Axiomatization and completeness of lexicographic products of modal logics

Philippe Balbiani

Institut de recherche en informatique de Toulouse

- Fusions of modal logics (independent joins)
 - $L_1 {\otimes} L_2$ is the smallest multimodal logic containing L_1 and L_2
 - $L_1 \otimes L_2$ is a conservative extension of L_1 and L_2 [Thomason, 1980]
 - The fusion operation preserves the following properties
 - Completeness [Kracht and Wolter, 1991]
 - Finite model property [Fine and Schurz, 1996]
 - Decidability [Wolter, 1998]

- Spatio-temporal logics
 - ST_0 , ST_1 and ST_2 are combinations of BRCC-8 and linear temporal logic
 - $-DC(x,y) \rightarrow O(DC(x,y) \vee EC(x,y))$
 - ST₀, ST₁ and ST₂ are decidable [Wolter and Zakharyaschev, 2000]

- Description logics with modal operators
 - Extension of concept description languages with modal operators
 - \langle john_believes \langle next_year \langle male_customer \langle Buys.mode
 rn_car \rangle
 - [Baader and Ohlbach, 1995]

- Products of modal logics
 - Let L_1 and L_2 be Kripke-complete modal logics in []₁ and []₂ respectively
 - $-L_1 \times L_2 = Log \{ F_1 \times F_2 : F_1 \mid = L_1 \text{ and } F_2 \mid = L_2 \}$
 - [Segerberg 1973]
 - [Shehtman, 1978]
 - [Gabbay and Shehtman, 1998]
 - [Marx, 1999]
 - [Gabbay *et al*, 2003]

• Asynchronous products of relational structures

$$-F_1 = (W_1, R_1), F_2 = (W_2, R_2)$$

- $-F_1 \times F_2 = (W, S_1, S_2)$ where
 - $W = W_1 \times W_2$
 - $(x_1, x_2) S_1 (y_1, y_2)$ iff $x_1 R_1 y_1$ and $x_2 = y_2$
 - $(x_1, x_2) S_2 (y_1, y_2)$ iff $x_1 = y_1$ and $x_2 R_2 y_2$

• Asynchronous products of relational structures

• Asynchronous products of relational structures

$$F_{1} = \circ R_{1} \qquad (x_{1}, x_{2}) \qquad (x_{2}, x_{1})$$

$$F_{1} = \circ R_{1} \qquad f_{1} \times F_{2} = S_{2} \qquad F_{2} \times F_{1} = S_{2} \qquad F_{2} \times F_{2} \qquad F_{2} \times F_{2}$$

• Asynchronous products of linear frames

$$-F_1 = (T_1, <_1), F_2 = (T_2, <_2)$$

- $-F_1 \times F_2 = (W, S_1, S_2)$ where
 - W = $T_1 \times T_2$
 - $(x_1,x_2) S_1 (y_1,y_2)$ iff $x_1 <_1 y_1$ and $x_2 = y_2 : \ll (x_1,x_2)$ is to the west of $(y_1,y_2) \gg$
 - $(x_1,x_2) S_2 (y_1,y_2)$ iff $x_1 = y_1$ and $x_2 <_2 y_2 < (x_1,x_2)$ is to the south of $(y_1,y_2) \gg$

 (x_1, x_2)

 (y_1, y_2)

• Asynchronous products of linear frames

$$-F_{1} = (T_{1}, <_{1}), F_{2} = (T_{2}, <_{2})$$

$$-F_{1} \times F_{2} = (W, S_{1}, S_{2})$$

$$-(x_{1}, x_{2}) S_{1} (y_{1}, y_{2})$$

• Asynchronous products of linear frames

• Asynchronous products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \times F_2 = (W, S_1, S_2)$

• Asynchronous products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \times F_2 = (W, S_1, S_2)$

- Asynchronous products of relational structures - Let $F = (W, S_1, S_2)$ be countable and such that
 - $\forall x \forall y (\exists z (xS_1z \& zS_2y) \Rightarrow \exists z (xS_2z \& zS_1y))$
 - $\forall x \forall y (\exists z (xS_2z \& zS_1y) \Rightarrow \exists z (xS_1z \& zS_2y))$
 - $\forall x \forall y (\exists z (zS_1 x \& zS_2 y) \Rightarrow \exists z (xS_2 z \& yS_1 z))$
 - Then there exists $F_1 = (W_1, R_1)$ and $F_2 = (W_2, R_2)$ such that F is a p-morphic image of $F_1 \times F_2$

• Lexicographic products of relational structures

$$-F_1 = (W_1, R_1), F_2 = (W_2, R_2)$$

$$-F_1 ► F_2 = (W, S_1, S_2)$$
 where

•
$$W = W_1 \times W_2$$

- $(x_1, x_2) S_1 (y_1, y_2)$ iff $x_1 R_1 y_1$ and $x_2 = y_2$
- $(x_1,x_2) S_2 (y_1,y_2) \text{ iff } x_2 R_2 y_2$

• Lexicographic products of relational structures

• Lexicographic products of relational structures

$$F_{1} = \circ R_{1} \qquad (x_{1}, x_{2}) \qquad (x_{2}, x_{1})$$

$$F_{1} \bullet F_{2} = \circ S_{1} \qquad F_{2} \bullet F_{1} = S_{1} \qquad S_{1} \qquad S_{1} = S_{1} \qquad S_{1} \qquad S_{1} = S_{1} \qquad S_{1} \qquad S_{1} = S_{1} \qquad S_{1} = S_{1} \qquad S_{1} \qquad S_{1} = S_{1} \qquad S_{1}$$

• Lexicographic products of linear frames

$$-F_1 = (T_1, <_1), F_2 = (T_2, <_2)$$

$$-F_1
ightharpoons F_2 = (W, S_1, S_2)$$
 where

- W = $T_1 \times T_2$
- $(x_1,x_2) S_1 (y_1,y_2)$ iff $x_1 <_1 y_1$ and $x_2 = y_2 : \ll (x_1,x_2)$ is to the west of $(y_1,y_2) \gg$
- $(x_1,x_2) S_2(y_1,y_2)$ iff $x_2 <_2 y_2 < (x_1,x_2)$ is to the south-west, the south or the south-east of $(y_1,y_2) \gg$

• Lexicographic products of linear frames $-F_1 = (T_1, <_1), F_2 = (T_2, <_2)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ $-(x_1,x_2) S_1(y_1,y_2)$ (x_1, x_2) (y_1, y_2)

• Lexicographic products of linear frames $-F_1 = (T_1, <_1), F_2 = (T_2, <_2)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ $-(x_1,x_2) S_2(y_1,y_2)$ (y_1, y_2) (x_1, x_2)

• Lexicographic products of linear frames $-F_1 = (T_1, <_1), F_2 = (T_2, <_2)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ $-(x_1,x_2) S_2(y_1,y_2)$ (y_1, y_2) (x_1, x_2)

• Lexicographic products of linear frames $-F_1 = (T_1, <_1), F_2 = (T_2, <_2)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ $-(x_1,x_2) S_2(y_1,y_2)$ (y_1, y_2) (x_1, x_2)

• Lexicographic products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \triangleright F_2 = (W, S_1, S_2)$

• Lexicographic products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \triangleright F_2 = (W, S_1, S_2)$

- Lexicographic products of relational structures - Let $F = (W, S_1, S_2)$ be countable, reflexive and such that
 - $\forall x \forall y (\exists z (xS_1z \& zS_2y) \Rightarrow xS_2y)$
 - $\forall x \forall y (\exists z (xS_2z \& zS_1y) \Rightarrow xS_2y)$
 - $\forall x \forall y (\exists z (zS_1 x \& zS_2 y) \Rightarrow xS_2 y)$
 - Then there exists $F_1 = (W_1, R_1)$ and $F_2 = (W_2, R_2)$ such that F is a p-morphic image of $F_1 \triangleright F_2$

Hyperreals

- Let Hy be the set of all limited hyperreals
- Let <_{inf} and <_{app} be the binary relations on Hy defined by
 - $-x <_{inf} y$ iff x < y and y-x is infinitesimal

 $-x <_{app} y$ iff x < y and y-x is appreciable

• The structure (Hy,<_{inf},<_{app}) is elementary equivalent to the lexicographic of (Re,<) with itself

- Asynchronous products of modal logics
 - Let L_1 and L_2 be Kripke-complete modal logics in []₁ and []₂ respectively
 - $-L_1 \times L_2 = Log \{ F_1 \times F_2 : F_1 \mid = L_1 \text{ and } F_2 \mid = L_2 \}$
 - $L_1 \times L_2$ is the modal logic in []₁ and []₂ characterized by the class of all frames of the form $F_1 \times F_2$ where $F_1 \mid = L_1$ and $F_2 \mid = L_2$

- Asynchronous products of modal logics
 - Let L_1 and L_2 be Kripke-complete modal logics in []₁ and []₂ respectively
 - $-L_1$ and L_2 are ×-product matching iff
 - $L_1 \times L_2 = (L_1 \otimes L_2) \oplus []_2[]_1 p \rightarrow []_1[]_2 p$ $\oplus []_1[]_2 p \rightarrow []_2[]_1 p$ $\oplus \langle \rangle_1[]_2 p \rightarrow []_2 \langle \rangle_1 p$

- Asynchronous products of modal logics
 - Let L₁ and L₂ be modal logics from the following list : K,
 D, T, K4, D4, S4, K45, KD45, S5
 - Then L_1 and L_2 are x-product matching

- Asynchronous products of modal logics (examples) - S5×S5 is (S5 \otimes S5) \oplus []₂[]₁p \rightarrow []₁[]₂p \oplus []₁[]₂p \rightarrow []₂[]₁p
 - Decidable (NEXPTIME-complete)
 - − S4×S5 is (S4⊗S5) \oplus []₂[]₁p→[]₁[]₂p \oplus []₁[]₂p→[]₂[]₁p
 - Decidable (NEXPTIME-hard and in N2EXPTIME)
 - $K \times K \text{ is } (K \otimes K) \oplus []_2[]_1 p \rightarrow []_1[]_2 p \oplus []_1[]_2 p \rightarrow []_2[]_1 p \oplus ()_1[]_2 p \rightarrow []_2 ()_1 p \oplus ()_2[]_1 p \oplus ()_2 p \rightarrow []_2 ()_1 p \oplus ()_2 p \rightarrow []_2 ()_1 p \oplus ()_2 p \rightarrow []_2 ()_1 p \oplus ()_2 p \oplus ()_$
 - Decidable (NEXPTIME-hard)

- Lexicographic products of modal logics
 - Let L_1 and L_2 be Kripke-complete modal logics in []₁ and []₂ respectively
 - $-L_1 \triangleright L_2 = Log \{ F_1 \triangleright F_2 : F_1 \mid = L_1 \text{ and } F_2 \mid = L_2 \}$
 - $L_1 \triangleright L_2$ is the modal logic in []₁ and []₂ characterized by the class of all frames of the form $F_1 \triangleright F_2$ where $F_1 \mid = L_1$ and $F_2 \mid = L_2$

- Lexicographic products of modal logics
 - Let L_1 and L_2 be Kripke-complete modal logics in []₁ and []₂ respectively
 - $-L_1$ and L_2 are \blacktriangleright -product matching iff
 - $L_1
 in L_2 = (L_1 \otimes L_2) \oplus []_2 p \rightarrow []_1 []_2 p$ $\oplus []_2 p \rightarrow []_2 []_1 p$ $\oplus \langle \rangle_1 []_2 p \rightarrow []_2 p$

- Lexicographic products of modal logics
 - Let L_1 and L_2 be modal logics from the following list : T, B, S4, S5
 - Then L_1 and L_2 are \blacktriangleright -product matching
 - Let L₂ be a modal logic from the following list : K, KB, K4, KB4
 - Then S5 and L_2 are \blacktriangleright -product matching
 - Let L_1 be a canonical modal logic
 - Then L_1 and S5 are \blacktriangleright -product matching

- Lexicographic products of modal logics (examples) 55×55 is $(55 \otimes 55) \oplus [1 \times 51]$
 - $-S5 \triangleright S5 \text{ is } (S5 \otimes S5) \oplus []_2 p \rightarrow []_1 p$
 - Decidable (NP-complete)
 - S4 ► S5 is (S4⊗S5) \oplus []₂p→[]₁p
 - Decidable (PSPACE-complete)
 - Is K \blacktriangleright K equal to (K \otimes K) \oplus []₂p \rightarrow []₁[]₂p \oplus []₂p \rightarrow []₂[]₁p $\oplus <>_1[]_2p \rightarrow$ []₂p $\oplus \{ \phi \rightarrow$ []_{i1}...[]_{in}([]₂ $\perp v <>_2\phi$) : ϕ is atomfree and []₂-free $\}$?
 - Decidable ?

Open problems

- Axiomatization/completeness of K ▶ K, K ▶ K4, K4 ▶ K, etc ?
- Finite model property, decidability/complexity of K ▶ K, K ▶ K4, K4 ▶ K, etc
- Transfer theorems for lexicographic products of modal logics comparable with those for fusions of modal logics ?