

Combining Instance Generation and Resolution

Christopher Lynch and Ralph Eric McGregor

Department of Mathematics & Computer Science
Clarkson University

Theorem Proving
● Given a set of clauses  and a clause C (a

conclusion), our goal is to prove
– C is valid
– or equivalently, (∧¬C) is unsatisfiable

Motivation
● Ordered Resolution and Instance Generation

with semantic selection (SInst-Gen)
– Each uses a unique proof procedure
– Each has individual strengths
– Both competitive in practice

● SIG-Res
– hybrid inference system combining Ordered

Resolution and SInst-Gen

Outline
● Preliminaries
● Ordered Resolution
● SInst-Gen
● SIG-Res
● Spectrum
● Future Work

Setting
● Standard first-order logic without equality
● Formula in conjunctive normal form

Substitutions and Unifiers
● a substitution is a

map from variables to
terms
– :VT

● a unifier of atoms P
and Q is a
substitution  such
that P = Q

:{xa, yz}

R(x) R(y)

:{xy}

R(y) = R(y)

Most General Unifier
● the most general

unifier of P and Q is a
unifier of P and Q, ,
such that for all
unifiers of P and Q, ,
there exists a
substitution, , such
that =

R(x) R(y)

:{xa,ya}

R(a) = R(a)

:{xy}

:{ya}
=

Outline
● Preliminaries
● Ordered Resolution
● SInst-Gen
● SIG-Res
● Spectrum
● Future Work

Orderings
● A (strict) partial ordering, >, is a transitive and

irreflexive binary relation.
● A strict ordering is well founded if there is no

infinite descending chain of elements.
● An ordering is stable under substitution if when

s > t then s > t.

Maximal Literals
● Let > be a strict partial ordering on terms which

is well founded and stable under substitutions.
We say literal L is maximal in clause C if LC
and there is no KC such that K > L.

Ordered Resolution and Factoring
Inference Rules

● Ordered Resolution

● Factoring

 ∨ P  ∨ ¬P

(∨)

where  = mgu(P,P)

and Pmax( ∨ P)

and Pmax( ∨ ¬P)

 ∨ P ∨ P

( ∨ P)

where  = mgu(P,P)

Safe Factoring
● If C is a factor of D then clearly, DC. If CD,

then we may delete D.
● Safe-Factoring applies factoring only when the

factor implies the premise – allowing deletion of
the premise.

● Ordered Resolution with Safe-Factoring is
complete.

Ordered Resolution Procedure
● Repeatedly apply ordered resolution and

factoring inference rules in a fair manner.
– Refutationally complete
– If empty clause ()⊥ is generated, then set of clauses

is unsatisfiable

P ¬P

⊥

where P and ¬P are unifiable

Outline
● Preliminaries
● Ordered Resolution
● SInst-Gen
● SIG-Res
● Spectrum
● Future Work

Interpretations as Models
●  is also used to denote a distinguished

constant and the substitution that maps all
variables to .

● Given a set of clauses,P, P can be viewed as
a set of propositional clauses.

● A Herbrand Interpretation, I, is a consistent set
of ground literals.

● If P is satisfiable then we denote a model for
P by I


.

Selection

● Given a model I


for P we define a selection
function, sel(C, I


), which maps each clause

C  P to a singleton set {L} such that L  C and
L is true in I


.

● If sel(C, I

) = {L} then L is referred to as a

selected literal.

SInst-Gen
Inference Rule

 ∨ P  ∨ ¬P

( ∨ P) ( ∨ ¬P)

where P sel( ∨ P, I

),

P sel( ∨ ¬P, I

)

and  = mgu(P,P)

SInst-Gen Procedure

Given a set of first order clauses P

1. Construct P
2. Run SAT on P (viewed as propositional clauses)

- If P is unsatisfiable, P is unsatisfiable and we are done.
- Else if P is satisfiable by I


, determine selected literals.

● If no Sinst-Gen inferences can be made, P is satisfiable
and we are done.

● Else, add Sinst-Gen conclusions to P and goto 1.

Outline
● Preliminaries
● Ordered Resolution
● SInst-Gen
● SIG-Res
● Spectrum
● Future Work

Selection Redefined

If CP, sel(C, I

) = {L} such that L  C and L I



If CR, sel(C, I

) = max(C)

Distribution Heuristic
● Distribute clauses into

two sets P and R
using a distribution
heuristic

Distribution Heuristic
● Clauses in R are

treated as resolution
clauses

● Clauses in P are
treated as instance
generation clauses

Distribution Heuristic
● P and R are not

necessarily disjoint

Ground/Single Max Heuristic: GSM
● For each clause

– if ground, put in P.
– find the maximal literals (KBO)

● if the number of maximal literals is 1 insert clause in R,
otherwise insert clause in P

● Reasoning
– Ground clauses on PI do not generate new clauses
– Clauses containing a single maximal literal tend to

produce smaller clauses with Res

SInst-Gen
 ∨ P  ∨ ¬P

( ∨ P) ( ∨ ¬P)

where

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P

SInst-Gen
 ∨ P  ∨ ¬P

( ∨ P) ( ∨ ¬P)

where

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P

SInst-Gen
 ∨ P  ∨ ¬P

( ∨ P) ( ∨ ¬P)

where

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P

SInst-Gen
 ∨ P  ∨ ¬P

( ∨ P) ( ∨ ¬P)

where

i)  ∨ P P and  ∨ ¬P P

ii) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P)  P and ( ∨ ¬P)  P

Resolution
 ∨ P  ∨ ¬P

(∨)

where

i)  ∨ P R or  ∨ ¬P R

i) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P) P if  ∨ P R or  ∨ ¬P R

Resolution
 ∨ P  ∨ ¬P

(∨)

where

i)  ∨ P R or  ∨ ¬P R

i) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P) P if  ∨ P R or  ∨ ¬P R

Resolution
 ∨ P  ∨ ¬P

(∨)

where

i)  ∨ P R or  ∨ ¬P R

i) Psel( ∨ P, I

) and Psel( ∨ ¬P, I


)

iii)  = mgu(P,P)

iv) ( ∨ P) P if  ∨ P R or  ∨ ¬P R

Factoring
 ∨ P ∨ P

( ∨ P)

where

i)  = mgu(P,P)

ii) ( ∨ P)∈P if  ∨ P ∨ P∉R

Benefits of SIG-Res
● Complete inference system.
● During the initial partition phase, attempts to

choose which inference system will be best
suited for each clause.

● Allows complete spectrum of solutions from a
pure Instance Generation solution to a pure
Resolution solution.

Outline
● Preliminaries
● Ordered Resolution
● SInst-Gen
● SIG-Res
● Spectrum
● Future Work

Spectrum
● Written in C++

● TPTP input (CNF form)
● SInst-Gen (Primal P.I. Algorithm)
● Uses Yices SMT for SAT solving
● Ordered Resolution (KBO ordering)
● Safe-Factoring
● SIG-Res with Ground/Single Max partition heuristic
● Redundancy elimination (forward sub, taut elim)

Results
● Tested 450 easy TPTP problems

– Spectrum solved 192 in 300s
– 18 using heuristic alone

● 16 in LCL class
● contain transitivity axioms
● contain growing functions

– P(x) ∨P(f(x))

Future Work
● Continue developing Spectrum

– add additional redundancy elimination
– utilize better data structures and term indexing
– restrict Sinst-Gen using dismatching constraints

● Investigate extending partioning idea to
equalities
– use SMT to solve ground equalities
– use rewriting to solve non-ground equalities

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

