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Theorem Proving
● Given a set of clauses  and a clause C (a 

conclusion), our goal is to prove
– C is valid
– or equivalently, (∧¬C) is unsatisfiable



  

Motivation
● Ordered Resolution and Instance Generation 

with semantic selection (SInst-Gen)
– Each uses a unique proof procedure
– Each has individual strengths
– Both competitive in practice

● SIG-Res
– hybrid inference system combining Ordered 

Resolution and SInst-Gen
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Setting
● Standard first-order logic without equality
● Formula in conjunctive normal form



  

Substitutions and Unifiers
● a substitution is a 

map from variables to 
terms
– :VT

● a unifier of atoms P 
and Q is a 
substitution  such 
that P = Q

:{xa, yz}

R(x)   R(y)

:{xy}

R(y) = R(y)



  

Most General Unifier
● the most general   

unifier of P and Q is a 
unifier of P and Q, , 
such that for all 
unifiers of P and Q, , 
there exists a  
substitution, , such 
that = 

R(x)   R(y)

:{xa,ya}

R(a) = R(a)

:{xy} 

:{ya}
=
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Orderings
● A (strict) partial ordering, >, is a transitive and 

irreflexive binary relation.
● A strict ordering is well founded if there is no 

infinite descending chain of elements.
● An ordering is stable under substitution if when 

s > t then s > t.



  

Maximal Literals
● Let > be a strict partial ordering on terms which 

is well founded and stable under substitutions.  
We say literal L is maximal in clause C if LC 
and there is no KC such that K > L.



  

Ordered Resolution and Factoring 
Inference Rules

● Ordered Resolution     
                                    
                                    
                                    
                                    
                                    
 

● Factoring

 ∨ P     ∨ ¬P

---------------------
(∨)

where  = mgu(P,P)

and Pmax( ∨ P)

and Pmax( ∨ ¬P)

 ∨ P ∨ P

---------------------
( ∨ P)

where  = mgu(P,P)

     



  

Safe Factoring
● If C is a factor of D then clearly, DC.  If CD, 

then we may delete D.
● Safe-Factoring applies factoring only when the 

factor implies the premise – allowing deletion of 
the premise.

● Ordered Resolution with Safe-Factoring is 
complete.



  

Ordered Resolution Procedure
● Repeatedly apply ordered resolution and 

factoring inference rules in a fair manner.
– Refutationally complete
– If empty clause ( )⊥  is generated, then set of clauses 

is unsatisfiable

P    ¬P

--------------------- 
⊥

where P and ¬P are unifiable
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Interpretations as Models
●  is also used to denote a distinguished 

constant and the substitution that maps all 
variables to .

● Given a set of clauses,P, P can be viewed as 
a set of propositional clauses.

● A Herbrand Interpretation, I, is a consistent set 
of ground literals.

● If P is satisfiable then we denote a model for 
P by I


.



  

Selection

● Given a model I
 

for P we define a selection 
function, sel(C,  I


), which maps each clause    

C  P to a singleton set {L} such that L  C and 
L is true in I


.

● If sel(C,  I

) = {L} then L is referred to as a 

selected literal.



  

SInst-Gen
Inference Rule

 ∨ P          ∨ ¬P

------------------------------
( ∨ P)  ( ∨ ¬P)

where P sel( ∨ P, I

), 

P sel( ∨ ¬P, I

) 

and  = mgu(P,P)



  

SInst-Gen Procedure

Given a set of first order clauses P 

1. Construct P
2. Run SAT on P (viewed as propositional clauses)

- If P is unsatisfiable, P is unsatisfiable and we are done.
- Else if P is satisfiable by I


, determine selected literals.

● If no Sinst-Gen inferences can be made, P is satisfiable 
and we are done.

● Else, add Sinst-Gen conclusions to P and goto 1.
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Selection Redefined

If CP, sel(C, I

) = {L} such that L  C and L I



If CR, sel(C, I

) = max(C)



  

Distribution Heuristic
● Distribute clauses into 

two sets P and R 
using a distribution 
heuristic



  

Distribution Heuristic
● Clauses in R are 

treated as resolution 
clauses

● Clauses in P are 
treated as instance 
generation clauses



  

Distribution Heuristic
● P and R are not 

necessarily disjoint



  

Ground/Single Max Heuristic: GSM
● For each clause

– if ground, put in P.
– find the maximal literals (KBO)

● if the number of maximal literals is 1 insert clause in R, 
otherwise insert clause in P

● Reasoning
– Ground clauses on PI do not generate new clauses
– Clauses containing a single maximal literal tend to 

produce smaller clauses with Res



  

SInst-Gen
 ∨ P          ∨ ¬P

------------------------------
( ∨ P)  ( ∨ ¬P)

where 

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


) 

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P



  

SInst-Gen
 ∨ P          ∨ ¬P

------------------------------
( ∨ P)  ( ∨ ¬P)

where 

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


) 

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P



  

SInst-Gen
 ∨ P          ∨ ¬P

------------------------------
( ∨ P)  ( ∨ ¬P)

where 

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


) 

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P



  

SInst-Gen
 ∨ P          ∨ ¬P

------------------------------
( ∨ P)  ( ∨ ¬P)

where 

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


) 

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P



  

Resolution
 ∨ P     ∨ ¬P

---------------------
(∨)

where 

i)  ∨ P R or  ∨ ¬P R

i) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P) P if  ∨ P R or  ∨ ¬P R



  

Resolution
 ∨ P     ∨ ¬P

---------------------
(∨)

where 

i)  ∨ P R or  ∨ ¬P R

i) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P) P if  ∨ P R or  ∨ ¬P R



  

Resolution
 ∨ P     ∨ ¬P

---------------------
(∨)

where 

i)  ∨ P R or  ∨ ¬P R

i) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P) P if  ∨ P R or  ∨ ¬P R



  

Factoring
 ∨ P ∨ P

---------------------
( ∨ P)

where 

i)  = mgu(P,P)

ii) ( ∨ P)∈P  if    ∨ P ∨ P∉R



  

Benefits of SIG-Res
● Complete inference system.
● During the initial partition phase, attempts to 

choose which inference system will be best 
suited for each clause.

● Allows complete spectrum of solutions from a 
pure Instance Generation solution to a pure 
Resolution solution.
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Spectrum
● Written in C++

● TPTP input (CNF form)
● SInst-Gen (Primal P.I. Algorithm)
● Uses Yices SMT for SAT solving
● Ordered Resolution (KBO ordering)
● Safe-Factoring
● SIG-Res with Ground/Single Max partition heuristic
● Redundancy elimination (forward sub, taut elim)



  

Results
● Tested 450 easy TPTP problems

– Spectrum solved 192 in 300s
– 18 using heuristic alone

● 16 in LCL class
● contain transitivity axioms
● contain growing functions

– P(x) ∨P(f(x))



  

Future Work
● Continue developing Spectrum

– add additional redundancy elimination
– utilize better data structures and term indexing
– restrict Sinst-Gen using dismatching constraints

● Investigate extending partioning idea to 
equalities
– use SMT to solve ground equalities
– use rewriting to solve non-ground equalities
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