Lazy CNF conversion

Results

Improving Coq Propositional Reasoning Using a Lazy CNF Conversion

Stéphane Lescuyer Sylvain Conchon

Université Paris-Sud / CNRS / INRIA Saclay – Île-de-France

FroCoS'09 - Trento - 18/09/2009

INSTITUT NATION DE RECHERC EN INFORMATIC ET EN AUTOMATIC

ProVal Improving Coq Propositional Reasoning

Motivation	and	background
00000		

Lazy CNF conversion

Results

Outline

- Motivation and background
 - Verifying an SMT solver : Alt-Ergo
 - Proof by reflection
- OPLL and CNF conversions
 - Modular DPLL
 - CNF conversions
- 4 Lazy CNF Conversion
 - Expandable literals
 - Realization in Coq
- 4 Results
 - Benchmarks
 - Summary

Alt-Ergo

Alt-Ergo : an SMT solver dedicated to program verification

http://alt-ergo.lri.fr

- Satisfiability Modulo Theories
 - \Rightarrow linear arithmetic, pairs, AC symbols, bitvectors
- dedicated to program verification
 - \Rightarrow proof obligations from program analysis
 - \Rightarrow Why, Boogie/PL

The big picture

We want to verify Alt-Ergo in the Coq proof assistant

The goal is twofold :

- validating the algorithms at work in Alt-Ergo
 SAT solver, congruence closure, combination with theories, ...
- Solution by building a certified version of Alt-Ergo that could be used by Coq users directly as a tactic

The big picture

We want to verify Alt-Ergo in the Coq proof assistant

The goal is twofold :

- validating the algorithms at work in Alt-Ergo
 SAT solver, congruence closure, combination with theories, ...
- building a certified version of Alt-Ergo that could be used by Coq users directly as a tactic

Two main approaches :

- having the solver produce some certificate
- implement the solver in the proof assistant and use reflection

A taste of reflection

Coq is a programming language

- based on the Calculus of Inductive Constructions
- one can write ML-like programs
- efficient virtual machine for evaluation

A taste of reflection

Coq is a programming language

- based on the Calculus of Inductive Constructions
- one can write ML-like programs
- efficient virtual machine for evaluation

The conversion rule

- deduction modulo evaluation
- proving that two expressions are equal? call the VM !

```
Theorem fib20 : fib 20 = 10946.
Proof. vm_compute; reflexivity. Qed.
```

Motivation	and	background	
00000			

Lazy CNF conversion

Results

Another taste of reflection

Given a decidable property P on objects of type t:

• write a program that decides P :

Definition $P_{dec}(x : t) : bool := ...$

• prove that it actually decides P :

Property P_1 : $\forall x$, P_dec $x = \text{true} \rightarrow P x$. Property P_2 : $\forall x$, P_dec $x = \text{false} \rightarrow (P x)$.

• to prove P(a) for any concrete a of type t:

Corollary Pa : P a. Proof. apply P_1; vm_compute; reflexivity. Qed.

Motivation	and	background	
00000			

Lazy CNF conversion

Results

Another taste of reflection

Given a decidable property P on objects of type t:

• write a program that decides P :

Definition $P_{-}dec (x : t) : bool := ...$

• prove that it actually decides P :

Property P_1 : $\forall x$, P_dec $x = \text{true} \rightarrow P x$. Property P_2 : $\forall x$, P_dec $x = \text{false} \rightarrow (P x)$.

• to prove P(a) for any concrete a of type t :

Corollary Pa : P a. Proof. apply P_1; vm_compute; reflexivity. Qed.

We apply this method to a full SAT solver.

DPLL and CNF conversions

Lazy CNF conversion

Results

General overview of the tactic

DPLL and CNF conversions

Lazy CNF conversion

Results

A Modular DPLL procedure

UNIT
$$\frac{\Gamma, I \vdash \Delta}{\Gamma \vdash \Delta, I}$$
 Red $\frac{\Gamma, I \vdash \Delta, C}{\Gamma, I \vdash \Delta, \overline{I} \lor C}$ ELIM $\frac{\Gamma, I \vdash \Delta}{\Gamma, I \vdash \Delta, I \lor C}$
Conflict $\frac{\Gamma, I \vdash \Delta, \overline{Q}}{\Gamma \vdash \Delta, \overline{Q}}$ Split $\frac{\Gamma, I \vdash \Delta}{\Gamma \vdash \Delta}$

DPLL and CNF conversions

Lazy CNF conversion

Results

A Modular DPLL procedure

UNIT
$$\frac{\Gamma, I \vdash \Delta}{\Gamma \vdash \Delta, I}$$
 Red $\frac{\Gamma, I \vdash \Delta, C}{\Gamma, I \vdash \Delta, \overline{I} \lor C}$ ELIM $\frac{\Gamma, I \vdash \Delta}{\Gamma, I \vdash \Delta, I \lor C}$
Conflict $\frac{\Gamma, I \vdash \Delta, \overline{Q}}{\Gamma \vdash \Delta, \overline{Q}}$ Split $\frac{\Gamma, I \vdash \Delta}{\Gamma \vdash \Delta}$

```
Module Type LITERAL.

Parameter t : Set.

Parameter mk_not : t \rightarrow t.

Axiom mk_not_invol : \forall /, mk_not (mk_not /) = /.

...

End LITERAL.

Module DPLL (L : LITERAL) ....
```

CNF conversion

A formula needs to be converted into CNF for DPLL

- De Morgan rules A ∨ (B ∧ C) → (A ∨ B) ∧ (A ∨ C)
 Introducing Tseitin variables A ∨ (B ∧ C) → (A ∨ X) ∧ (X̄ ∨ B) ∧ (X̄ ∨ C) ∧ (X ∨ B̄ ∨ C̄)
- Plaisted/Greenbaum $<math>A \lor (B \land C) \longrightarrow (A \lor X) \land (\bar{X} \lor B) \land (\bar{X} \lor C)$
- many more variants...

DPLL and CNF conversions

Lazy CNF conversion

Results

The need for another conversion

Lazy CNF conversion

Results

The need for another conversion

Tseitin-style conversions raise issues in SMT solvers

• breaks the logical structure of the original formula

Lazy CNF conversion

Results

The need for another conversion

- breaks the logical structure of the original formula
- the Tseitin variables must be given a valuation

- breaks the logical structure of the original formula
- the Tseitin variables must be given a valuation
 - $A \models A \lor (B \land C)$ should be trivially satisfiable

- breaks the logical structure of the original formula
- the Tseitin variables must be given a valuation
 - $A \models A \lor (B \land C)$ should be trivially satisfiable
 - because of the conversion, the problem actually becomes $A \models (A \lor X) \land (\bar{X} \lor B) \land (\bar{X} \lor C) \land (X \lor \bar{B} \lor \bar{C})$

- breaks the logical structure of the original formula
- the Tseitin variables must be given a valuation
 - $A \models A \lor (B \land C)$ should be trivially satisfiable
 - because of the conversion, the problem actually becomes $A \models (\bar{X} \lor B) \land (\bar{X} \lor C) \land (X \lor \bar{B} \lor \bar{C})$

- breaks the logical structure of the original formula
- the Tseitin variables must be given a valuation
 - $A \models A \lor (B \land C)$ should be trivially satisfiable
 - because of the conversion, the problem actually becomes $A \models (\bar{X} \lor B) \land (\bar{X} \lor C) \land (X \lor \bar{B} \lor \bar{C})$
 - both choices for X must be tried until all the definitional clauses are eliminated

- breaks the logical structure of the original formula
- the Tseitin variables must be given a valuation
 - $A \models A \lor (B \land C)$ should be trivially satisfiable
 - because of the conversion, the problem actually becomes $A \models (\bar{X} \lor B) \land (\bar{X} \lor C) \land (X \lor \bar{B} \lor \bar{C})$
 - both choices for X must be tried until all the definitional clauses are eliminated
 - additional work and additional terms!

Tseitin-style conversions raise issues in SMT solvers

- breaks the logical structure of the original formula
- the Tseitin variables must be given a valuation
 - $A \models A \lor (B \land C)$ should be trivially satisfiable
 - because of the conversion, the problem actually becomes $A \models (\bar{X} \lor B) \land (\bar{X} \lor C) \land (X \lor \bar{B} \lor \bar{C})$
 - both choices for X must be tried until all the definitional clauses are eliminated
 - additional work and additional terms!

We don't want to make the formula look harder than it really is.

Solution used in Simplify :

- separate definitional clauses from other clauses
- $\bullet\,$ only add them when needed
- "relevancy propagation" in Z3

Solution used in Simplify :

- separate definitional clauses from other clauses
- only add them when needed
- "relevancy propagation" in Z3

Detlefs, Nelson, et al. (2005)

...introducing lazy CNF into Simplify avoided such a host of performance problems that [..] it converted a prover that didn't work in one that did.

Solution used in Simplify :

- separate definitional clauses from other clauses
- only add them when needed
- "relevancy propagation" in Z3

Detlefs, Nelson, et al. (2005)

...introducing lazy CNF into Simplify avoided such a host of performance problems that [..] it converted a prover that didn't work in one that did.

Our idea : Tseitin variables should be the formulas they represent !

Motivation	and	background
00000		

Lazy CNF conversion

Results

Expandable literals

Expandable literals are literals that can represent any formulas.

- such a literal can be a regular literal *I*;
- or a proxy for a non-atomic formula F : F

Lazy CNF conversion

Results

Expandable literals

Expandable literals are literals that can represent any formulas.

- such a literal can be a regular literal *I*;
- or a proxy for a non-atomic formula F : F

Expansion of a proxy literal returns a CNF of literals

For instance, $A \lor (D \land C)$ can return

- $\bullet \ \left\{ \{A,\ C\},\ \{D,\ C\} \} \quad \rightarrow \mbox{full CNF} \label{eq:constraint}$
- $\{\{A, D \land C\}\} \rightarrow \text{one layer only}$

Lazy CNF conversion

Results

Expandable literals

Expandable literals are literals that can represent any formulas.

- such a literal can be a regular literal *I*;
- or a proxy for a non-atomic formula F : F

Expansion of a proxy literal returns a CNF of literals

For instance, $A \lor (D \land C)$ can return

- $\bullet \ \left\{ \{A,\ C\},\ \{D,\ C\} \} \quad \rightarrow \mathsf{full}\ \mathsf{CNF} \right.$
- $\{\{A, D \land C\}\} \rightarrow \text{one layer only}$

 \Rightarrow on-the-fly incremental CNF conversion

DPLL and CNF conversions

Lazy CNF conversion

Results

Changing DPLL

UNIT
$$\frac{\Gamma, I \vdash \Delta}{\Gamma \vdash \Delta, I}$$
 RED $\frac{\Gamma, I \vdash \Delta, C}{\Gamma, I \vdash \Delta, \overline{I} \lor C}$
ELIM $\frac{\Gamma, I \vdash \Delta}{\Gamma, I \vdash \Delta, I \lor C}$ CONFLICT $\frac{\Gamma, I \vdash \Delta, \overline{0}}{\Gamma \vdash \Delta}$
SPLIT $\frac{\Gamma, I \vdash \Delta}{\Gamma \vdash \Delta}$
 Φ unsatisfiable $\Leftrightarrow \emptyset \vdash \Delta_{\Phi}$

DPLL and CNF conversions

Lazy CNF conversion

Results

Changing DPLL

$$\begin{array}{ll} \text{UNIT} \ \frac{\Gamma, I \vdash \Delta, \texttt{expand}(I)}{\Gamma \vdash \Delta, I} & \text{RED} \ \frac{\Gamma, I \vdash \Delta, C}{\Gamma, I \vdash \Delta, \overline{I} \lor C} \\ \text{ELIM} \ \frac{\Gamma, I \vdash \Delta}{\Gamma, I \vdash \Delta, I \lor C} & \text{CONFLICT} \ \frac{\Gamma}{\Gamma \vdash \Delta, \emptyset} \\ \text{SPLIT} \ \frac{\Gamma, I \vdash \Delta, \texttt{expand}(I) & \Gamma, \overline{I} \vdash \Delta, \texttt{expand}(\overline{I})}{\Gamma \vdash \Delta} \\ & \Phi \text{ unsatisfiable} \quad \Leftrightarrow \quad \emptyset \vdash \Phi \end{array}$$

Motivation	and	background
00000		

Lazy CNF conversion

Results

Changing DPLL

UNIT
$$\frac{\Gamma, I \vdash \Delta, expand(I)}{\Gamma \vdash \Delta, I}$$
 Red $\frac{\Gamma, I \vdash \Delta, C}{\Gamma, I \vdash \Delta, \overline{I} \lor C}$
ELIM $\frac{\Gamma, I \vdash \Delta}{\Gamma, I \vdash \Delta, I \lor C}$ Conflict $\frac{\Gamma}{\Gamma \vdash \Delta, \emptyset}$
Split $\frac{\Gamma, I \vdash \Delta, expand(I)}{\Gamma \vdash \Delta}$

 $\Phi \text{ unsatisfiable } \Leftrightarrow \quad \emptyset \vdash \ \Phi$

- adding proxies to the partial model is not mandatory
- helps taking advantage of sharing : $\phi~\vee~\neg\phi$

Lazy CNF conversion

Results

Defining expandable literals in Coq

```
Inductive t : Set :=
| Proxy (pos neg : list (list t))
| L (a : atom) (b : bool).
```

Defining expandable literals in Coq

```
Inductive t : Set :=
| Proxy (pos neg : list (list t))
| L (a : atom) (b : bool).
```

Negation can be computed in constant time.

```
Definition mk_not (l : t) : t :=
match l with
| Proxy pos neg \Rightarrow Proxy neg pos
| L a b \Rightarrow L a (negb b)
end.
```

Lazy CNF conversion

Results

Defining expandable literals in Coq

```
Inductive t : Set :=
| Proxy (pos neg : list (list t))
| L (a : atom) (b : bool).
```

Negation can be computed in constant time.

```
Definition mk_not (l : t) : t :=
match l with
| Proxy pos neg \Rightarrow Proxy neg pos
| L a b \Rightarrow L a (negb b)
end.
```

 \Rightarrow To convince Coq, one requires invariants on the structure...

DPLL and CNF conversions

Lazy CNF conversion

Results

Add invariants with dependent types

We want the pos and neg to really be the negation of one another.

$$\mathcal{N}((\bigvee_{i=1}^{n} x_i) \wedge C) = \bigwedge_{i=1}^{n} \bigwedge_{D \in \mathcal{N}(C)} (\bar{x}_i \vee D)$$

Lazy CNF conversion ○○○○○●○ Results

Add invariants with dependent types

We want the pos and neg to really be the negation of one another.

$$\mathcal{N}((\bigvee_{i=1}^n x_i) \land C) = \bigwedge_{i=1}^n \bigwedge_{D \in \mathcal{N}(C)} (\bar{x}_i \lor D)$$

 \Rightarrow Proxy pos neg is well-formed if :

 $\mathcal{N}(\texttt{neg}) = \texttt{pos}, \quad \mathcal{N}(\texttt{pos}) = \texttt{neg}, \quad \forall l \in \texttt{pos}, l \text{ is well-formed}$

Definition t : Type := {l | wf_lit l}.

Lazy CNF conversion

Results

Add invariants with dependent types

We want the pos and neg to really be the negation of one another.

$$\mathcal{N}((\bigvee_{i=1}^{n} x_i) \wedge C) = \bigwedge_{i=1}^{n} \bigwedge_{D \in \mathcal{N}(C)} (\bar{x}_i \vee D)$$

 \Rightarrow Proxy pos neg is well-formed if :

 $\mathcal{N}(\texttt{neg}) = \texttt{pos}, \quad \mathcal{N}(\texttt{pos}) = \texttt{neg}, \quad \forall l \in \texttt{pos}, l \text{ is well-formed}$

Definition t : Type := {/ | wf_lit /}. Property wf_mk_not : \forall /, wf_lit / \rightarrow wf_lit (mk_not /). Proof. Qed. Definition mk_not (/ : t) : t := ... (* uses wf_mk_not *)

Lazy CNF conversion

Results

Translation for logical connectives

Proxy	pos	neg
$X \equiv F \lor G$	$\{F \lor G\}$	$\{\bar{F}\}\{\bar{G}\}$
$X \equiv F \wedge G$	$\{F\}\{G\}$	$\{\bar{F}\vee\bar{G}\}$
$X \equiv (F \to G)$	$\{\bar{F} \lor G\}$	$\{F\}\{\overline{G}\}$
$X \equiv (F_1 \vee \ldots \vee F_n)$	$\{F_1 \lor \ldots \lor F_n\}$	$\{\bar{F}_1\}\ldots\{\bar{F}_n\}$
$X \equiv (F_1 \land \ldots \land F_n)$	$\{F_1\}\ldots\{F_n\}$	$\{\bar{F}_1 \vee \ldots \vee \bar{F}_n\}$

 $\bullet\ F \leftrightarrow G$ is treated as a conjunction or a disjunction

Motivation	and	background
00000		

Lazy CNF conversion

Results

Benchmarks

	tauto	CNF_C	CNF_A	Tseitin	Tseitin2	Lazy	LazyN
hole3	-	0.72	0.06	0.24	0.21	0.06	0.05
hole4	-	3.1	0.23	3.5	6.8	0.32	0.21
hole5	-	10	2.7	80	-	1.9	1.8
deb5	83	_	0.04	0.15	0.10	0.09	0.03
deb10	-	_	0.10	0.68	0.43	0.66	0.09
deb20	-	_	0.35	4.5	2.5	7.5	0.35
equiv2	0.03	_	0.06	1.5	1.0	0.02	0.02
equiv5	61	_	_	_	-	0.44	0.42
franzen10	0.25	16	0.05	0.05	0.03	0.02	0.02
franzen50	-	_	0.40	1.4	0.80	0.34	0.35
schwicht20	0.48	_	0.12	0.43	0.23	0.10	0.10
schwicht50	8.8	_	0.60	4.3	2.2	0.57	0.7
partage	-	_	_	13	19	0.04	0.06
partage2	—	—	-	_	_	0.12	0.11

Results

Our contribution

- a tactic for propositional fragment of Coq
- outperforms existing tactic by orders of magnitude
- validates the lazy CNF conversion of our SMT solver
- improves on standard CNF conversion techniques
- intuitionnistic tactic using classical techniques
- solves the issue of "predicate definitions" $p(x_1, \ldots, x_n) \equiv \phi(x_1, \ldots, x_n)$

 \Rightarrow should *p* be unfolded or not?

DPLL and CNF conversions

Lazy CNF conversion

Results ○○●

For the daring souls

The whole development is documented and browsable at :

http://www.lri.fr/~lescuyer/unsat

Follow the checkmarks </

Thank You