EL+-specific tool CEL (Baader et al., 2006a), version v.1.1.2, which implements also
the Reachability-based Modularization of Suntisrivaraporn (2009).20 All tests have been
run on a biprocessor dual-core machine Intel Xeon 3.00GHz with 4GB RAM on Linux

RedHat 2.6.9-11, except for Snomed-CT which has been processed by both EL+SAT
and CEL tools on a Intel Xeon 2.66 GHz machine with 16GB RAM on Debian Linux

2.6.18-6-amd64. For each query, we have set a timeout of 1000 seconds.

The whole evaluation was performed in two steps.
In the short version of this paper (Sebastiani & Vescovi, 2009b) we presented, im-

plemented and evaluated only the procedures of Section 3, without the optimizations of
Section 4,and presented a preliminary evaluation. There we reported the CPU times of
the formula encoding and parsing phases, the size of the encoded formulas, the CPU times

18. and, possibly, for every sub-ontology S ⊆ T .
19. Snomed-CT’09 is courtesy of IHTSDO http://www.ihtsdo.org/, whilst the other four ontologies are

available at http://lat.inf.tu-dresden.de/~meng/toyont.html.
20. Available from http://lat.inf.tu-dresden.de/systems/cel/ and http://code.google.com/p/cel/.

38

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Ontology notGalen GeneOnt. NCI fullGalen Snomed’09
of primitive concepts 2748 20465 27652 23135 310075
of original axioms 4379 20466 46800 36544 310025
of normalized axioms 8740 29897 46800 81340 857459
of role names 413 1 50 949 62
of role axioms 442 1 0 1014 12

Table 3: Size and structure of the five EL+ ontologies.

taken to check subsumptions and to compute single MinAs, and some preliminary results
on all-MinAs problems. As a result, the amounts of CPU time required by subsumption
checks and single-MinA computation were negligible (< 0.02s on average); unfortunately,
for the All-MinA problems, for no sample EL+SAT could conclude the full enumeration
within a timeout of 1000s. (In order not to further enlarge this experimental section, we
refer the reader to (Sebastiani & Vescovi, 2009b) for these data.)

In this paper we have focused on the All-MinA problems, and we have extended EL+SAT
with the optimizations presented in Section 4. For all the five ontologies, we have compared
different versions of EL+SAT and CEL.

Note for reviewers. The tarballs containing the tool EL+SAT, the encodings and the data
of this empirical evaluation are available from http://disi.unitn.it/~rseba/elsat/.

5.1 Evaluation criteria

To perform an accurate performance comparison between EL+SAT in its various versions
and CEL is very problematic for some reasons. First, the most-recent version of CEL is
implemented as a Java plug-in for the Protege ontology editor and knowledge acquisition
system,21 and as such it is practically impossible to have a performance comparison against
it. Second, the available stand-alone version of CEL, version v.1.1.2, stops as soon as
it reports 10 MinAs.22 Third, all the MinAs found by CEL are reported only after the
whole search is terminated, so that it is not possible to interrupt the execution of CEL
at the expiration of the timeout and obtain the partial results; thus, in order to make a
comparison possible, we chose to run CEL without a timeout. Notice that, in this case, it is
also impossible to know how many of the MinAs returned have been actually enumerated
within the timeout.

Thus, we adopt the following criterium for comparing EL+SAT versions and CEL.

Definition 6. Let A and B be either one EL+SAT version or CEL. We say that a tool A
performs better than a tool B iff one of the following alternative facts happens:

(i) both A and B terminate without being stopped by the timeout or by the 10 MinAs limit
for CEL, and A takes less time, or

(ii) A terminates within the timeout/limit and B does not, or

21. http://protege.stanford.edu/
22. We have reported this problem to the authors long ago, but so far they were not able to provide us with

a fixed stand-alone version.

39

R. Sebastiani & M. Vescovi

(iii) neither terminates within the timeout/limit and A enumerates more MinA’s than B, or

(iv) neither terminates within the timeout/limit, they enumerate the same amount of MinA’s,
and A takes less time in doing it.

Notice that in case (i) A and B return the same MinAs, whilst in case (ii) A returns a
non-strict superset of MinAs than B does. We reckon that the criterium of Definition 6 is
not accurate in some situations, since the notion of “non-termination” for EL+SAT (1000s
timeout) and CEL (10 MinAs reached) differ. Unfortunately, the 10-MinA limit of CEL and
the fact that it is not possible to evaluate the actual number of MinAs evaluated by CEL
within a given amount of time prevented us from conceiving a more fine-grained criterium.

We also reckon that the results depend on the values of the two constants used. Of
course, we are forced to take the 10MinA limit as is. As far as the 1000s timeout is con-
cerned, we thought this value, which we have adopted in many other papers, is a reasonable
compromise. (We will further discuss the latter issue later on.)

Overall, we believe that the values reported can provide at least a coarse-grained idea
of the relative performance of the two tools.

5.2 Test description and results

For each ontology T we run two groups of 50 test pinpointing queries each, extracted among
the subsumption relations which are deducible from T , so that there exists at least one
MinA for every query. A first group of queries, which we call random, has been generated
by picking 50 random queries among all the possible existing and non-trivial ones; this is
done in order to understand the behavior of the tool on a normal debugging circumstance.
A second group of queries, which we call selected, has been chosen by considering the 50
subsumptions Ci v Di whose selector variable s[CivDi] appears positively more frequently

in φallT (po); this is done in order to understand the behavior of the tool on these “potentially
harder” queries, that is, queries potentially involving the highest number of different MinAs.

In what follows we present and discuss the results of this evaluation, reporting both
the CPU times taken by the tools to compute the generated MinAs and the number of
MinAs found. We report also some data concerning the size of the modules obtained by
applying the COI Modularization for EL+SAT (see Section 4.1) and the Reachability-based
Modularization for CEL. It is worth noticing that our modularization technique required
negligible time (≤ 10−2 secs.) in all the test cases we performed.

In the evaluation we executed the following four different versions of EL+SAT, which
increasingly introduce the optimizations exposed in Section 4:

basic (b): the first prototype version used in the feasibility evaluation presented by Sebas-
tiani and Vescovi (2009b) (without the optimizations of Section 4);

coi (c): a second version implementing the COI Modularization introduced in Section 4.1;

coi&tp (t): the coi version enhanced with Theory Propagation (Section 4.2) and other
minor optimizations;

EL+SAT×2 (×2): a final version implementing the “two-instances” approach of Section 4.3,
which runs two instances of EL+SAT coi&tp.

40

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Snomed’09 fullGalen NCI GeneOnt. notGalen Total
ran. sel. ran. sel. ran. sel. ran. sel. ran. sel.

EL+SAT basic 0 0 0 0 0 0 0 0 0 0 0
EL+SAT coi 0 1 0 0 0 0 0 0 0 0 1
EL+SAT coi&tp 0 3 0 0 0 1 0 0 0 0 4
EL+SAT×2 37 24 32 3 49 49 50 50 35 30 359

CEL 13 22 18 47 1 0 0 0 15 20 136

Total 50 50 50 50 50 50 50 50 50 50 500

Table 4: Number of instances for which each tool has been the best performer.

In Tables 6–15 —which for lack of space we have moved into Appendix, Section B, Pages
ix-xviii— we report in detail the results of each single query for the random/selected groups
of the Snomed-CT’09, full-Galen, NCI,GeneOntology, not-Galen respectively. In
these tables we compare the detailed results of the four representative variants of EL+SAT
and those of CEL. For each query and variant/tool we expose the results of modularization,
the CPU times required by the tools and the number of MinAs resulting from the search.

We remark that the results are consistent: whenever completing the enumeration, the
numbers of MinAs pinpointed by the different versions of EL+SAT and/or by CEL are
always the same. Terminating versions always discover a greater or equal number of MinAs
w.r.t. non-terminating versions (or w.r.t. CEL, when it stops at 10 MinAs).

The results of Tables 6-15 are first briefly summarized in Table 4 in terms of best
performers, as defined in Section 5.1. A more detailed summary is then presented in Table 5,
in terms of numbers of problems terminated and numbers of MinAs found (Table 5(a)) and
statistics on CPU Times (Table 5(b)).

Table 4, which reports the number of instances in each category for which each tool was
the best performer, is self-explanatory. (We remark that the “# of MinAs found” columns
in Table 4 refer to the total amount of MinAs accumulated over the 50 tests.) Table 5
deserves some explanation.

Consider Table 5(a). In the left-most block of the table we count, for every variant, the
number of EL+SAT computations terminating the enumeration before the timeout; for CEL
we indicate the number of instances exhaustively terminating the search (i.e. not stopping
at 10 MinAs). In the central block we count the total amount of MinAs generated before
termination. In the right-most block we present the average size of the modules extracted
by EL+SAT and CEL, respectively.

In Table 5(b) we summarize time performances. For every value we compute both the
50th and the 90th percentiles. In the left-most block we report the statistics concerning
either the time taken by EL+SAT to discover the first MinA or the time between each pair
of consecutive MinA detections. In the central block we report, instead, the statistics on
total elapsed time. Finally, in the right-most block, we report the statistics concerning the
modularization procedures of EL+SAT and CEL, respectively. (Since with CEL it is not
possible to directly distinguish between the time taken by the modularization procedure
and the time required by the following search, we measured such times by running in
CEL separate modularization queries.) Notice that the time statistics for CEL include also
problems terminated after the timeout or because of the detection of 10 MinAs.

41

R. Sebastiani & M. Vescovi

terminated # MinAs found Module size avg.
EL+SAT CEL EL+SAT CEL EL+SAT CEL

test (b) (c) (t) (×2) (b) (c) (t) (×2)

Snomed’09
random 0 23 24 31 41 146 190 203 463 194 31 46
selected 0 0 0 0 21 262 313 575 876 325 129 141

fullGalen
random 0 10 15 21 38 74 76 82 82 84 58 8926
selected 0 0 0 3 48 55 55 55 55 55 177 14801

NCI
random 0 40 40 46 44 159 172 200 214 150 9 39
selected 0 29 29 36 33 417 416 445 455 337 20 48

GeneOnt.
random 0 49 49 50 46 132 164 162 168 143 5 20
selected 0 17 18 44 8 579 853 881 961 480 20 33

notGalen
random 0 17 34 35 50 67 68 68 68 68 15 95
selected 0 0 0 30 50 91 91 91 91 91 31 131

Total 0 185 209 296 379 1982 2398 2762 3433 1927

(a) Number of terminated problems and generated MinAs.

Time between MinAs (s) Total pinpointing time (s) Modulariz. (s)
EL+SAT EL+SAT CEL EL+SAT CEL

test % (b) (c) (t) (×2) (b) (c) (t) (×2)

Snomed’09
random 50th 7.4 1.0 0.5 0.0 99.3 86.9 63.1 0.0 21.4 .000 3.36

90th 83. 33. 13. 0.9 262. 569. 177. 64. 27.4 .004 3.41
selected 50th 7.2 1.5 0.6 0.0 163. 98. 69. 0.4 28.4 .004 3.39

90th 113. 18. 31. 2.9 655. 402. 791. 322. 31.2 .008 3.41

fullGalen
random 50th 3.9 0.5 0.4 0.0 39.9 22.2 25.7 0.0 195. .002 2.25

90th 17.6 1.7 0.6 0.0 60.7 24.4 26.4 0.0 1922. .004 2.27
selected 50th 3.7 0.7 0.3 0.0 39.1 36.6 25.1 0.0 321. .006 2.26

90th 3.8 0.8 0.4 0.0 39.7 37.2 26.2 0.0 803. .009 2.27

NCI
random 50th 0.2 0.0 0.0 0.0 2.1 2.0 2.1 0.0 1.3 .001 0.39

90th 9.1 3.4 6.9 0.2 70. 186. 363. 0.2 4.2 .001 0.39
selected 50th 0.3 0.0 0.0 0.0 13.5 2.2 2.3 0.0 2.5 .001 0.39

90th 31.4 1.0 0.2 0.0 634. 313. 32. 51. 6.8 .001 0.40

GeneOnt.
random 50th 0.2 0.0 0.0 0.0 2.1 1.8 1.8 0.0 0.8 .000 0.26

90th 8.5 0.1 0.1 0.0 21.2 1.9 2.2 0.0 1.4 .001 0.26
selected 50th 0.3 0.0 0.0 0.0 292. 144. 90. 1.0 1.8 .001 0.26

90th 58.7 26. 12. 0.4 845. 885. 885. 52. 2.6 .001 0.27

notGalen
random 50th 0.1 0.0 0.0 0.0 1.0 0.6 0.9 0.0 0.3 .000 0.08

90th 0.3 0.0 0.0 0.0 1.4 0.6 0.9 0.0 1.3 .001 0.09
selected 50th 0.1 0.0 0.0 0.0 1.1 0.9 0.9 0.0 0.7 .001 0.08

90th 0.2 0.0 0.0 0.0 1.2 1.1 0.9 0.0 1.1 .001 0.09

(b) CPU times in pinpointing and modularization.

Table 5: Summary results of EL+SAT (all versions) and CEL on all the test problems.

42

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

5.3 Analysis of the Results

Here we discuss the results of our extensive experimental evaluation. First, we analyze the
general performance of EL+SAT, comparing its different variants. Second, we evaluate the
most-enhanced version of EL+SAT in comparison with CEL.

5.3.1 Analysis of EL+SAT Performances

As a general fact (see the last “Total” row in Table 5(a)) from all the data in the tables
we can immediately notice that each enhancement in EL+SAT improves its overall perfor-
mances, increasing both the total number of terminating test cases and the total number
of MinAs found within the timeout. In particular, from Table 4 we notice that, with the
exception of only 5 instances out of 500, EL+SAT×2 is always the best performer among
the EL+SAT versions. (The very-rare exceptions —e.g., the 24th, 36th, 38th and 42nd
Snomed’09 selected instances in Table 7 in Appendix— can be easily justified by pure
chance, due to different enumeration orders induced to the SAT solvers.) The improvements
are typically much more evident when the test case includes a (relatively) large number of
MinAs. (In these cases, e.g., techniques like Theory Propagation yield more benefits and
have their computational cost amortized.)

More specifically, looking at Tables 4 and 5 (plus Tables 6-15 in Appendix) we notice
the following facts concerning the four EL+SAT versions:

• COI Modularization dramatically improves EL+SAT performances, requiring negligi-
ble overhead time. This fact can be easily observed by comparing the results of the
(b) and (c) versions in Table 5(a). In particular, due to the number of axioms in
the input ontologies (see Table 3) no problem can be completely enumerated by the
basic version, whilst in the coi version COI modularization allows for completing
185 enumerations, generating 416 more MinAs overall.

• Theory propagation significantly increases the number of generated MinAs. As can be
seen comparing the (c) and (t) variants of EL+SAT in Table 5(a), theory propagation
allows for discovering 364 more MinAs overall the five benchmark ontologies, (275 of
which in Snomed-CT), also leading to 24 complete enumerations more. In fact early-
discovering MinAs speeds up the search by introducing earlyer the respective blocking
clauses).

• The (×2) enhancement also much improves the performances under every perspective
(number of discovered MinAs, number of terminated problems and CPU times): w.r.t.
the (t) version, the (×2) one terminates the enumeration on 87 more problems and
returns more than 671 more MinAs, almost doubling the number of MinAs pinpointed
for Snomed-CT. Importantly, the CPU time required in the first two phases of the
approach (modularization and encoding of the sub-ontology) is negligible (≤ 10−1)
for every query and ontology (Snomed-CT and full-Galen included).

• The sub-ontologies (modules) extracted are orders of magnitude smaller than the
original ones. This is one key factor of the drastic improvements in performances
from version (b) to version (×2). In particular, with EL+SAT×2, every single
internal call to the T -solver during the enumeration is performed on a SAT formula

43

R. Sebastiani & M. Vescovi

that is many orders of magnitude smaller. This acts on reducing the overheads of
every single search, leading globally to a much faster enumeration.

Overall, looking at the performances of the most-enhanced version, EL+SAT×2, we notice
a few facts:

• EL+SAT×2 cuts down to almost zero the CPU time required to find all the existing
MinAs in the very majority of the test cases. (See column “(×2)” in Tables 6-13.)
Moreover, whichever the ontology or the query is, EL+SAT×2 allows for computing
some MinAs in negligible time.

• The performances reached by EL+SAT×2 for an “average” query (represented by the
random test suites) are quite satisfactory. Comparing the 50th and 90th percentiles
times of Table 5(b) we can notice that, even if there are some really challenging
queries, the greatest part of the queries are easily affordable by EL+SAT×2.

5.3.2 Comparing EL+SAT×2 with CEL

Comparing the data out of the 500 samples on EL+SAT×2 and CEL in Tables 4 and 5
(plus Tables 6-15 in Appendix B, p. ix-xviii) we notice the following facts.

• EL+SAT×2 is the best performer on 359 samples, whilst CEL is the best performer
on 136 samples (see Table 4). These results are heterogeneous: EL+SAT×2 performs
worse than CEL on full-Galen, better on Snomed’09 and not-Galen, and dras-
tically better on NCI and GeneOntology. The results vary a lot also in terms of
the cases (i)-(iv) of our comparison criterium of Section 5.1.

• EL+SAT×2 terminates within the timeout on 296 samples, whilst CEL terminates
within the timeout/10MinA limit on 379 samples (see Table 5(a)). However (see
last two columns in Tables 6-15) even when not terminating within the timeout,
EL+SAT×2 reports less MinAs than CEL only on 6 samples (respectively 1, 4, and
1 in Tables 6, 7, and 8); vice versa, EL+SAT×2 reports more MinAs than CEL on
102 samples (respectively samples 9, 25, 5, 16, 4, 43, on Tables 6, 7, 10, 11, 12, 13).
Overall (Table 5(a)) EL+SAT×2 finds 3433 MinAs against the 1927 MinAs found by
CEL.

• When both EL+SAT×2 and CEL terminate (see the topmost partition of Tables 6-13)
EL+SAT×2 always outperforms CEL in time, by almost-always detecting all MinAs
in negligible time (≤ 0.1s) whilst CEL takes, e.g., ≈ 20s with Snomed-CT and up to
≈ 900s with full-Galen.

Remark 4. In Section 5.1 we noticed that the results can be sensitive to the values of
the two constants used. Thus we might conjecture that lowering the timeout would have
shifted results in favour of CEL. We claim this is not really the case. For instance, by
looking at the “(×2)” and “CEL” columns in Tables 6-13 we notice that EL+SAT×2 times
exceed 100s only on 26 instances, whilst CEL exceeds it with 72 instances (most of which
in full-Galen).

44

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

To sum up, typically EL+SAT×2 takes less time than CEL to enumerate the MinAs,
and then it takes more time than CEL to show there is no other MinA left afterwards.
This fact mirrors the differences in the enumeration techniques performed by the two tools
we have described in previous sections; in particular, it reflects the fact that, thanks to
the strategy of selecting positive axiom selector variables (see Section 3.3) and to Theory
Propagation (Section 4.2), EL+SAT×2 tends to find the MinAs at the early stage of the
Boolean search, and then to spend most time to complete the search to certify there is no
MinA left.

With both tools, modularization plays an essential role. In particular, comparing the
two modularization techniques, we notice the following facts.

• The data on module size (see the last two columns of Table 5(a) and the first two
columns of Tables 6-13) confirm empirically what formally proved in Proposition 8:
COI Modularization of EL+SAT is more effective than CEL’s syntactic modulariza-
tion, always producing smaller modules. Notice that this size gap is up to 2-3 order
magnitude with full-Galen (Tables 8, 9).

• COI Modularization of EL+SAT is much faster than the Reachability-based Modu-
larization of CEL, even when the module extracted are comparable in size (see the last
two columns of Table 5(b)). In particular, the cost of COI Modularization is linear
w.r.t. the size of the cone of influence for the query (see Section 4.1), whilst that
of Reachability-based Modularization seems to grow with the size of the whole input
ontology.

6. Related Work.

In this section we survey the main related work, from different perspectives.

Concept Subsumption, Classification and Axiom Pinpointing in EL+. Apart from
the preliminary version of this paper (Sebastiani & Vescovi, 2009b), the most closely-related
work to our own is that of Baader and colleagues (see e.g. Baader et al., 2006b, 2007; Baader
& Suntisrivaraporn, 2008), who thoroughly investigated the problems of concept subsump-
tion, classification and axiom pinpointing in EL+, and developed efficient algorithms for
debugging real-world EL+ ontologies, which were implemented and tested with success on
large real-world ontologies, including Snomed-CT.

Black-Box Debugging Techniques for General Ontologies. Axiom pinpointing has
increasingly caught attention in the Semantic Web research community, as a fundamental
method for debugging and repair ontologies in a variety of logics (see, e.g., Kalyanpur,
Parsia, Horridge, & Sirin, 2007; Suntisrivaraporn et al., 2008; Horridge, Parsia, & Sat-
tler, 2008; Peñaloza & Sertkaya, 2010a; Moodley, Meyer, & Varzinczak, 2011; Horridge,
2011; Bail, Horridge, Parsia, & Sattler, 2011). In this domain axiom pinpointing —here
usually called justification finding— is mainly solved via black-box approaches, which use
blind search algorithms, that is, algorithms which are not driven by properties of the spe-
cific logic/ontology (Schlobach & Cornet, 2003; Kalyanpur, Parsia, Sirin, & Hendler, 2005;
Kalyanpur et al., 2007; Suntisrivaraporn et al., 2008; Horridge et al., 2008). More recent
works (e.g., Moodley et al., 2011; Horridge, 2011; Bail et al., 2011), explored more so-
phisticated structure-aware approaches also in the case of black-box debugging of general

45

R. Sebastiani & M. Vescovi

ontologies, in order to cope with multiple undesired entailments and with multiple justifica-
tions, improving the debugging support by identifying the best/minimal repair strategies.

Modularization. In order to cope with the huge dimension of many ontologies such as
Snomed-CT, and to better support the different ontology-manipulation tasks, a lot of
effort has been spent in devising efficient and effective module-extraction procedures, to be
combined with the various reasoning services (e.g., Grau et al., 2007; Konev et al., 2008b,
2008a; Suntisrivaraporn et al., 2008; Del Vescovo, Parsia, Sattler, & Schneider, 2010, 2011),
so that modularization has become a prominent research problem.

Reasoning on Other Tractable Extensions of EL. Beside the logic EL+ (Baader et al.,
2006b), many other extension of EL or tractable fragments of harder logics have been stud-
ied by members of the Description Logic community, with the aim of defining a maximal
subset of logical constructors whose practical applications remain tractable (Baader et al.,
2005; Baader, Brandt, & Lutz, 2008; Kazakov, 2009; Magka, Kazakov, & Horrocks, 2010;
Kazakov, Kroetzsch, & Simancik, 2012). A witness of the relevance acquired by the EL fam-
ily of description logics is the introduction in the new W3C standard OWL 2 of the specific
OWL 2 EL profile 23 and the concurrent creation of many reasoners for handling and ma-
nipulating OWL EL ontologies, such as CEL (Baader et al., 2006a; Suntisrivaraporn, 2009;
Mendez & Suntisrivaraporn, 2009), Snorocket (Lawley & Bousquet, 2010), jCEL (Mendez,
Ecke, & Turhan, 2011) and ELK (Kazakov et al., 2012; Kazakov & Krötzsch, 2013).

SAT- and SMT-based Reasoning Techniques for Description Logics. The idea
of implementing automated reasoners for description logics based on nested calls to a SAT
solver was introduced by Giunchiglia and Sebastiani (1996, 2000). Reasoning techniques for
the description Logics ALC and ALCQ, which are based instead on direct encodings into
SAT and SMT, have been presented by Sebastiani and Vescovi (2009a, 2009b) and Haarslev,
Sebastiani, and Vescovi (2011) respectively.

Unsatisfiable-core Extraction, All-SMT and COI Reduction. The idea of com-
puting single MinAs by exploiting the conflict-analysis techniques of modern CDCL SAT
solvers was inspired by the technique for unsatisfiable-core extraction in SAT by Lynce and
Silva (2004). The idea for All-MinA enumeration was inspired by the All-SMT technique
for computing predicate abstractions in Model Checking by Lahiri et al. (2006). The idea of
COI Modularization was inspired by the COI Reduction technique widely used in Symbolic
Model Checking (see e.g. Clarke et al., 1999).

7. Conclusions

We have presented a novel approach for axiom pinpointing in the logic EL+ and its sub-
logics, which is based on a SAT encoding of the classification of the input ontology, and which
exploits an ad-hoc combination of modern SAT and SMT techniques. This approach also
strongly benefits from a novel SAT-based modularization technique we have also proposed
here.

We have implemented this novel approach into a tool, EL+SAT, and we have showed in
an extensive empirical evaluation that EL+SAT is extremely efficient in exhaustively enu-

23. http://www.w3.org/TR/owl2-profiles/

46

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

merating the minimal sets of axioms leading to (typically undesired) subsumption relations,
even with huge medical ontologies like Snomed-CT.

References

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL Envelope. In Proceedings of
IJCAI-05, pp. 364–369. Morgan-Kaufmann Publishers.

Baader, F., Lutz, C., & Suntisrivaraporn, B. (2006a). CEL—a polynomial-time reasoner for
life science ontologies. In Proceedings of IJCAR’06, Vol. 4130 of LNAI, pp. 287–291.
Springer-Verlag.

Baader, F., Lutz, C., & Suntisrivaraporn, B. (2006b). Efficient Reasoning in EL+. In
Proceedings of DL2006, Vol. 189 of CEUR-WS.

Baader, F., Brandt, S., & Lutz, C. (2008). Pushing the EL Envelope Further. In Proceedings
of the OWLED 2008 DC Workshop on OWL: Experiences and Directions.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (Eds.).
(2003). The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press.

Baader, F., & Peñaloza, R. (2007). Axiom Pinpointing in General Tableaux. In Proceedings
of TABLEAUX 2007, LNAI, pp. 11–27. Springer.

Baader, F., Peñaloza, R., & Suntisrivaraporn, B. (2007). Pinpointing in the Description
Logic EL+. In Proceedings of KI2007, Vol. 4667 of LNCS, pp. 52–67. Springer.

Baader, F., & Suntisrivaraporn, B. (2008). Debugging SNOMED CT Using Axiom Pin-
pointing in the Description Logic EL+. In Proceedings of KR-MED’08, Vol. 410 of
CEUR-WS.

Bail, S., Horridge, M., Parsia, B., & Sattler, U. (2011). The Justificatory Structure of the
NCBO BioPortal Ontologies. In Proceedings of ISWC 2011, Vol. 7031 of LNCS, pp.
67–82. Springer.

Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2009). Satisfiability Modulo
Theories, chap. 26, pp. 825–885. Vol. 185 of Biere et al. (Biere et al., 2009).

Bienvenu, M. (2008). Complexity of Abduction in the EL Family of Lightweight Description
Logics. In Proceedings of KR2008, pp. 220–230. AAAI Press.

Biere, A., Heule, H. J. M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of
Satisfiability, Vol. 185 of FAIA. IOS Press.

Biere, A. (2008). Picosat essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation, JSAT, 4 (2-4), 75–97.

Cimatti, A., Griggio, A., & Sebastiani, R. (2011). Computing small unsatisfiable cores in
satisfiability modulo theories. Journal of Artificial Intelligence Research, JAIR, 40,
701–728.

Clarke, E., Grumberg, O., & Peled, D. A. (1999). Model Checking. MIT Press.

Davis, M., Longemann, G., & Loveland, D. (1962). A Machine Program for Theorem-
proving. Communications of the ACM, 5, 394–397.

47

R. Sebastiani & M. Vescovi

Davis, M., & Putnam, H. (1960). A Computing Procedure for Quantification Theory.
Journal of the ACM, 7, 201–215.

Del Vescovo, C., Parsia, B., Sattler, U., & Schneider, T. (2010). The modular structure of
an ontology: an empirical study. In Proceedings of Description Logics 2010, Vol. 573
of CEUR Workshop Proceedings. CEUR-WS.org.

Del Vescovo, C., Parsia, B., Sattler, U., & Schneider, T. (2011). The Modular Structure
of an Ontology: Atomic Decomposition. In Proceedings of IJCAI’11, pp. 2232–2237.
IJCAI/AAAI.

Eén, N., & Biere, A. (2005). Effective Preprocessing in SAT Through Variable and Clause
Elimination. In Proceedings of SAT’05, Vol. 3569 of LNCS, pp. 61–75. Springer.

Eén, N., & Sörensson, N. (2004). An Extensible SAT-solver. In Proceedings of SAT’03, Vol.
2919 of LNCS, pp. 502–518. Springer.

Giunchiglia, F., & Sebastiani, R. (1996). A SAT-based decision procedure for ALC. In
Proc. of the 5th International Conference on Principles of Knowledge Representation
and Reasoning - KR’96, Cambridge, MA, USA.

Giunchiglia, F., & Sebastiani, R. (2000). Building decision procedures for modal logics from
propositional decision procedures - the case study of modal K(m). Information and
Computation, 162 (1/2).

Grau, B. C., Horrocks, I., Kazakov, Y., & Sattler, U. (2007). Just the right amount:
extracting modules from ontologies. In Proceedings of WWiW-07, pp. 717–726. ACM.

Haarslev, V., Sebastiani, R., & Vescovi, M. (2011). Automated Reasoning in ALCQ via
SMT . In Proceedings of CADE-23, Vol. 6803 of LNCS, pp. 283–298. Springer.

Horridge, M. (2011). Justification Based Explanations In Ontologies. Ph.D. thesis, School
of Computer Science, University of Manchester.

Horridge, M., Parsia, B., & Sattler, U. (2008). Laconic and Precise Justifications in OWL.
In Proceedings of ISWC’08, Vol. 5318 of LNCS, pp. 323–338.

Kalyanpur, A., Parsia, B., Horridge, M., & Sirin, E. (2007). Finding All Justifications of
OWL DL Entailments. In Proceedings of 6th ISWC/ASWC, Vol. 4825 of LNCS, pp.
267–280. Springer.

Kalyanpur, A., Parsia, B., Sirin, E., & Hendler, J. A. (2005). Debugging unsatisfiable classes
in OWL ontologies. Journal of Web Semantics, 3 (4), 268–293.

Kazakov, Y. (2009). Consequence-Driven Reasoning for Horn SHIQ Ontologies. In Proceed-
ings of IJCAI-09, pp. 2040–2045.

Kazakov, Y., Kroetzsch, M., & Simancik, F. (2012). Practical Reasoning with Nominals in
the EL Family of Description Logics. In Proceedings of KR2012. AAAI Press.

Kazakov, Y., & Krötzsch, M. (2013). The Incredible ELK: From Polynomial Proce-
dures to Efficient Reasoning with EL Ontologies. Journal of Automated Reason-
ing, 52 (2), 1–61. To appear, see http://link.springer.com/article/10.1007%

2Fs10817-013-9296-3.

48

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Konev, B., Lutz, C., Walther, D., & Wolter, F. (2008a). Logical Difference and Module
Extraction with CEX and MEX. In Proceedings of DL2008, Vol. 353 of CEUR-WS.

Konev, B., Lutz, C., Walther, D., & Wolter, F. (2008b). Semantic Modularity and Module
Extraction in Description Logics. In Proceedings of ECAI’08, Vol. 178 of FAIA, pp.
55–59. IOS Press.

Konev, B., Walther, D., & Wolter, F. (2008c). The logical difference problem for description
logic terminologies. In Proceedings of IJCAR’08, Vol. 5195 of LNCS, pp. 259–274.
Springer.

Lahiri, S. K., Nieuwenhuis, R., & Oliveras, A. (2006). SMT Techniques for Fast Predicate
Abstraction. In Proceedings of CAV’06, Vol. 4144 of LNCS, pp. 424–437. Springer.

Lawley, M. J., & Bousquet, C. (2010). Fast classification in Protg: Snorocket as an OWL 2
EL reasoner. In Inc, A. C. S. (Ed.), Proceedings of IAOA-10, Vol. 122 of Conferences
in Research and Practice in Information Technology, pp. 45–49.

Lutz, C., Toman, D., & Wolter, F. (2009). Conjunctive Query Answering in the Description
Logic EL Using a Relational Database System. In Proceedings of IJCAI-09, pp. 2070–
2075. AAAI Press.

Lynce, I., & Silva, J. P. (2004). On Computing Minimum Unsatisfiable Cores. In Proceedings
of SAT’04, pp. 305–310.

Magka, D., Kazakov, Y., & Horrocks, I. (2010). Tractable Extensions of the Description
Logic EL with Numerical Datatypes. In Proceedings of IJCAR’10, LNCS, pp. 61–75.
Springer.

Mendez, J., Ecke, A., & Turhan, A. Y. (2011). Implementing completion-based inferences for
the EL-family. In Proceedings of Description Logic 2011, Vol. 745 of CEUR Workshop
Proceedings, pp. 334–344. CEUR-WS.org.

Mendez, J., & Suntisrivaraporn, B. (2009). Reintroducing CEL as an OWL 2 EL Reasoner.
In Proceedings of the 2009 International Workshop on Description Logics (DL2009),
Vol. 477 of CEUR-WS.

Moodley, K., Meyer, T., & Varzinczak, I. J. (2011). Root Justifications for Ontology Repair.
In Proceedings of RR 2011, Vol. 6902 of LNCS, pp. 275–280. Springer.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engi-
neering an Efficient SAT Solver. In Proceedings of DAC’01, pp. 530–535. ACM.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving SAT and SAT Modulo Theories:
from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal
of the ACM, 53 (6), 937–977.

Noy, N. F., & Musen, M. A. (2003). The PROMPT suite: interactive tools for ontology
merging and mapping. Int. Journal of Human-Computing Studies, 59, 983–1024.

Peñaloza, R., & Sertkaya, B. (2010a). Complexity of Axiom Pinpointing in the DL-Lite
Family of Description Logics. In Proceedings of ECAI’10, Vol. 215 of FAIA, pp. 29–
34. IOS Press.

Peñaloza, R., & Sertkaya, B. (2010b). On the Complexity of Axiom Pinpointing in the EL
Family of Description Logics. In Proceedings of KR2010, pp. 280–289. AAAI Press.

49

R. Sebastiani & M. Vescovi

Plaisted, D., & Greenbaum, S. (1986). A Structure-preserving Clause Form Translation.
Journal of Symbolic Computation, 2, 293–304.

Rector, A., & Horrocks, I. (1997). Experience Building a Large, Re-usable Medical Ontology
using a Description Logic with Transitivity and Concept Inclusions. In Proceedings of
the Workshop on Ontological Engineering, AAAI’97. AAAI Press.

Schlobach, S., & Cornet, R. (2003). Non-standard reasoning services for the debugging
of description logic terminologies. In Proceeding of IJCAI-03, pp. 355–362. Morgan
Kaufmann.

Sebastiani, R. (2007). Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation, JSAT, 3, 141–224.

Sebastiani, R., & Vescovi, M. (2009a). Automated Reasoning in Modal and Description
Logics via SAT Encoding: the Case Study of K(m)/ALC-Satisfiability. Journal of
Artificial Intelligence Research, JAIR, 35 (1), 275–341.

Sebastiani, R., & Vescovi, M. (2009b). Axiom Pinpointing in Lightweight Description Logics
via Horn-SAT Encoding and Conflict Analysis. In Proceedings of CADE-22, Vol. 5663
of LNCS, pp. 84–99. Springer. Also available at http://disi.unitn.it/~rseba/

publist.html.

Seidenberg, J., & Rector, A. (2006). Web Ontology Segmentation: Analysis, Classification
and Use. In Proceedingd of WWW’06, pp. 13–22. ACM.

Silva, J. P., & Sakallah, K. A. (1996). GRASP – A new Search Algorithm for Satisfiability.
In Proceedings of ICCAD’96, pp. 220–227. IEEE Computer Society.

Sioutos, N., de Coronado, S., Haber, M. W., Hartel, F. W., Shaiu, W., & Wright, L. W.
(2007). NCI Thesaurus: A semantic model integrating cancer-related clinical and
molecular information. Journal of Biomedical Informatics, 40 (1), 30–43.

Spackman, K. A. (2000). Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with SNOMED RT. Journal of American Medical
Informatics Association, JAMIA (Fall Symposium Special Issue).

Spackman, K. A., Campbell, K. E., & Cote, R. A. (1997). SNOMED RT: A reference
terminology for health care. Journal of American Medical Informatics Association,
JAMIA (Proceedings of the Fall Symposium Supplement).

Suntisrivaraporn, B. (2009). Polynomial-Time Reasoning Support for Design and Mainte-
nance of Large-Scale Biomedical Ontologies. Ph.D. thesis, University of Dresden.

Suntisrivaraporn, B., Baader, F., Schulz, S., & Spackman, K. A. (2007). Replacing sep-
triplets in snomed ct using tractable description logic operators. In Proceedings of
AIME’07, LNCS. Springer-Verlag.

Suntisrivaraporn, B., Qi, G., Ji, Q., & Haase, P. (2008). A Modularization-Based Approach
to Finding All Justifications for OWL DL Entailments. In Proceedings of ASWC’08,
pp. 1–15. Springer-Verlag.

The G. O. Consortium (2000). Gene ontology: Tool for the unification of biology. Nature
Genetics, 25, 25–29.

50

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Zhang, L., Madigan, C. F., Moskewicz, M. W., & Malik, S. (2001). Efficient Conflict Driven
Learning in Boolean Satisfiability Solver. In Proceedings of ICCAD’01, pp. 279–285.

Zhang, L., & Malik, S. (2002). The Quest for Efficient Boolean Satisfiability Solvers. In
Proceedings of CAV’02, No. 2404 in LNCS, pp. 17–36. Springer.

51

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Appendix A. Appendix: Proofs

In this section we define and prove formally all the results stated along this work

Theorem 1. Given an EL+ TBox T in normal form, for every pair of concept names
C,D in PCT , C vT D if and only if the Horn propositional formula φT ∧ p[C] ∧ ¬p[D] is
unsatisfiable.

Proof.
(Only if.) By definition the clause p[C] → p[D], that is EL+2sat(C v D), is in φT if and
only if C v D belongs to A that is, since A is the classification of T , if and only if C vT D.
Thus, if C vT D then φT ∧ p[C] ∧ ¬p[D] is unsatisfiable.

(If.) Vice versa, if φT ∧ p[C] ∧ ¬p[D] is unsatisfiable, then it follows that φT |= p[C] → p[D].
Thus, there must be a resolution derivation P of p[C] → p[D] from some subset of clauses
ψ1, ..., ψn in φT . Since φT is a definite Horn formula, every resolution step can be written
in the form

(
∧

i p[Xi]) → p[Xk] (p[Xk] ∧
∧

j p[Xj]) → p[Xn]

(
∧

i p[Xi] ∧
∧

j p[Xj]) → p[Xn]
(11)

s.t. all X’s are concepts. Each corresponding derivation step

(
d

iXi) v Xk (Xk u
d

j Xj) v Xn

(
d

iXi u
d

j Xj) v Xn
(12)

is valid in EL+. 24 Moreover, by definition, each ψi is EL+2SAT (ai) for some ai which is
either in T or has been derived from T . Hence, there is a valid derivation of C v D from
T in EL+, so that C vT D.

Proposition 2. The size of the formula φallT defined in Definition 4 is worst-case polynomial
in the size of the TBox T .

Proof. Under the assumption that conjunctions and role compositions are binary, every
completion rule instantiation (Table 2) has at most three antecedents: one axiom and two
assertions. Thus, the number of different rule instantiations r(ai, ai′ , aj , ak) on the axioms
and assertions in A is upper-bounded by |A|2 · |T |. Recalling that |A| ≤ |PCT |2 · |PRT | and
hence |A| is polynomial in |T |, we have the thesis.

Lemma 9. A literal ` can be derived by unit-propagation from φallT ∧
∧

axi∈S s[axi] [resp.

φallT (po) ∧
∧

axi∈S s[axi]] if and only if ` is a positive occurrence of a selector variable s[ak] for
some subsumption relation ak which is deducible from S.

Proof.
(If.) If the subsumption relation ak is deducible from S then there is a chain of rule
applications r1, . . . , rN which allows for deriving ak starting from a set of premises S ′ ⊆ S,
and such that rN = r(ai, ai′ , aj , ak) for some rule r. We reason by induction on the number
N of rules applied in order to deduce ak from S ′.

24. Notice that this statement is purely based on EL+ semantic, meaning “if an interpretation satisfies the
premises, it satisfies also the conclusion”, and does not depend on the set of derivation rules used.

i

R. Sebastiani & M. Vescovi

Base: If N = 1 then ai, ai′ and aj must all be axioms in S ′. By construction, the rule
clause (10) crN = (s[ai] ∧ s[ai′] ∧ s[aj]) → s[ak] is included in φallT (po), and thus s[ak] is

derived by unit-propagation from φallT (po) ∧
∧

axi∈S s[axi] where all the axiom selector
variables relative to the axioms of S are propagated.

Step: We assume that ak has been derived from the rule applications r1, . . . , rN−1, rN . So,
by construction, φallT (po) includes the corresponding set of rule clauses (10) cr1 , . . . , crN ,

where crN = (s[ai] ∧ s[ai′] ∧ s[aj]) → s[ak] and ai, ai′ and aj are either axioms of S ′ or
subsumption relations consequence of one of the rules among r1, . . . , rN−1. In both
cases all the selector variables s[ai], s[ai′] and s[aj] are positively unit-propagated by
inductive hypothesis. Thus s[ak] is also positively unit-propagation from crN .

Notice also that, since φallT (po) is a subformula of φallT , every literal that is unit-propagated
in the first is also unit-propagated in the second.

(Only if.) We reason by induction on the number of unit-propagation steps performed on
φallT (po) ∧

∧
axi∈S s[axi]:

Base: By definition, all the axiom selector variables s[axi] such that axi ∈ S are initially
unit-propagated. Since they are axioms of S they are trivially deducible from S.

Step: Let L be the set of all literals derived by N applications of unit-propagations steps
and assume that all literals in L are in the form s[aj]. Since only assertion clauses
(9) contain concept variables p[X] (for some concept X) and each assertion clause
contains at least two of them, then: (i) no concept variables can be unit-propagated,
and (ii) no assertion clause causes unit-propagations, but only rule clauses (10) (all
included in the subformula φallT (po)) do. Thus only positive selection variables s[ak] can

be propagated, and only from rule clauses (10) in the form (s[ai] ∧ s[ai′] ∧ s[aj]) → s[ak]
such that {s[ai], s[ai′], s[aj]} ⊆ L and r(ai, ai′ , aj , ak) is a rule application. Since, by
inductive hypothesis, ai, ai′ , aj are derived from S, so that ak is also derived from S
by means of r.

We remark that the literals which can be unit-propagated from φallT (po) ∧
∧

axi∈S s[axi] are

all and only those which can be unit-propagated from φallT ∧
∧

axi∈S s[axi] because, as above
stated at point (ii), assertion clauses (9) play no role in unit-propagations.

Theorem 3. Given an EL+ TBox T in normal form, for every S ⊆ T and for every
pair of concept names C,D in PCT , C vS D if and only if the Horn propositional formula
φallT (po) ∧

∧
axi∈S s[axi] ∧ ¬s[CvD] is unsatisfiable.

Proof. Due to the soundness and completeness of the set of classification rules reported in
Section 2.1, C vS D if and only if there exists a sequence of rule applications r1, . . . , rN
generating C v D from S. If and only if this is the case, by definition, φallT (po) contains all

the rule clauses of type (10) corresponding to all the rule applications r1, . . . , rN .

ii

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

(Only if.) Thus, on the one hand, if C vS D, then
∧

axi∈S s[axi] and all the clauses of
type (10) corresponding to all the rule applications r1, . . . , rN , from Lemma 9, force s[CvD]

to be true, which falsifies the unit clause ¬s[CvD]. Thus φ
all
T (po) ∧

∧
axi∈S s[axi] ∧ ¬s[CvD] is

unsatisfiable.

(If.) On the other hand suppose φallT (po) ∧
∧

axi∈S s[axi] ∧¬s[CvD] is unsatisfiable. Let φ
∗
T be

the result of assigning in φallT (po) all s[axi] with axi in S to > and unit-propagating the values.

(Notice that φ∗T is satisfiable since φallT (po) ∧
∧

axi∈S is satisfiable.) By Lemma 9 and by the

definition of φallT (po) and φ∗T , all and only the variables s[aj] s.t. aj can be derived from S
are unit-propagated in this process. Thus, by contradiction, if C v D could not be derived
from S, then s[CvD] would not be unit-propagated in this process, so that φ∗T ∧ ¬s[CvD]

would be satisfiable; hence φallT (po) ∧
∧

axi∈S s[axi] ∧ ¬s[CvD] would be satisfiable, violating
the hypothesis.

Theorem 4. Given an EL+ TBox T in normal form, for every S ⊆ T and for every
pair of concept names C,D in PCT , C vS D if and only if the Horn propositional formula
φallT ∧

∧
axi∈S s[axi] ∧ p[C] ∧ ¬p[D] is unsatisfiable.

Proof.
(Only if.) Suppose C vS D. By Theorem 3, since φallT

def
= φT (so) ∧ φallT (po), we have that

φallT ∧
∧

axi∈S s[axi] |= s[CvD]. Moreover, if C vS D then C vT D; thus, by Definition 4 and

due to the soundness and completeness of the classification rules, φallT contains the assertion
clause

s[CvD] → (p[C] → p[D]). (13)

Thus φallT ∧
∧

axi∈S s[axi] ∧ p[C] ∧ ¬p[D] is unsatisfiable.

(If.) Suppose φallT ∧
∧

axi∈S s[axi] ∧ p[C] ∧¬p[D] is unsatisfiable. Since φ
all
T is a definite Horn

formula, φallT ∧
∧

axi∈S is satisfiable. Let φ∗T be the result of assigning in φallT all s[axi] with
axi in S to true and of unit-propagating the values. Hence φ∗T ∧ p[C] ∧¬p[D] is unsatisfiable
and φ∗T is satisfiable.

By Lemma 9 and by the definition of φallT and φ∗T , all and only the variables s[aj] such
that aj can be derived from S are unit-propagated in the process of building φ∗T . Thus φ

∗
T

consists only on clauses in the forms:

(i) EL+2SAT (aj) such that aj is derived from S (assertion clauses (9) from φT (so)),

(ii) (s[aj] → EL+2SAT (aj)) such that aj is not derived from S (assertion clauses (9) from
φT (so)), and

(iii) (
∧

j s[aj]) → s[ak] such that aj , ak are not derived from S (rule clauses (10) from

φallT (po)).

iii

R. Sebastiani & M. Vescovi

Since φ∗T ∧ p[C] ∧ ¬p[D] is unsatisfiable, then φ∗T |= p[C] → p[D]. Thus, like in the proof of
Theorem 1, there must be a resolution derivation P of (p[C] → p[D]) from some subset of
clauses ψ1, ..., ψn in φ∗T .

We notice that all ψi’s must be in form (i). In fact, a resolution derivation involving as
leaves also clauses in the form (ii) and (iii) could only infer clauses containing at least one
literal in the form ¬s[ai], since there is no way of resolving away such literals against clauses
(i)-(iii) without reintroducing new ones. 25 Thus, since φ∗T is a definite Horn formula, every
resolution step in P can be written in the form

(
∧

i p[Xi]) → p[Xk] (p[Xk] ∧
∧

j p[Xj]) → p[Xn]

(
∧

i p[Xi] ∧
∧

j p[Xj]) → p[Xn]
(14)

s.t. all X’s are concepts. Each corresponding derivation step

(
d

iXi) v Xk (Xk u
d

j Xj) v Xn

(
d

iXi u
d

j Xj) v Xn
(15)

is valid in EL+. 26 Moreover, each ψi is EL+2SAT (ai) for some ai which is either in S or
has been derived from S. Hence, there is a valid derivation of C v D from S in EL+, so
that C vS D.

Notice that from the latter fact we can also conclude that the clause p[C] → p[D] belongs

to φS and therefore, by Definition 4, that (13) belongs to φallS (more precisely φS(so)).

Thus (13) belongs also to φallT .

The following corollary is obtained straightforwardly from Theorem 4, stating S def
= T .

Corollary 5. Given an EL+ TBox T in normal form, for every pair of concept names C,D
in PCT , C vT D if and only if the Horn propositional formula φallT ∧

∧
ai∈T s[axi]∧p[C]∧¬p[D]

[resp. φallT (po) ∧
∧

axi∈T s[axi] ∧ ¬s[CvD]] is unsatisfiable.

We finally prove some facts concerning the Cone-of-influence Modularization exposed in
Section 4.1. First we prove that it preserves pinpointing, including in the computed module
all the existing MinAs for the given subsumption query.

Theorem 6. Given an EL+ TBox T in normal form and the formula φallT (po) as defined in
Definition 4, for every pair of concept names C,D in PCT , the following facts hold:

(i) C vT D if and only if C vMc.o.i.
CvD

D;

(ii) if S is a MinA for C vT D, then S ⊆ Mc.o.i.
CvD,

25. Notice that, by Lemma 9 and by Definition 3, all and only the clauses of type (i) are exactly φS ,
since they are the propositional encoding of all the subsumption relations deducible by S. Intuitively,
φS ∧ p[C] ∧ ¬p[D] is the unsatisfiable subpart of φ∗

T ∧ p[C] ∧ ¬p[D], because there is no way of resolving
away the literals ¬s[aj] from the other clauses of φ∗

T , which are all of type (ii) and (iii). By Theorem 1,
from φS ∧ p[C] ∧ ¬p[D] unsatisfiable it follows C vS D.

26. Notice that this statement is purely based on EL+ semantic, meaning “if an interpretation satisfies the
premises, it satisfies also the conclusion”, and does not depend on the set of derivation rules used.

iv

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

where Mc.o.i.
CivDi

⊆ T is the cone-of-influence module for C v D w.r.t. φallT (po), as defined in
Definition 5.

Proof.

(i) By Theorem 3 and by Definition 5 of Mc.o.i.
CvD w.r.t. φallT (po), in place of fact (i), we can

equivalently prove that the Horn propositional formula φallT (po)∧
∧

axi∈T s[axi]∧¬s[CvD],

namely ψCvD
T , is unsatisfiable if and only if the Horn propositional formula φallT (po) ∧∧

axi∈Mc.o.i.
CvD

s[axi] ∧ ¬s[CvD], namely ψCvD
Mc.o.i.

CvD

, is unsatisfiable. On the one hand, since

ψCvD
T = ψCvD

Mc.o.i.
CvD

∧
∧

axi∈(T \Mc.o.i.
CvD) s[axi], if ψ

CvD
Mc.o.i.

CvD

is unsatisfiable then ψCvD
T is also

trivially unsatisfiable. On the other hand, we consider any minimal subset S of T
such that φallT (po) ∧

∧
axi∈S s[axi] ∧¬s[CvD] is unsatisfiable and we refer to the following

proof of fact (ii).

(ii) Point (ii) is again consequence of Theorem 3. Let S be any minimal subset of T
such that C vS D and C 6vS′ D for every S ′ ⊂ S. By Theorem 3 we have that
φallT (po) ∧

∧
axi∈S s[axi] ∧¬s[CvD] is unsatisfiable. Since φ

all
T (po) ∧

∧
axi∈S s[axi] is trivially

satisfiable, it follows that φallT (po) ∧
∧

axi∈S s[axi] |= s[CvD]. But since, by Theorem 3,

φallT (po) ∧
∧

axi∈(S\{axj}) s[axi] ∧ ¬s[CvD] is instead satisfiable for every axj ∈ S, then
every s[axj] is included in the subformula of φallT (po) responsible for the deduction of

s[CvD] (i.e. s[axj] is included in φPCvD
T

), so that s[axj] ∈ PCvD
T , for every axj ∈ S.

Accordingly, by Definition 5, axj ∈ Mc.o.i.
CvD for every axj ∈ S and we have the thesis

S ⊆ Mc.o.i.
CvD.

Second, we prove that the COI module can be computed in linear time w.r.t. the coi
subformula.

Proposition 7. Given the Horn propositional formula φallT (po), the set of assumptions PT
and the query s[CivDi], the algorithm of Figure 6 executes in linear time w.r.t. the number

of clauses of the COI subformula φCivDi
T .

Proof. In the algorithm of Figure 6 we assured that each selector variable is enqueued in
Q (and thus subsequently handled at Step 4) at most once, when it is reached for the first
time. Thus it is easy to see that the algorithm executes a number of external iterations
which is linear w.r.t. the number of selector variables included in Q, that is exactly the
size of PCivDi

A . In each iteration, once dequeued the selector variable s[ai] at Step 4, the
algorithm: (i) gets the clauses φai (Step 5), (ii) executes a fixed number of instructions for
every literal of every clause c ∈ φai (Steps 6-13). Since (i) is performed in linear time w.r.t.
the number of clauses in φai by exploiting the two-watched-literals scheme, the complexity
of the algorithm is dominated by the operations (ii). Thus, since wlog. we can assume that
every clause has at-most four literals, the modularization algorithm of Figure 6 terminates
in linear time w.r.t. the number of clauses handled by the algorithm, that is O(|φCivDi

T |)
(Definition 5).

v

R. Sebastiani & M. Vescovi

Third we prove that, assuming a TBox in normal form, Cone-of-influence Modularization
produces smaller modules than Reachability-based Modularization.

Proposition 8. Given an EL+ TBox T in normal form and the formula φallT (po) as defined

in Definition 4, for every pair of concept names C,D in PCT it holds Mc.o.i.
CvD ⊆ Mreach

C ,

where Mreach
C and Mc.o.i.

CvD are, respectively, the reachability-based module (Definition 2) and
cone-of-influence module (Definition 5) for C v D.

Proof. We remark that the cone-of-influence module Mc.o.i.
CvD for C vT D is defined w.r.t.

the formula φallT (po), thus it is defined w.r.t. a sound and complete set of completion rules for
the classification problem. Let us consider the set of completion rules of Table 2 and, for
sake of clarity, the generic concept X so that we prove the stronger fact Mc.o.i.

XvD̂
⊆ Mreach

X

for every pair of concept names X ∈ PCT and D̂ ∈ NCT .

If a completion rule of Table 2 can be applied starting from a set of assertions (first
column) and one axiom (second column), namely ax, deducing a new subsumption relation
X v D̂ (third column), then such a completion rule is encoded into φallT (po) and, accordingly,

the axiom ax becomes part of the cone-of-influence module Mc.o.i.
XvD̂

for X v D̂. Wlog. we

limit our proof to axiom ax but the same considerations apply to all the other premises of
the rule application when they are axioms of T . In particular we prove that ax ∈ Mc.o.i.

XvD̂

implies ax ∈ Mreach
X .

Notice the following two facts:

(i) : given a subsumption relation a, the cone-of-influence module Mc.o.i.
a for a is fully

included in any cone-of-influence module Mc.o.i.
a′ , with a′ any subsumption relation

such that s[a] is in the cone of influence Pa′
T for a′.

(ii) : the reachability-based module for a given concept X includes all the reachability-
based modules for any other concept that is X-reachable.

This has been said consider the five completion rules of Table 2:

1. Suppose that the first completion rule is applied on the previously deduced subsump-
tions X v C1, . . . , X v Ck (with k ≥ 1), and on the axiom ax

def
= C1 u · · · u Ck v D.

Thus, ax ∈ Mc.o.i.
XvD̂

. Since Reachability-based Modularization preserves subsumption

(Property 1), then the symbols C1, . . . , Ck must be X-reachable and, therefore, ax is
a X-reachable axiom by Definition 2.

2. The same arguments of the previous point can be spent for the second completion
rule with the premise X v C, the symbol C and the axiom ax

def
= C v ∃r.D.

3. Suppose that the third completion rule is applied on the previously deduced subsump-
tions X v ∃r.E and E v C, and on the axiom ax = ∃r.C v D. Thus, ax ∈ Mc.o.i.

XvD̂
.

Accordingly, r and E must be X-reachable and everything that is E-reachable is also
X-reachable. Henceforth C is in turn X-reachable. It follows that ax is a X-reachable
axiom by Definition 2.

vi

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

4. The same arguments of point 1 can be spent for the forth completion rule with the
premise X v ∃r.C, the symbol r and the axiom ax

def
= r v s.

5. Suppose that the fifth completion rule is applied on the previously deduced subsump-
tions X v ∃r1.E1, . . . , En−1 v ∃rn.D (with n ≥ 2), and on the axiom ax

def
= r1◦· · ·◦rn.

Thus, ax ∈ Mc.o.i.
XvD̂

. Then E1, r1 must be X-reachable and everything that is E1/r1-

reachable is also X-reachable, in particular E2 and r2 are X-reachable, and so on
and so forth. So, it follows that also the symbols E1, . . . , En−1, D and r1, . . . , rn are
X-reachable. Thus, by Definition 2, ax is a X-reachable axiom.

Concluding, we proved for every possible completion rule applied in building φallT (po) that

if ax ∈ Mc.o.i.
XvD̂

then ax is X-reachable, i.e. that every ax included in a cone-of-influence

module is included in the respective reachability-based module. Thus, by facts (i) and (ii),
we proved Mc.o.i.

XvD̂
⊆ Mreach

X .

vii

R. Sebastiani & M. Vescovi

Appendix B. Further Experimental Evaluation Data

In Tables 6-15, we compare the detailed results of the four representative variants of
EL+SAT and those of CEL. For each query and variant/tool we expose the results of
modularization, the CPU times required by the tools and the number of MinAs resulting
from the search. In particular, in the left-most part of the tables we expose the size of
the modules extracted respectively through the COI Modularization for EL+SAT and the
Reachability-based Modularization for CEL. In the central part of the tables we report, for
each EL+SAT version, the total search time until the last MinA found is returned, for CEL,
we report the termination time of the search. In these columns we tagged with a “*” each
case where the MinAs’ enumeration was completed within the timeout; due to the problems
highlighted in Section 5.1, with CEL this also means that it has completely terminated (i.e.,
it has not stopped due to the 10-MinAs limit). In all these tables, we highlight in bold
the best performer for each entry. In the times shown we avoid considering the encoding
time for EL+SAT (since it is done offline once forever) and the loading times of the on-
tology/encoding both for CEL and EL+SAT (since they are done once for the whole test
session). 27

The execution of EL+SAT×2 deserves a separate mention. Since we must evaluate the
overall performance of the approach, we show the total CPU time arising from all the three
phases required by EL+SAT×2 (see Section 4.3). For the first instance of EL+SAT involved
in the approach only modularization time (phase 1.) must be considered, since φallT /φallT (po) is
loaded once and then exploited for every modularization query, without reloading. Instead,
all the CPU times required by the second instance of EL+SAT must be taken into account,
because they refer in each query to a different sub-ontology. The second EL+SAT instance
must: (i) encode the extracted sub-ontology (module), (ii) load the new encoding, (iii)
perform the MinAs’ search. (Notice that phase 2. is measured by the time spent in (i),
while the time spent in (ii) and (iii) both falls into phase 3.) The times reported in the
column (×2) consist in the sum of these four CPU times (modularization time and (i)-(iii)
times). In order to demonstrate that phases 1. and 2. are negligible in practice, as predicted
in Section 4.3, we report separately in the column titled “enc.” the sum of the time required
in those two phases (i.e. modularization and re-encoding times).

In order to have a better view of the results we split the tables vertically in groups,
depending on whether the MinAs search has been completed by by EL+SAT×2 and/or
by CEL. Thus, e.g., the problems which have been completely solved both by EL+SAT×2
and by CEL (with both EL+SAT×2 and CEL times marked with “*”) are exposed in the
top-most part of the tables, whilst in the lower-most part we report the problems which
(eventually) neither EL+SAT nor CEL completely solved. 28 Notice that when CEL either
stops due to the limit of 10 MinAs or runs over the 1000 sec. time limit we can not consider
the problem as “completely solved” by CEL.

27. These times for EL+SAT can be found in the preliminary empirical evaluation of (Sebastiani & Vescovi,
2009b), whilst for CEL they are on average: 25.1, 4.0, 3.4, 1.4 and 0.4 sec. for Snomed’09, fullGalen,
NCI, GeneOnt. and notGalen respectively.

28. In order to make our empirical evaluation reproducible, we report on the left side of each line the index
of the problem within the test suite.

viii

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
1 9 31 19.5 3.7* 1.0* 0.0 0.0* 21.4* 2 3 3 3 3
2 2 17 6.5 0.6* 0.5* 0.0 0.0* 20.5* 1 1 1 1 1
5 2 12 6.5 0.6* 0.5* 0.0 0.0* 20.5* 1 1 1 1 1
6 7 9 6.7 0.8* 0.7* 0.0 0.0* 20.6* 1 1 1 1 1
7 7 9 19.5 0.9* 0.9* 0.0 0.0* 20.8* 2 2 2 2 2

10 4 15 13.0 0.7* 0.7* 0.0 0.0* 20.8* 2 2 2 2 2
11 10 27 65.4 7.0* 14.0* 0.0 0.0* 22.0* 4 5 5 5 5
12 5 21 6.6 0.7* 0.6* 0.0 0.0* 20.7* 1 1 1 1 1
13 10 47 38.7 21.1* 2.7* 0.0 0.0* 22.6* 3 6 6 6 6
17 11 22 13.3 1.0* 1.1* 0.0 0.0* 21.3* 2 2 2 2 2
18 6 10 6.6 0.7* 0.6* 0.0 0.0* 20.6* 1 1 1 1 1
19 2 3 6.5 0.6* 0.5* 0.0 0.0* 20.5* 1 1 1 1 1
21 8 42 26.2 1.1* 1.2* 0.0 0.0* 21.4* 3 3 3 3 3
23 5 11 6.6 0.7* 0.6* 0.0 0.0* 20.6* 1 1 1 1 1
24 4 6 6.6 0.7* 0.6* 0.0 0.0* 20.6* 1 1 1 1 1
28 3 42 6.5 0.6* 0.6* 0.0 0.0* 20.7* 1 1 1 1 1
29 2 54 6.5 0.6* 0.5* 0.0 0.0* 20.6* 1 1 1 1 1
31 3 6 6.5 0.6* 0.5* 0.0 0.0* 20.5* 1 1 1 1 1
32 7 9 25.8 0.9* 0.9* 0.0 0.0* 20.8* 2 2 2 2 2
33 8 14 38.7 1.2* 1.2* 0.0 0.0* 21.3* 3 3 3 3 3
36 5 8 6.6 0.7* 0.6* 0.0 0.0* 20.6* 1 1 1 1 1
39 9 10 6.7 0.8* 0.7* 0.0 0.0* 20.6* 1 1 1 1 1
45 14 44 104.4 136.0* 256.6* 0.0 0.0* 22.7* 4 4 4 4 4
14 6 91 6.6 0.7 0.6* 0.0 0.0* 20.9* 1 1 1 1 1
26 20 39 64.7 3.2 1.1 0.0 0.0* 21.5* 2 2 2 2 2
38 16 25 39.6 521.0 32.1 0.0 0.1* 23.0* 4 7 7 7 7
40 16 25 6.5 0.6 0.6 0.0 0.0* 20.6* 1 1 1 1 1
47 19 27 52.1 2.1 1.7 0.0 0.0* 22.1* 3 3 3 3 3
8 24 53 59.4 552.4 114.2 0.0 8.6* 27.2 5 15 20 20 10

20 23 55 146.8 483.5 31.3 0.0 43.0* 26.1 6 10 14 26 10
46 19 21 284.5 409.4 114.9 0.0 1.0* 23.9 7 10 10 12 10
3 47 66 92.8 125.6 34.2 0.0 249.1 33.2* 4 4 7 8 8
4 38 46 6.8 1.0 0.7 0.0 0.0 21.0* 1 1 1 1 1
9 75 88 19.7 1.2 1.0 0.0 0.0 21.9* 2 2 2 2 2

15 65 75 72.3 243.5 64.2 0.0 0.4 27.0* 3 6 6 6 6
16 70 74 85.4 6.1 1.3 0.0 0.0 22.6* 3 3 3 3 3
22 48 62 27.4 126.9 473.6 0.0 1.2 30.1* 3 4 5 5 8
25 44 50 13.7 2.4 1.1 0.0 0.0 21.7* 2 2 2 2 2
30 57 63 182.1 501.3 2.1 0.0 0.0 22.8* 3 3 3 3 3
34 147 161 6.7 0.8 0.7 0.0 0.0 21.3* 1 1 1 1 1
35 81 87 19.3 1.0 0.7 0.0 0.0 21.0* 2 2 2 2 2
37 52 58 6.7 0.8 0.7 0.0 0.0 21.0* 1 1 1 1 1
41 117 134 39.4 665.3 252.7 0.0 2.0 25.0* 3 5 5 5 5
43 62 78 136.8 10.6 2.1 0.0 0.0 23.7* 2 2 3 3 3
27 37 89 642.6 75.5 10.0 0.0 63.6 29.9 9 10 9 13 10
42 140 171 727.8 718.7 13.5 0.0 406.5 34.5 13 17 14 151 10
44 56 68 116.4 111.2 7.4 0.0 688.0 30.0 3 9 7 15 10
48 56 68 445.4 7.6 460.1 0.0 36.3 27.0 6 5 12 66 10
49 38 39 327.2 70.7 166.4 0.0 174.0 27.4 7 11 12 20 10
50 59 67 137.9 21.7 6.3 0.0 896.8 26.7 9 8 5 39 10

Table 6: Results of the 50 random test queries for Snomed-CT, with best performance.

ix

R. Sebastiani & M. Vescovi

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
8 143 156 19.2 1.3 0.7 0.0 0.1 20.9* 2 2 2 2 2

11 119 130 25.8 1.6 0.9 0.0 0.1 21.4* 3 3 3 3 3
20 156 164 6.7 0.7 0.7 0.0 0.0 21.0* 1 1 1 1 1
21 136 178 6.6 0.8 0.6 0.0 0.0 21.3* 1 1 1 1 1
22 199 214 6.7 0.7 0.6 0.0 0.1 21.3* 1 1 1 1 1
23 190 198 6.6 0.7 0.6 0.0 0.1 21.4* 1 1 1 1 1
28 143 151 6.6 0.7 0.7 0.0 0.0 21.2* 1 1 1 1 1
29 171 177 19.8 1.6 1.0 0.1 0.1 21.9* 2 2 2 2 2
30 123 134 6.5 0.6 0.5 0.0 0.1 20.6* 1 1 1 1 1
31 127 139 6.5 0.6 0.5 0.0 0.1 20.7* 1 1 1 1 1
33 103 112 13.3 1.5 0.9 0.0 0.0 21.7* 2 2 2 2 2
34 145 158 6.6 0.7 0.6 0.0 0.1 21.1* 1 1 1 1 1
35 181 196 6.6 0.7 0.6 0.0 0.1 21.2* 1 1 1 1 1
39 80 92 6.5 0.6 0.5 0.0 0.0 20.7* 1 1 1 1 1
41 67 76 6.5 0.6 0.5 0.0 0.0 20.6* 1 1 1 1 1
43 136 142 38.9 42.6 9.4 0.0 0.1 24.1* 3 6 6 6 6
44 138 151 6.5 0.6 0.5 0.0 0.1 20.7* 1 1 1 1 1
45 134 147 6.5 0.6 0.5 0.0 0.1 20.7* 1 1 1 1 1
46 120 126 58.3 129.8 2.3 0.0 0.0 22.6* 3 4 4 4 4
47 86 94 6.6 0.7 0.6 0.0 0.0 20.8* 1 1 1 1 1
48 146 152 19.3 1.1 0.7 0.0 0.1 21.0* 2 2 2 2 2
1 136 142 26.8 298.3 625.5 0.0 34.9 29.2 3 7 19 27 10
2 106 112 324.1 375.1 926.7 0.0 169.9 29.4 4 10 20 29 10
3 91 104 176.0 121.8 469.0 0.0 322.3 27.3 9 9 23 83 10
4 119 130 564.4 51.0 836.7 0.0 122.0 29.2 10 11 25 26 10
5 124 135 206.9 55.8 141.8 0.0 173.9 30.4 7 14 19 56 10
6 180 196 839.1 104.4 58.1 0.0 73.0 30.9 21 21 32 54 10
7 134 140 335.4 306.0 279.7 0.0 5.5 30.5 7 9 22 19 10
9 110 124 287.7 143.8 457.4 0.0 192.2 28.3 6 10 13 19 10

10 116 132 406.9 12.0 928.9 0.0 6.0 28.7 12 9 24 30 10
12 143 149 158.0 316.5 809.4 0.0 586.0 31.0 4 8 14 11 10
13 180 195 907.0 71.4 34.6 0.0 414.7 30.6 12 15 26 60 10
14 121 137 54.8 8.0 571.6 0.0 276.1 31.2 4 4 14 20 10
15 137 143 119.2 8.1 80.6 0.0 29.4 31.7 5 5 19 27 10
16 141 147 309.5 603.7 21.6 0.0 548.2 31.1 6 5 10 22 10
17 125 138 574.7 32.6 449.9 0.0 0.7 29.3 15 12 34 43 10
18 112 122 194.0 45.8 348.4 0.0 123.8 28.4 11 11 10 32 10
19 112 122 867.0 704.3 124.9 0.0 0.7 28.8 9 13 20 38 10
24 146 158 129.7 26.8 859.6 0.0 0.4 31.3 5 9 21 9 10
25 119 128 470.6 6.0 5.1 0.0 0.0 30.2 8 5 11 11 10
26 120 131 67.2 33.5 4.8 0.0 492.6 30.2 5 10 10 29 10
27 111 122 83.0 343.1 729.2 0.0 61.2 29.6 9 19 71 65 10
32 128 150 224.4 133.7 186.2 0.0 302.4 31.8 6 6 7 24 10
36 161 173 158.0 264.6 2.4 0.0 232.4 33.2 5 13 5 8 10
37 113 121 189.1 14.0 224.7 0.0 104.6 29.8 7 6 11 30 10
38 105 112 182.5 48.2 505.5 0.0 766.1 28.8 7 10 18 14 10
40 97 105 909.6 862.9 554.2 0.0 159.6 28.5 12 13 19 26 10
42 70 74 333.1 1.8 1.1 0.0 21.6 27.1 12 2 3 17 10
49 157 231 704.5 5.2 2.8 0.0 0.0 33.2 6 4 6 6 10
50 94 100 443.3 265.2 669.5 0.0 0.0 28.4 4 8 14 6 10

Table 7: Results of the 50 selected test queries for Snomed-CT, with
best performance.

x

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
8 5 143 3.7 0.4* 0.4* 0.0 0.0* 1.9* 1 1 1 1 1

15 4 135 3.7 0.3* 0.3* 0.0 0.0* 1.8* 1 1 1 1 1
27 3 13 3.7 0.3* 0.3* 0.0 0.0* 1.7* 1 1 1 1 1
29 3 12 3.7 0.3* 0.2* 0.0 0.0* 1.6* 1 1 1 1 1
31 6 11 3.8 0.4* 0.4* 0.0 0.0* 1.7* 1 1 1 1 1
32 12 26 71.4 2.0* 1.1* 0.0 0.0* 2.3* 4 4 4 4 4
35 6 138 3.7 0.4* 0.4* 0.0 0.0* 2.0* 1 1 1 1 1
39 2 4 3.6 0.3* 0.3* 0.0 0.0* 1.6* 1 1 1 1 1
42 3 14790 3.6 0.3* 0.3* 0.0 0.0* 152.3* 1 1 1 1 1
45 7 11 3.8 0.4* 0.3* 0.0 0.0* 1.7* 1 1 1 1 1
5 5 30 3.8 0.4 0.3* 0.0 0.0* 1.7* 1 1 1 1 1
6 11 60 3.8 0.4 0.4* 0.0 0.0* 1.8* 1 1 1 1 1

17 5 56 3.6 0.3 0.3* 0.0 0.0* 1.7* 1 1 1 1 1
36 5 30 3.6 0.4 0.3* 0.0 0.0* 1.6* 1 1 1 1 1
49 4 14789 3.7 0.4 0.4* 0.0 0.0* 195.4* 1 1 1 1 1
16 18 163 3.9 0.6 0.5 0.0 0.0* 2.3* 1 1 1 1 1
20 112 14891 3.8 0.5 0.4 0.0 0.0* 611.1* 1 1 1 1 1
25 23 14789 3.7 0.5 0.4 0.0 0.0* 584.5* 1 1 1 1 1
26 87 14789 3.7 0.4 0.3 0.0 0.0* 254.5* 1 1 1 1 1
33 45 15086 3.7 0.4 0.5 0.0 0.0* 497.9* 1 1 1 1 1
48 26 111 49.0 4.1 1.5 0.0 0.0* 3.5* 2 2 2 2 2
7 81 141 11.2 1.5 0.8 0.0 0.0 4.1* 2 2 2 2 2
9 84 14789 3.8 0.4 0.4 0.0 0.0 407.0* 1 1 1 1 1

10 60 14789 3.8 0.5 0.5 0.0 0.0 818.8* 1 1 1 1 1
11 47 119 14.2 1.6 0.6 0.0 0.0 2.9* 2 2 2 2 2
13 57 14835 3.6 0.3 0.3 0.0 0.0 76.1* 1 1 1 1 1
18 59 14789 3.9 0.6 0.5 0.0 0.0 681.1* 1 1 1 1 1
19 70 258 3.8 0.5 0.4 0.0 0.0 2.8* 1 1 1 1 1
21 97 14804 4.0 0.6 0.5 0.0 0.0 893.4* 1 1 1 1 1
22 38 14789 3.7 0.4 0.3 0.0 0.0 477.5* 1 1 1 1 1
23 81 14789 3.8 0.5 0.4 0.0 0.0 773.0* 1 1 1 1 1
24 139 14789 3.9 0.5 0.4 0.0 0.0 758.3* 1 1 1 1 1
30 121 14790 3.6 0.4 0.3 0.0 0.0 9.8* 1 1 1 1 1
34 72 14869 3.7 0.3 0.3 0.0 0.0 79.5* 1 1 1 1 1
37 120 14789 24.7 2.6 0.9 0.0 0.0 835.9* 2 2 2 2 2
38 42 85 3.9 0.5 0.3 0.0 0.0 2.0* 1 1 1 1 1
46 101 14808 13.9 1.3 0.5 0.0 0.0 988.3* 2 2 2 2 2
50 73 14811 10.5 1.2 0.6 0.0 0.0 919.0* 2 2 2 2 2
1 57 14790 14.7 2.1 1.0 0.0 0.0 3470.0 2 2 2 2 2
2 202 14789 14.6 1.6 0.7 0.0 0.1 1271.0 2 2 2 2 2
3 122 14826 4.0 0.7 0.5 0.0 0.0 1496.0 1 1 1 1 1
4 38 14802 11.1 1.5 0.6 0.0 0.0 1865.0 2 2 2 2 2

12 196 14952 4.2 0.7 0.6 0.0 0.1 1594.0 1 1 1 1 1
14 99 14789 21.6 2.3 1.0 0.0 0.0 2073.0 2 2 2 2 2
28 40 253 113.4 54.8 718.0 0.0 1.4 20.0 7 9 10 10 10
40 126 14790 43.1 4.3 308.0 0.0 3.3 8162.0 3 3 8 8 10
41 84 14839 14.3 1.8 0.8 0.0 0.0 1560.0 2 2 2 2 2
43 69 14819 7.7 1.2 0.8 0.0 0.0 1922.0 2 2 2 2 2
44 102 14789 28.3 2.8 1.2 0.0 0.0 2900.0 2 2 2 2 2
47 71 14789 4.1 0.7 0.6 0.0 0.0 2083.0 1 1 1 1 1

Table 8: Results of the 50 random test queries for full-Galen, with best performance.

xi

R. Sebastiani & M. Vescovi

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
8 147 14789 3.7 0.6 0.3 0.0 0.0* 207.1* 1 1 1 1 1
9 147 14789 3.7 0.7 0.2 0.0 0.0* 210.5* 1 1 1 1 1

14 135 14789 3.6 0.7 0.4 0.0 0.0* 175.3* 1 1 1 1 1
1 242 14835 3.1 0.8 0.4 0.1 0.1 639.3* 1 1 1 1 1
2 234 14838 3.8 0.8 0.4 0.1 0.1 621.9* 1 1 1 1 1
3 230 14836 3.7 0.8 0.4 0.0 0.1 545.4* 1 1 1 1 1
4 230 14835 3.8 0.8 0.4 0.0 0.1 588.0* 1 1 1 1 1
5 157 14789 11.0 2.0 0.7 0.0 0.1 690.6* 2 2 2 2 2
6 161 14789 3.6 0.7 0.3 0.0 0.1 322.4* 1 1 1 1 1
7 146 14789 3.6 0.7 0.3 0.0 0.0 321.2* 1 1 1 1 1

10 184 14789 3.7 0.7 0.4 0.0 0.1 396.8* 1 1 1 1 1
11 167 14789 3.6 0.7 0.4 0.0 0.1 325.4* 1 1 1 1 1
12 167 14789 3.7 0.7 0.4 0.0 0.0 427.9* 1 1 1 1 1
13 199 14793 3.7 0.7 0.4 0.1 0.1 297.5* 1 1 1 1 1
15 146 14789 3.6 0.6 0.4 0.0 0.0 288.9* 1 1 1 1 1
16 198 14789 3.6 0.7 0.2 0.0 0.1 229.8* 1 1 1 1 1
17 151 14789 3.6 0.6 0.3 0.0 0.0 208.7* 1 1 1 1 1
18 200 14789 3.7 0.6 0.3 0.1 0.1 204.0* 1 1 1 1 1
19 200 14789 3.6 0.7 0.3 0.1 0.1 228.5* 1 1 1 1 1
20 161 14789 3.7 0.8 0.4 0.0 0.0 378.9* 1 1 1 1 1
21 116 14789 3.6 0.7 0.4 0.0 0.0 240.8* 1 1 1 1 1
22 206 14789 10.9 2.0 0.7 0.1 0.1 801.7* 2 2 2 2 2
23 161 14789 3.6 0.7 0.4 0.0 0.1 497.9* 1 1 1 1 1
24 163 14789 3.7 0.7 0.4 0.0 0.0 500.5* 1 1 1 1 1
25 153 14789 3.6 0.6 0.3 0.0 0.0 69.0* 1 1 1 1 1
26 197 14789 3.7 0.6 0.4 0.0 0.1 300.2* 1 1 1 1 1
27 197 14789 3.7 0.6 0.3 0.0 0.1 303.4* 1 1 1 1 1
28 197 14789 3.7 0.7 0.3 0.0 0.1 331.8* 1 1 1 1 1
29 193 14789 3.7 0.6 0.3 0.0 0.1 223.2* 1 1 1 1 1
30 185 14789 3.7 0.7 0.3 0.0 0.1 223.5* 1 1 1 1 1
31 185 14789 3.6 0.5 0.2 0.0 0.1 202.9* 1 1 1 1 1
32 193 14789 3.6 0.7 0.2 0.0 0.1 204.2* 1 1 1 1 1
33 205 14943 3.8 0.8 0.3 0.0 0.1 937.8* 1 1 1 1 1
34 180 14789 3.8 0.5 0.3 0.0 0.0 929.9* 1 1 1 1 1
35 178 14789 10.8 1.7 0.5 0.0 0.1 705.7* 2 2 2 2 2
36 164 14790 3.7 0.4 0.3 0.0 0.1 503.2* 1 1 1 1 1
37 133 14789 3.8 0.6 0.3 0.0 0.0 733.4* 1 1 1 1 1
38 173 14789 10.8 1.3 0.5 0.0 0.1 803.2* 2 2 2 2 2
39 163 14789 3.7 0.4 0.3 0.0 0.1 396.7* 1 1 1 1 1
40 119 14789 3.7 0.4 0.2 0.0 0.0 311.0* 1 1 1 1 1
41 145 14789 3.7 0.4 0.2 0.0 0.0 215.4* 1 1 1 1 1
42 158 14789 3.6 0.4 0.2 0.0 0.0 212.2* 1 1 1 1 1
43 168 14789 3.6 0.4 0.2 0.0 0.1 168.1* 1 1 1 1 1
44 142 14789 3.6 0.4 0.2 0.0 0.0 393.9* 1 1 1 1 1
45 182 14789 3.6 0.4 0.2 0.0 0.1 252.5* 1 1 1 1 1
48 204 14874 3.7 0.4 0.2 0.0 0.1 158.9* 1 1 1 1 1
49 204 14874 3.7 0.4 0.2 0.0 0.1 158.9* 1 1 1 1 1
50 215 14789 11.0 1.3 0.5 0.1 0.1 902.5* 2 2 2 2 2
46 189 14826 3.8 0.5 0.3 0.0 0.1 1538. 1 1 1 1 1
47 181 14840 3.8 0.5 0.3 0.0 0.1 1427. 1 1 1 1 1

Table 9: Results of the 50 selected test queries for full-Galen, with
best performance.

xii

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
1 2 13 0.2 0.0* 0.0* 0.0 0.0* 1.2* 1 1 1 1 1
2 3 42 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
3 3 17 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
4 4 4 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
5 14 25 0.6 0.3* 0.2* 0.0 0.0* 2.0* 3 4 4 4 4
6 4 50 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
7 5 19 0.2 0.0* 0.0* 0.0 0.0* 1.3* 1 1 1 1 1
8 5 91 0.2 0.0* 0.1* 0.0 0.0* 1.4* 1 1 1 1 1

10 2 29 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
11 9 42 0.9 0.1* 0.1* 0.0 0.0* 1.6* 3 3 3 3 3
13 5 39 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
14 4 158 0.2 0.0* 0.1* 0.0 0.0* 1.4* 1 1 1 1 1
15 2 270 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
16 2 66 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
17 4 7 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
18 8 39 0.6 0.1* 0.1* 0.0 0.0* 1.5* 2 2 2 2 2
19 3 26 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
21 10 49 1.3 0.1* 0.2* 0.0 0.0* 2.0* 4 4 4 4 4
22 2 13 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
23 2 35 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
24 2 25 0.2 0.0* 0.0* 0.0 0.0* 1.2* 1 1 1 1 1
26 3 19 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
28 5 51 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
29 3 5 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
31 2 50 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
32 4 15 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
33 12 24 0.4 0.1* 0.1* 0.0 0.0* 1.6* 2 2 2 2 2
34 11 67 74.2 0.2* 1.0* 0.0 0.0* 1.9* 3 3 3 3 3
35 2 3 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
36 6 6 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
37 3 4 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
38 6 25 0.6 0.0* 0.1* 0.0 0.0* 1.4* 2 2 2 2 2
39 8 17 0.2 0.0* 0.1* 0.0 0.0* 1.4* 1 1 1 1 1
42 6 9 0.4 0.0* 0.1* 0.0 0.0* 1.3* 2 2 2 2 2
43 2 2 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
44 4 11 0.2 0.0* 0.1* 0.0 0.0* 1.3* 1 1 1 1 1
45 9 54 1.1 0.1* 0.1* 0.0 0.0* 1.7* 3 3 3 3 3
46 7 54 0.4 0.0* 0.1* 0.0 0.0* 1.5* 2 2 2 2 2
47 5 7 0.2 0.0* 0.1* 0.0 0.0* 1.2* 1 1 1 1 1
49 6 31 0.4 0.0* 0.1* 0.0 0.0* 1.4* 2 2 2 2 2
9 19 56 12.6 4.8 0.4 0.0 0.0* 4.9* 6 7 7 7 7

20 24 34 7.8 932.9 0.6 0.0 0.0* 9.6* 5 8 8 8 8
27 20 20 66.6 107.9 457.1 0.0 0.4* 4.0* 7 8 8 8 8
30 21 22 78.7 459.2 897.7 0.0 0.1* 3.9 7 12 12 12 10
41 26 67 624.8 400.8 360.5 0.0 0.1* 4.9 10 11 11 11 10
50 22 54 54.0 865.3 114.9 0.0 0.2* 9.6 9 10 10 10 10
48 31 57 14.0 1.7 375.2 0.0 67.7 251.0* 9 8 9 9 9
12 32 51 229.9 558.2 21.7 0.0 22.8 3.7 14 21 18 22 10
25 38 50 67.7 0.3 373.9 0.0 792. 4.2 18 7 27 33 10
40 33 57 335.5 183.7 940.8 0.0 44.6 3.9 17 22 32 36 10

Table 10: Results of the 50 random test queries for NCI, with best performance.

xiii

R. Sebastiani & M. Vescovi

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
4 15 57 3.0 0.5* 0.9* 0.0 0.0* 3.1* 6 6 6 6 6
5 14 51 6.1 0.2* 0.2* 0.0 0.0* 2.5* 6 6 6 6 6
6 13 15 2.4 0.3* 0.2* 0.0 0.0* 1.9* 4 4 4 4 4
8 16 26 15.1 0.2* 0.3* 0.0 0.0* 2.4* 5 5 5 5 5

10 12 19 15.7 0.9* 0.1* 0.0 0.0* 2.0* 6 6 6 6 6
11 12 36 4.4 0.1* 0.2* 0.0 0.0* 1.9* 5 5 5 5 5
12 12 36 2.1 0.2* 0.2* 0.0 0.0* 1.9* 5 5 5 5 5
13 12 39 9.0 0.1* 0.1* 0.0 0.0* 1.9* 4 4 4 4 4
14 14 43 17.5 0.1* 0.2* 0.0 0.0* 2.4* 5 5 5 5 5
15 15 44 15.1 0.2* 0.2* 0.0 0.0* 3.1* 7 7 7 7 7
16 14 22 5.0 0.1* 0.2* 0.0 0.0* 1.9* 4 4 4 4 4
18 12 15 1.4 0.1* 0.1* 0.0 0.0* 1.7* 4 4 4 4 4
19 12 35 1.8 0.1* 0.1* 0.0 0.0* 1.8* 4 4 4 4 4
20 10 32 1.4 0.1* 0.1* 0.0 0.0* 1.7* 4 4 4 4 4
21 11 57 1.4 0.1* 0.1* 0.0 0.0* 1.8* 4 4 4 4 4
22 12 38 1.7 0.1* 0.2* 0.0 0.0* 1.9* 4 4 4 4 4
23 11 54 1.7 0.3* 0.2* 0.0 0.0* 1.8* 5 5 5 5 5
24 11 45 1.5 0.1* 0.2* 0.0 0.0* 1.9* 5 5 5 5 5
25 14 45 2.3 0.2* 0.2* 0.0 0.0* 2.3* 6 6 6 6 6
27 13 58 1.7 0.1* 0.1* 0.0 0.0* 2.2* 5 5 5 5 5
28 15 37 2.0 0.2* 0.2* 0.0 0.0* 2.4* 5 5 5 5 5
29 13 58 1.7 0.1* 0.2* 0.0 0.0* 2.2* 5 5 5 5 5
30 9 60 16.2 0.1* 0.1* 0.0 0.0* 1.7* 4 4 4 4 4
31 8 43 13.2 0.1* 0.1* 0.0 0.0* 1.5* 4 4 4 4 4
32 16 56 36.1 0.2* 1.4* 0.0 0.0* 3.2* 6 6 6 6 6
33 11 40 1.2 0.1* 0.1* 0.0 0.0* 1.8* 4 4 4 4 4
34 13 21 1.1 0.1* 0.1* 0.0 0.0* 1.9* 4 4 4 4 4
35 10 69 1.1 0.1* 0.1* 0.0 0.0* 1.7* 4 4 4 4 4
41 17 66 15.2 9.8* 0.2* 0.0 0.0* 3.5* 6 6 6 6 6
7 22 35 19.2 6.3 3.3 0.0 0.0* 10.1* 7 7 7 7 7
9 23 44 90.2 116.1 9.6 0.0 0.0* 15.3* 7 7 7 7 7

17 22 24 11.6 0.3 0.2 0.0 0.0* 4.4* 6 6 6 6 6
49 26 38 3.2 0.3 3.9 0.0 0.0* 15.3* 5 7 7 7 7
26 20 68 73.1 3.2 2.9 0.0 4.6* 3.6 10 11 11 11 10
42 26 65 183.7 308.3 0.4 0.0 0.1* 6.8 11 11 11 11 10
43 19 68 833.8 1.2 0.7 0.0 0.0* 4.4 10 10 10 10 10
1 38 75 519.0 249.6 30.1 0.0 51.4 2.9 29 32 29 33 10
2 28 63 851.3 95.7 115.4 0.0 5.9 3.1 23 21 23 23 10
3 31 68 211.4 311.6 0.9 0.0 147. 2.6 16 18 18 18 10

36 38 91 7.6 20.3 12.6 0.0 148. 5.8 11 11 11 12 10
37 27 66 30.0 5.1 1.0 0.0 0.0 6.8 9 11 11 11 10
38 29 68 803.7 3.0 0.9 0.0 17.0 6.1 17 17 18 18 10
39 43 55 588.4 618.3 884.9 0.0 73.8 3.2 15 20 27 27 10
40 32 91 141.7 436.6 1.3 0.0 0.0 5.5 11 9 11 11 10
44 34 46 183.0 47.9 5.3 0.0 0.3 3.2 12 10 14 14 10
45 31 43 4.7 21.7 12.8 0.0 8.5 14.6 8 10 11 11 10
46 40 52 696.5 497.2 53.8 0.0 724. 2.9 26 19 24 27 10
47 36 48 282.7 607.6 136.9 0.0 0.0 9.1 9 9 13 12 10
48 40 52 942.7 501.9 53.4 0.0 725. 5.0 23 19 24 27 10
50 28 40 631.9 77.1 18.7 0.0 0.2 4.8 12 11 12 12 10

Table 11: Results of the 50 selected test queries for NCI, with best performance.

xiv

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
1 3 8 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
2 3 18 0.5 0.0* 0.0* 0.0 0.0* 0.8* 2 2 2 2 2
3 2 6 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
4 7 35 0.7 0.1* 0.1* 0.0 0.0* 1.1* 3 4 4 4 4
5 9 37 0.9 0.0* 0.1* 0.0 0.0* 1.3* 5 5 5 5 5
6 5 23 3.6 0.0* 0.1* 0.0 0.0* 0.9* 3 3 3 3 3
8 5 11 0.7 0.0* 0.0* 0.0 0.0* 0.8* 2 2 2 2 2
9 3 19 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1

10 2 7 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
11 11 36 71.5 0.3* 0.4* 0.0 0.0* 1.6* 5 6 6 6 6
12 4 7 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
13 6 19 9.6 0.1* 0.1* 0.0 0.0* 0.9* 3 3 3 3 3
14 12 24 1.2 0.8* 4.2* 0.0 0.0* 1.5* 6 7 7 7 7
15 4 9 0.3 0.0* 0.0* 0.0 0.0* 0.8* 2 2 2 2 2
16 2 8 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
17 3 16 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
18 6 28 0.9 0.0* 0.0* 0.0 0.0* 0.9* 2 2 2 2 2
19 9 55 207. 0.2* 0.1* 0.0 0.0* 1.3* 5 5 5 5 5
20 9 42 1.1 0.1* 0.2* 0.0 0.0* 1.4* 5 5 5 5 5
21 7 15 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
22 3 31 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
23 7 55 0.5 0.1* 0.1* 0.0 0.0* 1.2* 3 4 4 4 4
24 2 7 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
25 2 4 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
26 4 12 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
28 3 10 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
29 9 26 1.1 0.2* 0.1* 0.0 0.0* 1.1* 3 4 4 4 4
31 7 8 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
32 10 16 1.1 0.1* 0.1* 0.0 0.0* 0.9* 2 2 2 2 2
33 5 55 0.7 0.0* 0.1* 0.0 0.0* 0.9* 3 3 3 3 3
34 2 20 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
35 5 8 0.9 0.0* 0.1* 0.0 0.0* 0.8* 2 2 2 2 2
36 3 20 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
37 4 6 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
38 2 4 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
39 2 26 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
40 6 10 0.9 0.0* 0.1* 0.0 0.0* 0.8* 3 3 3 3 3
41 8 35 19.5 0.1* 0.3* 0.0 0.0* 1.1* 4 4 4 4 4
42 3 27 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
43 2 5 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
44 4 30 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
45 3 28 0.2 0.0* 0.0* 0.0 0.0* 0.8* 1 1 1 1 1
46 10 17 1.3 0.2* 0.5* 0.0 0.0* 1.2* 3 6 6 6 6
47 5 6 0.2 0.0* 0.0* 0.0 0.0* 0.7* 1 1 1 1 1
49 8 21 190. 0.1* 0.1* 0.0 0.0* 0.9* 3 3 3 3 3
50 4 13 0.5 0.0* 0.0* 0.0 0.0* 0.8* 2 2 2 2 2
7 15 18 14.5 0.4* 0.6* 0.0 0.0* 1.8 8 12 12 12 10

30 13 14 1.3 3.8* 0.3* 0.0 0.0* 1.4 5 11 11 11 10
48 13 22 691. 1.5* 0.5* 0.0 0.0* 1.6 11 11 11 11 10
27 22 27 346. 652. 265. 0.0 49.1* 2.1 13 27 25 31 10

Table 12: Results of the 50 random test queries for GeneOntology, with
best performance.

xv

R. Sebastiani & M. Vescovi

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
8 16 25 141.0 24.3* 3.1* 0.0 0.3* 2.1* 4 9 9 9 9

27 15 23 123.2 26.8* 9.6* 0.0 0.2* 1.5* 5 7 7 7 7
39 15 23 289.6 36.2* 15.8* 0.0 0.1* 1.5* 4 7 7 7 7
42 13 41 677.5 2.5* 0.2* 0.0 0.0* 1.8* 9 9 9 9 9
47 15 23 23.1 11.9* 3.8* 0.0 0.1* 1.5* 3 7 7 7 7
49 12 28 2.3 0.2* 2.1* 0.0 0.0* 1.2* 6 6 6 6 6
50 11 27 50.7 0.8* 0.3* 0.0 0.0* 1.1* 6 6 6 6 6
3 20 33 161.9 118.3 94.0 0.0 0.0* 3.5* 9 9 9 9 9
7 18 27 3.6 94.9* 174.4* 0.0 0.8* 1.7 12 16 16 16 10

25 15 27 997.3 22.1* 6.7* 0.0 0.2* 1.5 12 16 16 16 10
28 13 20 40.7 4.1* 0.6* 0.0 0.0* 1.4 9 10 10 10 10
30 18 35 3.0 229.2* 156.4* 0.0 0.7* 1.8 11 17 17 17 10
32 13 20 197.6 2.4* 1.9* 0.0 0.0* 2.3 9 10 10 10 10
37 18 35 736.0 167.4* 59.6* 0.0 0.7* 1.9 12 17 17 17 10
40 14 22 651.2 1.5* 0.3* 0.0 0.1* 1.4 11 11 11 11 10
41 12 25 592.3 3.4* 0.6* 0.0 0.0* 1.4 11 11 11 11 10
44 19 33 847.1 398.8* 34.1* 0.0 0.6* 1.6 12 26 26 26 10
45 17 25 158.9 96.1* 54.4* 0.0 0.7* 1.7 14 15 15 15 10
18 19 41 19.6 165.6 231.3* 0.0 3.0* 2.1 5 16 16 16 10
1 25 45 352.4 19.3 3.4 0.0 2.1* 2.8 8 11 11 11 10
4 20 37 843.4 123.1 267.1 0.0 7.7* 1.6 16 20 20 20 10
5 26 37 41.0 100.6 19.9 0.0 440.5* 1.9 12 15 13 20 10
6 23 40 534.0 822.7 562.3 0.0 26.4* 1.7 18 21 23 24 10
9 20 37 891.2 205.1 698.5 0.0 1.6* 1.7 15 19 20 20 10

10 22 39 26.2 938.2 404.2 0.0 11.5* 1.7 16 22 18 23 10
11 20 37 874.7 693.9 416.1 0.0 1.0* 1.6 16 20 20 20 10
12 20 37 448.3 385.7 773.7 0.0 6.1* 2.7 16 20 20 20 10
13 22 31 398.7 865.3 839.0 0.0 20.9* 1.8 8 28 24 30 10
16 24 41 354.8 107.7 478.6 0.0 10.4* 1.9 10 10 18 21 10
17 21 44 934.1 997.0 917.3 0.0 15.0* 2.0 7 15 20 20 10
21 25 37 678.2 163.2 497.7 0.0 4.9* 2.1 15 16 28 28 10
22 24 35 106.4 130.2 37.4 0.0 0.1* 1.7 11 12 18 18 10
24 23 32 91.4 947.4 46.5 0.0 1.0* 1.9 15 17 15 18 10
26 21 30 307.2 883.0 868.4 0.0 4.2* 1.8 15 15 21 21 10
29 23 37 11.5 951.9 883.3 0.0 43.0* 2.8 13 25 32 32 10
31 25 45 293.8 780.3 522.6 0.0 34.7* 1.9 18 35 36 38 10
33 20 32 616.2 26.7 1.2 0.0 0.1* 3.3 8 14 14 14 10
34 25 45 222.6 265.2 0.2 0.0 48.0* 1.7 25 25 9 38 10
35 21 33 18.2 118.7 342.9 0.0 0.1* 1.9 9 16 16 16 10
36 23 37 692.6 830.5 88.2 0.0 59.6* 1.6 18 29 32 32 10
38 20 32 99.2 26.1 3.7 0.0 0.3* 2.5 9 14 14 14 10
43 20 32 524.6 19.9 29.7 0.0 0.0* 2.6 11 14 14 14 10
46 23 37 313.4 203.6 375.9 0.0 16.0* 1.7 14 32 30 32 10
48 20 29 793.8 142.5 413.6 0.0 6.5* 1.8 11 20 20 20 10
2 28 45 678.2 537.2 901.8 0.0 992.1 2.0 15 23 24 31 10

14 30 40 39.7 497.9 977.3 0.0 220.9 1.8 20 26 23 32 10
15 29 38 67.2 555.7 965.0 0.0 51.5 1.9 19 30 37 37 10
19 29 38 371.4 719.3 914.3 0.0 41.7 1.9 11 30 34 34 10
20 26 37 45.3 986.1 563.3 0.0 768.3 1.9 9 18 18 19 10
23 26 37 2.6 729.5 7.3 0.0 4.5 1.9 7 16 14 19 10

Table 13: Results of the 50 selected test queries for GeneOntology, with
best performance.

xvi

Axiom Pinpointing in large EL+ ontologies via SAT and SMT techniques

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
2 3 6 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
6 2 58 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
7 6 17 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1

11 9 9 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
14 6 7 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
16 5 9 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
18 8 9 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
19 8 22 0.1 0.0* 0.0* 0.0 0.0* 0.3* 1 1 1 1 1
21 3 10 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
24 4 9 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
32 3 7 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
35 4 23 0.2 0.0* 0.0* 0.0 0.0* 0.3* 2 2 2 2 2
36 5 22 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
40 2 6 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
43 2 6 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
46 3 8 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
47 3 8 0.1 0.0* 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
1 12 153 0.6 0.0 0.0* 0.0 0.0* 1.0* 2 2 2 2 2
3 3 48 0.1 0.0 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
5 8 22 0.1 0.0 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
9 12 36 0.1 0.0 0.0* 0.0 0.0* 0.3* 1 1 1 1 1

10 12 34 0.1 0.0 0.0* 0.0 0.0* 0.3* 1 1 1 1 1
12 7 181 0.1 0.0 0.0* 0.0 0.0* 0.3* 1 1 1 1 1
20 9 239 0.1 0.0 0.0* 0.0 0.0* 0.9* 1 1 1 1 1
26 14 60 0.1 0.0 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
29 5 297 0.1 0.0 0.0* 0.0 0.0* 1.0* 1 1 1 1 1
30 10 153 0.4 0.0 0.0* 0.0 0.0* 0.7* 2 2 2 2 2
31 7 165 0.1 0.0 0.0* 0.0 0.0* 0.3* 1 1 1 1 1
33 9 171 0.1 0.0 0.0* 0.0 0.0* 0.4* 1 1 1 1 1
34 3 69 0.1 0.0 0.0* 0.0 0.0* 0.2* 1 1 1 1 1
37 5 135 0.1 0.0 0.0* 0.0 0.0* 0.4* 1 1 1 1 1
38 18 134 0.1 0.0 0.0* 0.0 0.0* 0.4* 1 1 1 1 1
42 14 53 0.1 0.0 0.0* 0.0 0.0* 0.3* 1 1 1 1 1
49 15 69 0.1 0.0 0.0* 0.0 0.0* 0.4* 1 1 1 1 1
8 25 151 0.1 0.0 0.0 0.0 0.0* 0.5* 1 1 1 1 1
4 31 113 0.3 0.0 0.0 0.0 0.0 0.9* 2 2 2 2 2

13 30 109 0.1 0.0 0.0 0.0 0.0 0.6* 1 1 1 1 1
15 30 246 0.1 0.0 0.0 0.0 0.0 1.5* 1 1 1 1 1
17 31 113 0.1 0.0 0.0 0.0 0.0 0.2* 1 1 1 1 1
22 33 121 0.6 0.2 0.1 0.0 0.0 1.7* 3 4 4 4 4
23 30 130 484. 0.1 0.1 0.0 0.0 2.1* 5 5 5 5 5
25 41 307 0.5 0.0 0.0 0.0 0.0 7.2* 2 2 2 2 2
27 31 113 0.3 0.0 0.0 0.0 0.0 1.3* 2 2 2 2 2
28 32 119 0.3 0.0 0.0 0.0 0.0 0.9* 2 2 2 2 2
39 32 114 0.4 0.0 0.0 0.0 0.0 1.2* 2 2 2 2 2
41 31 86 0.6 0.0 0.0 0.0 0.0 1.0* 2 2 2 2 2
44 31 113 0.4 0.0 0.0 0.0 0.0 1.2* 2 2 2 2 2
45 78 452 0.1 0.0 0.0 0.0 0.0 3.9* 1 1 1 1 1
48 31 113 0.1 0.0 0.0 0.0 0.0 0.3* 1 1 1 1 1
50 34 130 0.3 0.0 0.0 0.0 0.0 1.0* 2 2 2 2 2

Table 14: Results of the 50 random test queries for not-Galen, with best performance.

xvii

R. Sebastiani & M. Vescovi

Module size MinAs search time (sec.) #MinAs
EL+SAT CEL EL+SAT CEL EL+SAT CEL

(b) (c) (t) enc. (×2) (b) (c) (t) (×2)
1 32 97 0.3 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
2 31 96 0.3 0.0 0.0 0.0 0.0* 0.8* 2 2 2 2 2
6 31 116 0.3 0.0 0.0 0.0 0.0* 0.7* 2 2 2 2 2

14 31 106 0.3 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
15 31 105 0.3 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
16 31 116 0.3 0.0 0.0 0.0 0.0* 1.0* 2 2 2 2 2
18 31 106 0.2 0.0 0.0 0.0 0.0* 1.0* 2 2 2 2 2
19 31 105 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
21 31 110 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
22 31 113 0.2 0.0 0.0 0.0 0.0* 1.1* 2 2 2 2 2
23 31 96 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
24 31 112 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
25 31 97 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
26 31 112 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
27 31 115 0.2 0.0 0.0 0.0 0.0* 0.7* 2 2 2 2 2
28 31 106 0.3 0.0 0.0 0.0 0.0* 0.8* 2 2 2 2 2
29 31 109 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
30 34 86 0.1 0.0 0.0 0.0 0.0* 0.3* 1 1 1 1 1
31 31 113 0.3 0.0 0.0 0.0 0.0* 0.7* 2 2 2 2 2
32 31 116 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
33 33 297 0.1 0.0 0.0 0.0 0.0* 1.4* 1 1 1 1 1
34 33 180 0.1 0.0 0.0 0.0 0.0* 0.6* 1 1 1 1 1
35 33 183 0.1 0.0 0.0 0.0 0.0* 0.6* 1 1 1 1 1
36 33 232 0.1 0.0 0.0 0.0 0.0* 1.1* 1 1 1 1 1
37 33 215 0.1 0.0 0.0 0.0 0.0* 0.8* 1 1 1 1 1
38 33 277 0.1 0.0 0.0 0.0 0.0* 1.2* 1 1 1 1 1
39 31 111 0.3 0.0 0.0 0.0 0.0* 0.7* 2 2 2 2 2
40 31 111 0.2 0.0 0.0 0.0 0.0* 0.6* 2 2 2 2 2
41 29 110 0.1 0.0 0.0 0.0 0.0* 0.4* 1 1 1 1 1
49 28 239 0.1 0.0 0.0 0.0 0.0* 0.9* 1 1 1 1 1
3 33 130 0.3 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
4 33 130 0.3 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
5 33 127 0.3 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
7 33 130 0.2 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
8 33 130 0.2 0.0 0.0 0.0 0.0 1.1* 2 2 2 2 2
9 33 130 0.2 0.0 0.0 0.0 0.0 1.0* 2 2 2 2 2

10 33 130 0.2 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
11 33 130 0.2 0.0 0.0 0.0 0.0 1.2* 2 2 2 2 2
12 33 130 0.3 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
13 33 130 0.3 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
17 33 132 0.3 0.0 0.0 0.0 0.0 0.6* 2 2 2 2 2
20 33 127 0.3 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
42 31 113 0.2 0.0 0.0 0.0 0.0 0.6* 2 2 2 2 2
43 31 116 0.2 0.0 0.0 0.0 0.0 1.0* 2 2 2 2 2
44 31 110 0.2 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2
45 31 119 0.2 0.0 0.0 0.0 0.0 0.6* 2 2 2 2 2
46 31 113 0.2 0.0 0.0 0.0 0.0 0.6* 2 2 2 2 2
47 31 113 0.2 0.0 0.0 0.0 0.0 0.6* 2 2 2 2 2
48 31 113 0.3 0.0 0.0 0.0 0.0 0.6* 2 2 2 2 2
50 31 113 0.3 0.0 0.0 0.0 0.0 0.7* 2 2 2 2 2

Table 15: Results of the 50 selected test queries for not-Galen, with
best performance.

xviii

