Undecidable two-dimensional products of modal logics with diagonal constant

Agi Kurucz

Department of Computer Science King's College London

Joint work with Stanislav Kikot

Product frames and products of modal logics

For
$$\mathfrak{F}_1 = \langle W_1, R_1 \rangle$$
 and $\mathfrak{F}_2 = \langle W_2, R_2 \rangle$,
the product frame is $\mathfrak{F}_1 \times \mathfrak{F}_2 = \langle W_1 \times W_2, R_h, R_v \rangle$, where

Product frames and products of modal logics

For
$$\mathfrak{F}_1 = \langle W_1, R_1 \rangle$$
 and $\mathfrak{F}_2 = \langle W_2, R_2 \rangle$,
the product frame is $\mathfrak{F}_1 \times \mathfrak{F}_2 = \langle W_1 \times W_2, R_h, R_v \rangle$, where

The product of two Kripke complete unimodal logics L_1 , L_2 is the bimodal logic

$$egin{array}{rcl} L_1 imes L_2&=& \mathsf{Logic}_{-}\mathsf{of}\left\{\mathfrak{F}_1 imes\mathfrak{F}_2\ \mid\ \mathfrak{F}_1\in\mathsf{Fr}\,L_1,\ \mathfrak{F}_2\in\mathsf{Fr}\,L_2
ight\} \ &\uparrow \end{array}$$

in the language with the modal operators $\square_1, \square_2, \diamondsuit_1, \diamondsuit_2$

• spatio-temporal logics

- spatio-temporal logics
- dynamic topological logics

- spatio-temporal logics
- dynamic topological logics
- temporal-epistemic logics, multi-agent systems

- spatio-temporal logics
- dynamic topological logics
- temporal-epistemic logics, multi-agent systems
- modal and temporal description logics

- spatio-temporal logics
- dynamic topological logics
- temporal-epistemic logics, multi-agent systems
- modal and temporal description logics
- two-variable fragment of classical predicate logic
- representable cylindric algebras of dimension 2

- spatio-temporal logics
- dynamic topological logics
- temporal-epistemic logics, multi-agent systems
- modal and temporal description logics
- two-variable fragment of classical predicate logic
- representable cylindric algebras of dimension 2
- one-variable fragment of modal and intuitionistic predicate logics

Finite model properties

Product logics are determined by classes of product frames, but there are **non-product frames** for product logics !

- A product logic $L_1 \times L_2$ has the product fmp if any $\varphi \notin L_1 \times L_2$ fails in a finite product frame for $L_1 \times L_2$.
- A product logic $L_1 \times L_2$ has the **(abstract) fmp** if any $\varphi \notin L_1 \times L_2$ fails in a finite (not necessarily product) frame for $L_1 \times L_2$.

 Products with S5-like logics are usually decidable and enjoy the fmp (typical complexity CONEXPTIME)

- Products with S5-like logics are usually decidable and enjoy the fmp (typical complexity CONEXPTIME)
- Products with K-like logics are usually decidable and enjoy the fmp (can be non-elementary)

- Products with S5-like logics are usually decidable and enjoy the fmp (typical complexity CONEXPTIME)
- Products with K-like logics are usually decidable and enjoy the fmp (can be non-elementary)
- $K \times K$, $K \times S5$, $S5 \times S5$ even have the product fmp

- Products with S5-like logics are usually decidable and enjoy the fmp (typical complexity CONEXPTIME)
- Products with K-like logics are usually decidable and enjoy the fmp (can be non-elementary)
- $K \times K$, $K \times S5$, $S5 \times S5$ even have the product fmp
- Products with both components having only transitive frames are usually undecidable and have no fmp

- Products with S5-like logics are usually decidable and enjoy the fmp (typical complexity CONEXPTIME)
- Products with K-like logics are usually decidable and enjoy the fmp (can be non-elementary)
- $K \times K$, $K \times S5$, $S5 \times S5$ even have the product fmp
- Products with both components having only transitive frames are usually undecidable and have no fmp
 - If both component logics are determined by recursively first-order axiomatisable classes of frames then the product is recursively enumerable (like K4 × K4, S4 × S4.3)

- Products with S5-like logics are usually decidable and enjoy the fmp (typical complexity CONEXPTIME)
- Products with K-like logics are usually decidable and enjoy the fmp (can be non-elementary)
- K \times K, K \times S5, S5 \times S5 even have the product fmp
- Products with both components having only transitive frames are usually undecidable and have no fmp
 - If both component logics are determined by recursively first-order axiomatisable classes of frames then the product is recursively enumerable (like K4 × K4, S4 × S4.3)
 - But it can be even Π_1^1 -complete (like K4 × Logic_of (N), S4 × GL.3)

Products with diagonal constant

• We add a constant δ to the bimodal language with $\Box_1, \Box_2, \diamond_1, \diamond_2$

Products with diagonal constant

- We add a constant δ to the bimodal language with $\Box_1, \Box_2, \diamond_1, \diamond_2$
- Given frames $\mathfrak{F}_1 = \langle W_1, R_1 \rangle$ and $\mathfrak{F}_2 = \langle W_2, R_2 \rangle$, their δ -product is $\mathfrak{F}_1 \times^{\delta} \mathfrak{F}_2 = \langle W_1 \times W_2, R_h, R_v, D \rangle$, where

•
$$\langle W_1 imes W_2, R_h, R_v,
angle \; = \; \mathfrak{F}_1 imes \mathfrak{F}_2$$

$$\bullet \quad D \; = \; \{ \langle u, u \rangle \mid u \in W_1 \cap W_2 \}$$

Products with diagonal constant

- We add a constant δ to the bimodal language with $\Box_1, \Box_2, \diamond_1, \diamond_2$
- Given frames $\mathfrak{F}_1 = \langle W_1, R_1 \rangle$ and $\mathfrak{F}_2 = \langle W_2, R_2 \rangle$, their δ -product is $\mathfrak{F}_1 \times^{\delta} \mathfrak{F}_2 = \langle W_1 \times W_2, R_h, R_v, D \rangle$, where
 - $\langle W_1 imes W_2, R_h, R_v, \rangle = \mathfrak{F}_1 imes \mathfrak{F}_2$
 - $\bullet \quad D \; = \; \{ \langle u, u \rangle \mid u \in W_1 \cap W_2 \}$
- The δ -product of two Kripke complete unimodal logics L_1 , L_2 is

the 3-modal logic

What could the diagonal constant mean?

• equality in two-variable classical predicate logic

(constant d_{01} in two-dimensional representable cylindric algebras)

What could the diagonal constant mean?

• equality in two-variable classical predicate logic

(constant d_{01} in two-dimensional representable cylindric algebras)

when reasoning about domains changing in time

(under actions, belief change, etc.):

 δ can collect a set of special time-stamped objects such that

- no special object is chosen twice, and
- at every moment of time, at most one special object is chosen.

What could the diagonal constant mean?

• equality in two-variable classical predicate logic

(constant d_{01} in two-dimensional representable cylindric algebras)

• when reasoning about domains changing in time

(under actions, belief change, etc.):

 δ can collect a set of special time-stamped objects such that

- no special object is chosen twice, and
- at every moment of time, at most one special object is chosen.

• ... ?

Main results I: undecidability

Let

$$\mathfrak{F} = \langle \omega + 1, R
angle$$

where

$$R = \{ \langle \omega, n \rangle \mid \text{ for all } n < \omega \} \cup \{ \langle n+1, n \rangle \mid \text{ for all } n < \omega \}$$

$$\mathfrak{F}$$
 • • • • • • •

Main results I: undecidability

Let

$$\mathfrak{F} = \langle \omega + 1, R
angle$$

where

$$R \;=\; \{\langle \omega, n
angle \; | \; ext{ for all } n < \omega \} \;\cup\; \{\langle n+1, n
angle \; | \; ext{ for all } n < \omega \}$$

$$\mathfrak{F}$$
 • • • • • • •

If \mathcal{C} is any class of δ -product frames such that $\mathfrak{F} \times^{\delta} \mathfrak{F} \in \mathcal{C}$ then Logic_of (\mathcal{C}) is undecidable

Most surprising example:

$$\mathbf{K} \times^{\delta} \mathbf{K}$$

FroCoS'09 16.09.09

Main results II: no fmp

Let

-
$$\mathfrak{G} = \langle \omega + 1, S
angle$$
 with $S = \{ \langle \omega, n
angle \mid n < \omega \}$ (infinite fan)

- S^{refl} = reflexive closure of S
- S^{univ} = the universal relation on $\omega+1$

Main results II: no fmp

Let

-
$$\mathfrak{G} = \langle \omega + 1, S
angle$$
 with $S = \{ \langle \omega, n
angle \mid n < \omega \}$ (infinite fan)

- S^{refl} = reflexive closure of S
- S^{univ} = the universal relation on $\omega+1$

If $\mathcal C$ is any class of δ -product frames such that

• either
$$\mathfrak{F} \times^{\delta} \mathfrak{G} \in \mathcal{C}$$

• or
$$\mathfrak{F} \times^{\delta} \mathfrak{G}^{refl} \in \mathcal{C}$$

• or
$$\mathfrak{F} \times^{\delta} \mathfrak{G}^{\text{univ}} \in \mathcal{C}$$

then $Logic_of(\mathcal{C})$ does not have the (abstract) fmp

Examples:

• Both $S5 \times S5$ and $S5 \times {}^{\delta}S5$ are decidable (CONEXPTIME-complete) and have the product fmp

- Both $S5 \times S5$ and $S5 \times {}^{\delta}S5$ are decidable (CONEXPTIME-complete) and have the product fmp
- $\mathbf{K} \times \mathbf{S5}$ is also decidable, CONEXPTIME-complete, and has the product fmp

- Both $S5 \times S5$ and $S5 \times ^{\delta}S5$ are decidable (CONEXPTIME-complete) and have the product fmp
- $\mathbf{K} \times \mathbf{S5}$ is also decidable, CONEXPTIME-complete, and has the product fmp
- $\mathbf{K} \times \mathbf{K}$ is also decidable and has the product fmp

- Both $S5 \times S5$ and $S5 \times ^{\delta}S5$ are decidable (CONEXPTIME-complete) and have the product fmp
- $\mathbf{K} \times \mathbf{S5}$ is also decidable, CONEXPTIME-complete, and has the product fmp
- $\mathbf{K} \times \mathbf{K}$ is also decidable and has the product fmp
- All known undecidable product-like logics have some kind of

`forward going' **universal modality**:

 $K4 \times K4$, $K \times K$ with universal modality

Undecidability proof (in new paper)

By reduction of the $\mathbb{N}\times\mathbb{N}$ tiling problem:

Given a finite set T of tile types t = (left(t), right(t), up(t), down(t))

decide whether there exists $au : \mathbb{N} imes \mathbb{N} o T$ such that, for all $i, j \in \mathbb{N}$,

$$up(au(i,j)) = down(au(i,j+1))$$
 and $left(au(i,j)) = right(au(i+1,j)).$

Undecidability proof (in new paper)

By reduction of the $\mathbb{N}\times\mathbb{N}$ tiling problem:

Given a finite set T of tile types t = (left(t), right(t), up(t), down(t))

decide whether there exists $au : \mathbb{N} imes \mathbb{N} o T$ such that, for all $i, j \in \mathbb{N}$,

$$up(au(i,j)) = down(au(i,j+1))$$

and left(au(i,j)) = right(au(i+1,j)).

(Berger 1966): The $\mathbb{N} \times \mathbb{N}$ tiling problem is undecidable

FroCoS'09 16.09.09

Undecidability proof: the formulas

(γ): Generating a $\mathbb{N} \times \mathbb{N}$ -like grid 'upside down' so that all points are $\Box_1 \Box_2$ -accessible from the root (like $\mathfrak{F} \times \mathfrak{F}$):

Claim. $(\vartheta \land \gamma)$ is satisfied in a δ -product frame in C iff T tiles $\mathbb{N} \times \mathbb{N}$ Frocos'09 16.09.09 12

• Widen the scope of the undecidability theorem to those logics where

the `no fmp' theorem applies

Open problem: is $\mathbf{K} \times^{\delta} \mathbf{S5}$ decidable?

• Widen the scope of the undecidability theorem to those logics where

the `no fmp' theorem applies

Open problem: is $\mathbf{K} \times^{\delta} \mathbf{S5}$ decidable?

• Explore possible connections with 3-dimensional product logics

Open problem: Is it decidable whether a finite frame is a frame for $\mathbf{K} \times^{\delta} \mathbf{K}$?

• Widen the scope of the undecidability theorem to those logics where

the `no fmp' theorem applies

Open problem: is $\mathbf{K} \times^{\delta} \mathbf{S5}$ decidable?

• Explore possible connections with 3-dimensional product logics

Open problem: Is it decidable whether a finite frame is a frame for $\mathbf{K} \times^{\delta} \mathbf{K}$?

Explore connections with relation algebras

• Widen the scope of the undecidability theorem to those logics where

the `no fmp' theorem applies

Open problem: is $\mathbf{K} \times^{\delta} \mathbf{S5}$ decidable?

• Explore possible connections with 3-dimensional product logics

Open problem: Is it decidable whether a finite frame is a frame for $\mathbf{K} \times^{\delta} \mathbf{K}$?

Explore connections with relation algebras

• Widen the scope of the undecidability theorem to those logics where

the `no fmp' theorem applies

Open problem: is $\mathbf{K} \times^{\delta} \mathbf{S5}$ decidable?

• Explore possible connections with 3-dimensional product logics

Open problem: Is it decidable whether a finite frame is a frame for $\mathbf{K} \times^{\delta} \mathbf{K}$?

- Explore connections with relation algebras
- Explore connections with other undecidable extensions of products
 say, with the universal modality (= global consequence relation)