Combining Instance Generation and Resolution

Christopher Lynch and Ralph Eric McGregor

Department of Mathematics & Computer Science Clarkson University

Theorem Proving

- Given a set of clauses Γ and a clause C (a conclusion), our goal is to prove
 - $-\Gamma \rightarrow C$ is valid
 - or equivalently, $(\Gamma \land \neg C)$ is unsatisfiable

Motivation

- Ordered Resolution and Instance Generation with semantic selection (SInst-Gen)
 - Each uses a unique proof procedure
 - Each has individual strengths
 - Both competitive in practice
- SIG-Res
 - hybrid inference system combining Ordered Resolution and SInst-Gen

Outline

- Preliminaries
- Ordered Resolution
- SInst-Gen
- SIG-Res
- Spectrum
- Future Work

Setting

- Standard first-order logic without equality
- Formula in conjunctive normal form

Substitutions and Unifiers

 a substitution is a map from variables to terms

 $-\delta:V \rightarrow T$

• a unifier of atoms *P* and *Q* is a substitution δ such that $P\delta = Q\delta$ δ :{ $x \rightarrow a, y \rightarrow z$ }

 $R(x) \quad R(y)$ $\delta: \{x \rightarrow y\}$ R(y) = R(y)

Most General Unifier

• the most general unifier of P and Q is a unifier of P and Q, σ , such that for all unifiers of P and Q, δ , there exists a substitution, τ , such that $\sigma\tau = \delta$ $R(x) \quad R(y)$

Outline

- Preliminaries
- Ordered Resolution
- SInst-Gen
- SIG-Res
- Spectrum
- Future Work

Orderings

- A (strict) partial ordering, >, is a transitive and irreflexive binary relation.
- A strict ordering is well founded if there is no infinite descending chain of elements.
- An ordering is stable under substitution if when s > t then $s\sigma > t\sigma$.

Maximal Literals

 Let > be a strict partial ordering on terms which is well founded and stable under substitutions. We say literal *L* is maximal in clause *C* if *L*∈*C* and there is no *K*∈*C* such that *K* > *L*.

Ordered Resolution and Factoring Inference Rules

Ordered Resolution

 $\varGamma \lor \mathsf{P} \quad \varDelta \lor \neg \mathsf{P}'$

 $(\Gamma \lor \Delta)\sigma$

where $\sigma = mgu(P,P')$

and $P \in max(\Gamma \lor P)$

and $P' \in max(\Delta \lor \neg P')$

• Factoring

 $\Gamma \lor \mathsf{P} \lor \mathsf{P}'$

 $(\Gamma \lor \mathsf{P})\sigma$ where $\sigma = \mathsf{mgu}(\mathsf{P},\mathsf{P}')$

Safe Factoring

- If C is a factor of D then clearly, D→C. If C→D, then we may delete D.
- Safe-Factoring applies factoring only when the factor implies the premise – allowing deletion of the premise.
- Ordered Resolution with Safe-Factoring is complete.

Ordered Resolution Procedure

- Repeatedly apply ordered resolution and factoring inference rules in a fair manner.
 - Refutationally complete
 - If empty clause (\perp) is generated, then set of clauses is unsatisfiable

Outline

- Preliminaries
- Ordered Resolution
- SInst-Gen
- SIG-Res
- Spectrum
- Future Work

Interpretations as Models

- \perp is also used to denote a distinguished constant and the substitution that maps all variables to \perp .
- Given a set of clauses, P, P⊥ can be viewed as a set of propositional clauses.
- A Herbrand Interpretation, I, is a consistent set of ground literals.
- If $P\perp$ is satisfiable then we denote a model for $P\perp$ by I_{\perp} .

Selection

- Given a model I₁ for P⊥ we define a selection function, sel(C, I₁), which maps each clause $C \in P$ to a singleton set {L} such that $L \in C$ and L⊥ is true in I₁.
- If sel(C, I₁) = {L} then L is referred to as a selected literal.

SInst-Gen Inference Rule

 $(\Gamma \lor P)\sigma \quad (\Delta \lor \neg P')\sigma$

where $P \in sel(\Gamma \lor P, I_{\perp}),$ $P' \in sel(\varDelta \lor \neg P', I_{\perp})$ and $\sigma = mgu(P, P')$

SInst-Gen Procedure

Given a set of first order clauses P

- 1. Construct $P \perp$
- 2. Run SAT on P \perp (viewed as propositional clauses)
 - If $P\perp$ is unsatisfiable, P is unsatisfiable and we are done.
 - Else if $P\perp$ is satisfiable by I, determine selected literals.
 - If no Sinst-Gen inferences can be made, P is satisfiable and we are done.
 - Else, add Sinst-Gen conclusions to P and goto 1.

Outline

- Preliminaries
- Ordered Resolution
- SInst-Gen
- SIG-Res
- Spectrum
- Future Work

Selection Redefined

If $C \in P$, sel(C, I_{\perp}) = {L} such that $L \in C$ and $L \perp \in I_{\perp}$ If $C \in R$, sel(C, I_{\perp}) = max(C)

Distribution Heuristic

 Distribute clauses into two sets P and R using a distribution heuristic

Distribution Heuristic

- Clauses in R are treated as resolution clauses
- Clauses in P are treated as instance generation clauses

Distribution Heuristic

 P and R are not necessarily disjoint

Ground/Single Max Heuristic: GSM

- For each clause
 - if ground, put in P.
 - find the maximal literals (KBO)
 - if the number of maximal literals is 1 insert clause in R, otherwise insert clause in P
- Reasoning
 - Ground clauses on PI do not generate new clauses
 - Clauses containing a single maximal literal tend to produce smaller clauses with Res

$$\Gamma \lor P \qquad \Delta \lor \neg P'$$

$$(\Gamma \lor P)\sigma \quad (\Delta \lor \neg P')\sigma$$

```
i) \Gamma \lor P \in P and \Delta \lor \neg P \in P
```

```
ii) P \in sel(\Gamma \lor P, I) and P' \in sel(\Delta \lor \neg P', I)
```

```
iii) \sigma = mgu(P,P')
```

```
iv) (\Gamma \lor \mathsf{P})\sigma \in \mathsf{P} and (\varDelta \lor \neg \mathsf{P})\sigma \in \mathsf{P}
```


$$\Gamma \lor P \qquad \Delta \lor \neg P'$$

$$(\Gamma \lor P)\sigma \quad (\Delta \lor \neg P')\sigma$$

```
i) \Gamma \lor P \in P and \Delta \lor \neg P \in P
```

```
ii) P \in sel(\Gamma \lor P, I_{\perp}) and P' \in sel(\Delta \lor \neg P', I_{\perp})
iii) \sigma = mgu(P,P')
```

```
iv) (\Gamma \lor \mathsf{P})\sigma \in \mathsf{P} and (\varDelta \lor \neg \mathsf{P})\sigma \in \mathsf{P}
```


$$\Gamma \lor P \qquad \Delta \lor \neg P'$$

$$(\Gamma \lor P)\sigma \quad (\Delta \lor \neg P')\sigma$$

```
i) \Gamma \lor P \in P and \Delta \lor \neg P \in P
```

```
ii) P \in sel(\Gamma \lor P, I_{\downarrow}) and P' \in sel(\Delta \lor \neg P', I_{\downarrow})
```

```
iii) \sigma = mgu(P,P')
```

```
iv) (\Gamma \lor \mathsf{P})\sigma \in \mathsf{P} and (\varDelta \lor \neg \mathsf{P})\sigma \in \mathsf{P}
```


$$\Gamma \lor P \qquad \Delta \lor \neg P'$$

$$(\Gamma \lor P)\sigma \quad (\Delta \lor \neg P')\sigma$$

```
i) \Gamma \lor P \in P and \Delta \lor \neg P \in P
ii) P \in sel(\Gamma \lor P, I_{\perp}) and P' \in sel(\Delta \lor \neg P', I_{\perp})
iii) \sigma = mgu(P,P')
```

```
iv) (\Gamma \lor \mathsf{P})\sigma \in \mathsf{P} and (\varDelta \lor \neg \mathsf{P})\sigma \in \mathsf{P}
```


Resolution

$$\Gamma \lor \mathsf{P} \quad \varDelta \lor \neg \mathsf{P}'$$

$$(\Gamma \lor \Delta)\sigma$$

where

i) $\Gamma \lor \mathsf{P} \in \mathsf{R} \text{ or } \Delta \lor \neg \mathsf{P} \in \mathsf{R}$

i)
$$P \in sel(\Gamma \lor P, I_{\downarrow})$$
 and $P' \in sel(\Delta \lor \neg P', I_{\downarrow})$

iii) $\sigma = mgu(P,P')$

iv)
$$(\Gamma \lor \mathsf{P})\sigma \in \mathsf{P}$$
 if $\Gamma \lor \mathsf{P} \notin \mathsf{R}$ or $\Delta \lor \neg \mathsf{P} \notin \mathsf{R}$

Resolution

$$\Gamma \lor \mathsf{P} \quad \varDelta \lor \neg \mathsf{P}'$$

$$(\Gamma \lor \Delta)\sigma$$

where

i) $\Gamma \lor P \in R \text{ or } \Delta \lor \neg P \in R$

i) $P \in sel(\Gamma \lor P, I_{\downarrow})$ and $P' \in sel(\Delta \lor \neg P', I_{\downarrow})$

iii) $\sigma = mgu(P,P')$

```
iv) (\Gamma \lor \mathsf{P})\sigma \in \mathsf{P} if \Gamma \lor \mathsf{P} \notin \mathsf{R} or \varDelta \lor \neg \mathsf{P} \notin \mathsf{R}
```


Resolution

$$\Gamma \lor \mathsf{P} \quad \varDelta \lor \neg \mathsf{P}'$$

$$(\Gamma \lor \Delta)\sigma$$

where

i) $\Gamma \lor P \in R \text{ or } \Delta \lor \neg P \in R$

i)
$$P \in sel(\Gamma \lor P, I_{\downarrow})$$
 and $P' \in sel(\Delta \lor \neg P', I_{\downarrow})$

iii) $\sigma = mgu(P,P')$

iv) $(\Gamma \lor \mathsf{P})\sigma \in \mathsf{P} \text{ if } \Gamma \lor \mathsf{P} \notin \mathsf{R} \text{ or } \Delta \lor \neg \mathsf{P}' \notin \mathsf{R}$

Factoring

 $\Gamma \vee \mathsf{P} \vee \mathsf{P}'$ $(\Gamma \vee \mathsf{P})\sigma$ i) $\sigma = mgu(P,P')$

ii) $(\Gamma \lor \mathsf{P})\sigma \in \mathsf{P}$ if $\Gamma \lor \mathsf{P} \lor \mathsf{P}' \notin \mathsf{R}$

Benefits of SIG-Res

- Complete inference system.
- During the initial partition phase, attempts to choose which inference system will be best suited for each clause.
- Allows complete spectrum of solutions from a pure Instance Generation solution to a pure Resolution solution.

Outline

- Preliminaries
- Ordered Resolution
- SInst-Gen
- SIG-Res
- Spectrum
- Future Work

Spectrum

- Written in C⁺⁺
- TPTP input (CNF form)
- SInst-Gen (Primal P.I. Algorithm)
- Uses Yices SMT for SAT solving
- Ordered Resolution (KBO ordering)
- Safe-Factoring
- SIG-Res with Ground/Single Max partition heuristic
- Redundancy elimination (forward sub, taut elim)

Results

- Tested 450 easy TPTP problems
 - Spectrum solved 192 in 300s
 - 18 using heuristic alone
 - 16 in LCL class
 - contain transitivity axioms
 - contain growing functions

 $\neg \neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}(x))$

Future Work

- Continue developing Spectrum
 - add additional redundancy elimination
 - utilize better data structures and term indexing
 - restrict Sinst-Gen using dismatching constraints
- Investigate extending partioning idea to equalities
 - use SMT to solve ground equalities
 - use rewriting to solve non-ground equalities