Putting ABox Updates into Action

Franz Baader, Conrad Drescher, Steffen Guhlemann, Hongkai Liu, Uwe Petersohn, Peter Steinke, Michael Thielscher

Technische Universität Dresden

16.09.2009

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Dynamic DL — ABox Update by Example

DL ABoxes represent knowledge about individuals, e.g.

∀similar_patient.Drug-tolerant(Mary)

An update might be

¬Drug-tolerant(Jane)

Description Logic ABox Update

ABox update introduced at KR06

- Deterministic effects
- No domain constraints
- Winslett semantics

Description Logic ABox Update

ABox update introduced at KR06

- Deterministic effects
- No domain constraints
- Winslett semantics

What's special?

- Open World Semantics
- Quantification
- More expressive than propositional logic
- Both UNA and Non-UNA domains supported

New territory for implemented action languages

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Implementing ABox Update

Two main challenges:

- Keep updated ABoxes small
- Reason with updated (i.e. Boolean) ABoxes: DL reasoners support only non-Boolean ABoxes

DL, and ABoxes Updating ABoxes

Preliminaries

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

DL, and ABoxes Updating ABoxes

Description Logics...

- decidable fragments of first order logic
- based on unary/binary predicates (concepts/roles)
- only constants (no function symbols)
- allow only certain formulas (via constructors)

DL, and ABoxes Updating ABoxes

Description Logics...

- decidable fragments of first order logic
- based on unary/binary predicates (concepts/roles)
- only constants (no function symbols)
- allow only certain formulas (via constructors)

In this work we use

- ALCO[@] (PSPACE-complete): smallest "real" DL closed under update
- ► ALCO⁺ (NEXPTIME-complete): admits smaller updated ABoxes

・ロト (周) (E) (E) (E) (E)

DL, and ABoxes Updating ABoxes

Basic DL \mathcal{ALCO}

The concept constructors of \mathcal{ALCO} :

Name	DL Syntax	In FOL
negation	$\neg C$	$\neg C(x)$
conjunction	$C \sqcap D$	$C(x) \wedge D(x)$
disjunction	$C \sqcup D$	$C(x) \vee D(x)$
nominal	{ a }	x = A
existential restriction	∃r.C	$\exists y(r(x,y) \land C(y))$
universal restriction	∀r.C	$\forall y(r(x,y) \supset C(y))$

DL, and ABoxes Updating ABoxes

$\mathcal{ALCO}^{@}$ is \mathcal{ALCO} plus the @-constructor

Name	DL Syntax	In FOL
@ constructor	@ _a C	C(A)

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

DL, and ABoxes Updating ABoxes

$\mathcal{ALCO}^{@}$ is \mathcal{ALCO} plus the @-constructor

Name	DL Syntax	In FOL
@ constructor	@ _a C	C(A)

 \mathcal{ALCO}^+ is \mathcal{ALCO} plus role constructors

Name	DL Syntax	In FOL
role negation	¬ <i>r</i>	$\neg R(x, y)$
role conjunction	$q \sqcap r$	$Q(x,y) \wedge R(x,y)$
role disjunction	$q \sqcup r$	$Q(x,y) \vee R(x,y)$
nominal role	{(<i>a</i> , <i>b</i>)}	$x = A \wedge y = B$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

DL, and ABoxes Updating ABoxes

Assertions, and ABoxes

Assertions are of the form r(a, b) and C(a), where

- ► concept C may be complex
 E.g. $(C \sqcup @_b D)(a)$ $[C(A) \lor D(B)]$
- ▶ role assertions are literals $(ALCO^{@})$ or complex $(ALCO^{+})$ E.g. $(r \sqcup \{(a, b)\})(c, d)$ $[R(A, B) \lor (A = C \land B = D)]$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

DL, and ABoxes Updating ABoxes

Assertions, and ABoxes

Assertions are of the form r(a, b) and C(a), where

- ► concept C may be complex
 E.g. $(C \sqcup @_b D)(a)$ $[C(A) \lor D(B)]$
- ▶ role assertions are literals $(ALCO^{@})$ or complex $(ALCO^{+})$ E.g. $(r \sqcup \{(a, b)\})(c, d)$ $[R(A, B) \lor (A = C \land B = D)]$

An ABox is a conjunction of assertions

A Boolean ABox is a Boolean combination of assertions (Negation can be pushed inside assertions)

・ロト (周) (E) (E) (E) (E)

DL, and ABoxes Updating ABoxes

ABox Update

- Based on Winslett semantics: deterministic update only
- Update only with concept/role literals
- ► Updated *ALCO[@]* ABoxes exponential in ABox *and* update
- Updated ALCO⁺ ABoxes exponential in update

DL, and ABoxes Updating ABoxes

ABox Update

- Based on Winslett semantics: deterministic update only
- Update only with concept/role literals
- ► Updated *ALCO[@]* ABoxes exponential in ABox *and* update
- ► Updated *ALCO*⁺ ABoxes exponential in update

We only consider singleton updates $U = \{\delta(\vec{t})\}$: sufficient, easier presentation

・ロト (周) (E) (E) (E) (E)

DL, and ABoxes Updating ABoxes

ABox Update II

Assertion A(a) updated by $\neg A(b)$:

 $(\neg A(b) \land A(a)) \lor (\neg A(b) \land A \sqcup \{b\}(a))$

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

DL, and ABoxes Updating ABoxes

ABox Update II

Assertion A(a) updated by $\neg A(b)$:

$$(\neg A(b) \land A(a)) \lor (\neg A(b) \land A \sqcup \{b\}(a))$$

Updating ABox ${\mathcal A}$ with ${\mathcal U}$ to ${\mathcal A}'$ is defined as

$$\mathcal{A}' = \bigwedge (\mathcal{A} \cup \mathcal{U}) \lor \bigwedge (\mathcal{A}^{\mathcal{U}} \cup \mathcal{U})$$

- $\mathcal{A}^{\mathcal{U}}$ denotes restriction of \mathcal{A} by \mathcal{U} (will use frequently)
- The form of $\mathcal{A}^{\mathcal{U}}$ depends on DL used
- Updated ABoxes are Boolean (and in DNF)

Keeping Updated ABoxes Smaller

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

Huge Updated ABoxes

Naive implementation of the algorithms from KR-06 is unworkable:

Updated ABoxes are highly redundant and HUGE

How can we get smaller updated ABoxes?

We use equivalence-preserving transformations

・ロト (周) (E) (E) (E) (E)

Logical Transformations for Smaller ABoxes

We introduce five transformations:

- CNF representation for updated ABoxes
- Exploit determinate updates
- Exploit the Unique Name Assumption
- Remove Subsuming Disjuncts
- Identify independent assertions

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Use CNF ABox Representation (Technique 1)

First step: From $\mathcal{A}' = \bigwedge (\mathcal{A} \cup \mathcal{U}) \lor \bigwedge (\mathcal{A}^{\mathcal{U}} \cup \mathcal{U})$ to $\mathcal{A}' = \mathcal{U} \land (\bigwedge \mathcal{A} \lor \bigwedge \mathcal{A}^{\mathcal{U}})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Use CNF ABox Representation (Technique 1)

First step:

From $\mathcal{A}' = \bigwedge (\mathcal{A} \cup \mathcal{U}) \lor \bigwedge (\mathcal{A}^{\mathcal{U}} \cup \mathcal{U})$ to $\mathcal{A}' = \mathcal{U} \land (\bigwedge \mathcal{A} \lor \bigwedge \mathcal{A}^{\mathcal{U}})$

Second step:

Use $\bigwedge \{ (\alpha^{\mathcal{U}} \lor \alpha) | \alpha \in \mathcal{A} \}$ instead of $\bigwedge \mathcal{A} \lor \bigwedge \mathcal{A}^{\mathcal{U}}$

Updated ABox is in CNF

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Exploit Determinate Updates (Technique 2)

• If assertion α entails update $\mathcal{U} = \{\delta\}$ then

$$(\alpha \vee \alpha^{\mathcal{U}}) \equiv \alpha$$

• If assertion $\alpha \vDash \neg \delta$ then

$$(\alpha \lor \alpha^{\mathcal{U}}) \equiv \alpha^{\mathcal{U}}$$

Can be detected only by reasoning steps (expensive)

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Exploit Unique Name Assumption (Technique 3)

Assume assertion A(i), update $\mathcal{U} = \{\neg A(j)\}$:

Update to $A \sqcup \{j\}(i)$?

Only easy outside the scope of quantifiers

 \Rightarrow Syntactic method vs. reasoning

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Remove Subsuming Disjuncts (Technique 4)

Assume updated ABox $\mathcal{A} \lor \mathcal{B}$. If $\mathcal{A} \vDash \mathcal{B}$ then $(\mathcal{A} \lor \mathcal{B}) \equiv \mathcal{B}$.

Identifying subsuming disjuncts requires reasoning

Assume ABox A, update $U = \{\delta(\vec{t})\}$, where δ is unnegated. Then

- if δ occurs only positively in \mathcal{A} then $\mathcal{A}^{\mathcal{U}} \vDash \mathcal{A}$; and
- if δ occurs only negatively in \mathcal{A} then $\mathcal{A} \vDash \mathcal{A}^{\mathcal{U}}$

Symmetric condition for negative update

 \Rightarrow Identify some subsuming disjuncts without reasoning

・ロト (周) (E) (E) (E) (E)

Detect Independent Assertions (Technique 5)

Assertion $\alpha \in \mathcal{A}$ is independent from update \mathcal{U} iff

$$\mathcal{A} * \mathcal{U} \equiv \alpha \wedge [(\mathcal{A} \setminus \{\alpha\}) * \mathcal{U}],$$

where $\mathcal{A}\ast\mathcal{U}$ denotes updating \mathcal{A} by \mathcal{U}

How to find out?

 \Rightarrow Syntactic method vs. reasoning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Reasoning about Updated (Boolean) ABoxes

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

Reasoning about Updated ABoxes

Updated ABoxes are Boolean (either CNF or DNF):

- Boolean ABox reasoning not supported by DL reasoners
- ► *ALCO*⁺ and *ALCO*[@] not supported by DL reasoners

We present four reasoners for Boolean ABoxes

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Reasoning about Updated ABoxes

Updated ABoxes are Boolean (either CNF or DNF):

- Boolean ABox reasoning not supported by DL reasoners
- ► *ALCO*⁺ and *ALCO*[@] not supported by DL reasoners

We present four reasoners for Boolean ABoxes

Reasoning Tasks: Logical Consequence, Query-Answering

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

DL Reasoning for DNF ABoxes (Approach 1)

For $ALCO^{@}$:

Simulate @ operator by "universal role" (linear) Maybe compile to DNF (exponential) $\mathcal{A} = \mathcal{A}_1 \lor \mathcal{A}_2 \lor \ldots \lor \mathcal{A}_n$ is consistent iff. some \mathcal{A}_i is:

DL reasoners can decide this for each A_i

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

From Boolean to Non-Boolean ABoxes (Approach 2)

For $ALCO^{@}$:

Linearly compile Boolean ABox to Non-Boolean @-ABox

$$C(a) \lor D(b) \longrightarrow (C \sqcup @_b D)(a)$$

Linearly compile @-ABox to "universal role" ABox

 $(C \sqcup @_b D)(a) \longrightarrow (C \sqcup \exists u R.(D \sqcap \{b\}))(a)$

Call DL reasoner on result (Reduction Approach)

DPLL(T) on CNF ABoxes (Approach 3)

For $ALCO^{@}$:

Simulate @ by universal role

DPLL(T): combine SAT-solver with theory solver

Pellet is DL theory solver:

- supports explanation of inconsistency
- thus can build backjump clauses

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Automated Theorem Proving (Approach 4)

For \mathcal{ALCO}^+ :

- ► ATP systems support *ALCO*⁺ (smaller updated ABoxes)
- We use Otter: supports query-answering

Not in the Paper (Approach 5, 6)

We have now also tried the following:

- Spartacus decides hybrid logic, and thus Boolean *ALCO[@]*ABoxes
- MetTeL decides ALBO, and thus Boolean ALCO⁺ABoxes

Lessons Learned

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

ABox Representation

Should you update to CNF or DNF?

Always update ABoxes to CNF

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

Smaller Updated ABoxes

How to keep ABoxes small at a low cost?

- Detect subsuming disjuncts (syntactically)
- Exploit UNA (syntactically)
- Identify independent assertions (syntactically)
- Detect many determinate updates by detecting subsuming disjuncts

Syntactic techniques are fast — Semantic techniques do not help much

Reasoning

Which reasoning methods worked?

- DNF based reasoning doesn't work: costly conversion from CNF
- Otter can't keep up: costly conversion to full CNF
- Reduction fast on consistent ABoxes
- DPLL(T) fast on inconsistent ABoxes (but bad at query-answering)
- Spartacus as fast as Reduction and DPLL(T) (no query-answering)
- MetTeL decides $ALCO^+$, but is slower than Otter

The Big Picture

Dilemma:

- ALCO⁺: good representation for updated ABoxes
- ALCO[@]: reasoning works better

What performance do I get now if my ABox ...

- doesn't contain nested quantifiers? Nice.
- does contain nested quantifiers? Not so nice.

Thanks for your attention! Questions?

C. Drescher, H. Liu, et. al. Putting ABox Updates into Action

Ramification Problem

No problem for acyclic TBox: Unfold

Otherwise (general TBox/no action preconditions) we get modified notion of ABox semantics:

- ► ABox A is consistent iff there's no sequence \vec{u} of updates s.t. $A \star \vec{u} \equiv \bot$
- α is a consequence of \mathcal{A} iff $\mathcal{A} \cup \neg \alpha$ is inconsistent
- Check initial consistency? Generate plan space.

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 ● ○○○