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Product frames and products of modal logics

For F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉,
the product frame is F1 × F2 = 〈W1 × W2, Rh, Rv〉, where

(x, y)Rh(x
′, y′) iff

xR1x
′ and y = y′

(x, y)Rv(x
′, y′) iff

yR2y
′ and x = x′

.
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′, y′) iff

xR1x
′ and y = y′

(x, y)Rv(x
′, y′) iff

yR2y
′ and x = x′

.

.

F2

F1

F1×F2

The product of two Kripke complete unimodal logics L1, L2 is the bimodal logic

L1 × L2 = Logic of {F1 × F2 | F1 ∈ Fr L1, F2 ∈ Fr L2}
↑

in the language with the modal operators 21, 22, 31, 32
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Connections with other formalisms

• spatio-temporal logics
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Connections with other formalisms

• spatio-temporal logics

• dynamic topological logics

• temporal-epistemic logics, multi-agent systems

• modal and temporal description logics

• two-variable fragment of classical predicate logic

• representable cylindric algebras of dimension 2

• one-variable fragment of modal and intuitionistic predicate logics
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Finite model properties

Product logics are determined by classes of product frames, but there are
non-product frames for product logics !

• A product logic L1 × L2 has the product fmp if any ϕ /∈ L1 × L2

fails in a finite product frame for L1 × L2.

• A product logic L1 × L2 has the (abstract) fmp if any ϕ /∈ L1 × L2

fails in a finite (not necessarily product) frame for L1 × L2.

product fmp =⇒ fmp

⇐=6
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Known results on the decision problem and fmp

• Products with S5-like logics are usually decidable and enjoy the fmp
(typical complexity CONEXPTIME)
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Known results on the decision problem and fmp

• Products with S5-like logics are usually decidable and enjoy the fmp
(typical complexity CONEXPTIME)

• Products with K-like logics are usually decidable and enjoy the fmp
(can be non-elementary)

• K × K, K × S5, S5 × S5 even have the product fmp

• Products with both components having only transitive frames are usually
undecidable and have no fmp

• If both component logics are determined by
recursively first-order axiomatisable classes of frames then

the product is recursively enumerable (like K4×K4, S4×S4.3)

• But it can be even Π1
1-complete (like K4 × Logic of (N), S4 × GL.3)
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Products with diagonal constant

• We add a constant δ to the bimodal language with 21, 22, 31, 32
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Products with diagonal constant

• We add a constant δ to the bimodal language with 21, 22, 31, 32

• Given frames F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉,

their δ-product is F1 ×δ F2 = 〈W1 × W2, Rh, Rv, D〉, where

• 〈W1 × W2, Rh, Rv, 〉 = F1 × F2

• D = {〈u, u〉 | u ∈ W1 ∩ W2}
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Products with diagonal constant

• We add a constant δ to the bimodal language with 21, 22, 31, 32

• Given frames F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉,

their δ-product is F1 ×δ F2 = 〈W1 × W2, Rh, Rv, D〉, where

• 〈W1 × W2, Rh, Rv, 〉 = F1 × F2

• D = {〈u, u〉 | u ∈ W1 ∩ W2}

• The δ-product of two Kripke complete unimodal logics L1, L2 is
the 3-modal logic

L1 ×δ L2 = Logic of {F1 ×δ F2 | F1 ∈ Fr L1, F2 ∈ Fr L2}
↑

in the language with 21, 22, 31, 32, δ
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What could the diagonal constant mean?

• equality in two-variable classical predicate logic

(constant d01 in two-dimensional representable cylindric algebras)

FroCoS’09 16.09.09 7
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• equality in two-variable classical predicate logic

(constant d01 in two-dimensional representable cylindric algebras)

• when reasoning about domains changing in time

(under actions, belief change, etc.):

δ can collect a set of special time-stamped objects such that

• no special object is chosen twice, and

• at every moment of time, at most one special object is chosen.
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What could the diagonal constant mean?

• equality in two-variable classical predicate logic

(constant d01 in two-dimensional representable cylindric algebras)

• when reasoning about domains changing in time

(under actions, belief change, etc.):

δ can collect a set of special time-stamped objects such that

• no special object is chosen twice, and

• at every moment of time, at most one special object is chosen.

• . . . ?
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Main results I: undecidability

Let

F = 〈ω + 1, R〉

where

R = {〈ω, n〉 | for all n < ω} ∪ {〈n + 1, n〉 | for all n < ω}

F

.

.
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Main results I: undecidability

Let

F = 〈ω + 1, R〉

where

R = {〈ω, n〉 | for all n < ω} ∪ {〈n + 1, n〉 | for all n < ω}

F

.

.

If C is any class of δ-product frames such that F ×δ F ∈ C
then Logic of (C) is undecidable

Most surprising example: K ×δ K
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Main results II: no fmp

Let

– G = 〈ω + 1, S〉 with S = {〈ω, n〉 | n < ω} (infinite fan)

– Srefl = reflexive closure of S

– Suniv = the universal relation on ω + 1
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Main results II: no fmp

Let

– G = 〈ω + 1, S〉 with S = {〈ω, n〉 | n < ω} (infinite fan)

– Srefl = reflexive closure of S

– Suniv = the universal relation on ω + 1

If C is any class of δ-product frames such that

• either F ×δ G ∈ C
• or F ×δ Grefl ∈ C
• or F ×δ Guniv ∈ C

then Logic of (C) does not have the (abstract) fmp

Examples: K ×δ K, K ×δ K4, K ×δ S4, K ×δ S5
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Why are these results surprising?

• Both S5 × S5 and S5 ×δ S5 are decidable (CONEXPTIME-complete)

and have the product fmp
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Why are these results surprising?

• Both S5 × S5 and S5 ×δ S5 are decidable (CONEXPTIME-complete)

and have the product fmp

• K × S5 is also decidable, CONEXPTIME-complete, and has the product fmp

• K × K is also decidable and has the product fmp

• All known undecidable product-like logics have some kind of

‘forward going’ universal modality:

K4 × K4, K × K with universal modality
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Undecidability proof (in new paper)

By reduction of the N × N tiling problem:

Given a finite set T of tile types t = (left(t), right(t), up(t), down(t))

.

.

decide whether there exists τ : N × N → T such that, for all i, j ∈ N,

.

.

up(τ (i, j)) = down(τ (i, j + 1))

and

left(τ (i, j)) = right(τ (i + 1, j)).
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By reduction of the N × N tiling problem:

Given a finite set T of tile types t = (left(t), right(t), up(t), down(t))

.

.

decide whether there exists τ : N × N → T such that, for all i, j ∈ N,

.

.

up(τ (i, j)) = down(τ (i, j + 1))

and

left(τ (i, j)) = right(τ (i + 1, j)).

(Berger 1966): The N × N tiling problem
is undecidable

.

.
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Undecidability proof: the formulas

(γ): Generating a N × N-like grid ‘upside down’ so that all points are

2122-accessible from the root (like F × F):
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(ϑ): encoding
tiling rules

.

.

2122

∨
t∈T

(
t ∧

∧
t′ 6=t

¬t′)
2122

∧
right(t′) 6=left(t)

(
t → 21¬t′)

2122

∧
up(t′) 6=down(t)

(
t → 22¬t′)

Claim. (ϑ∧γ) is satisfied in a δ-product frame in C iff T tiles N×N
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Future work

• Widen the scope of the undecidability theorem to those logics where

the ‘no fmp’ theorem applies

Open problem: is K ×δ S5 decidable?
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Future work

• Widen the scope of the undecidability theorem to those logics where

the ‘no fmp’ theorem applies

Open problem: is K ×δ S5 decidable?

• Explore possible connections with 3-dimensional product logics

Open problem: Is it decidable whether a finite frame is a frame for K ×δ K?

• Explore connections with relation algebras

• Explore connections with other undecidable extensions of products

say, with the universal modality (= global consequence relation)
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