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What is a quantified Boolean Formula?

Consider a Boolean formula in conjunctive normal form (CNF), e.g.,

literal literal
(X1 V XQ) /\(—|X1 V' Xo )
——

clause

Adding existential “3” and universal “v” quantifiers, e.g.,

/

Vx13xz (X1 V X2) A (—X1 V X2)
——

~~

prefix matrix

yields a quantified Boolean formula (QBF).
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What is the meaning of a QBF?

The QBF
VX1 3X2(X1 V X2) A (—|X1 \Y X2)
is true if and only if
for every value of x; there exist a value of x, such that
(x1 V X2) A (—x1 V X2) is propositionally satisfiable.
Given any QBF :
o if ¢y =Vxpthen ¢ istrueiff o, _ Ay, _

, is true
o if iy = Ixpthenyistrueiff o _ V| _

. is true

Problem QSAT

Decide whether a given QBF is true or false. }
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Why QBFs?

@ QSAT is PSPACE-complete, i.e., the (supposedly) hardest class
of problems for which we could not prove EXPTIME-hardness.

@ Several reasoning tasks admit a compact QBF encoding

» Conformant planning: does there exist a sequence of actions
such that for all initial conditions we can reach the goal?

» “Black box” circuit verification: does there exist a set of inputs
to a circuit such that for all possible realizations of some of its
modules, the output is not correct?

» Adversarial games: does there exist a sequence of moves such

that for all possible counter-moves of my adversary | am
guaranteed to win?
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A capsule history of reasoning with QBFs

1995 Q-resolution
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Our research: motivations, aims, current results

In QBFEVALO08 even the most sophisticated QBF solvers failed on
encodings from several real-world applications. J
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Our research: motivations, aims, current results

In QBFEVALO08 even the most sophisticated QBF solvers failed on
encodings from several real-world applications. J

Our (long term?) research goal is QBF reasoning made practical. )

In this paper we show that
@ Integrating search and resolution enables a structure-aware
QBF solver to outperform both of them.

@ Machine learning can be used to derive an effective combination
strategy from example runs.

@ The resulting solver is competitive with sophisticated
state-of-the-art tools. )
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Agenda

ﬂ Structure and basic algorithms
@ QBFs as graphs
@ Resolution
@ Search

9 Learning to integrate resolution and search
@ Learning to reason in QURES
@ Experimental results

@ Final remarks
@ QURES performances: can we do better?
@ Conclusions and future work
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What is the structure of a QBF?

variables clause

Vy13xiVy23xe3xa((y1 V Yo V X2) A(Y1 V 22 V 2Xa V 2X3)A
(11 vV =x2 Vxa) A(=yr VX VXg)A

QIrBanoX CNF (1 VY2 Vx) A(=y1 VY2 V ox2)A
(prene ) (=y1 VX1 V oy V oxg)A

(% V X)),
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What is the structure of a QBF?

variables clause

Vy13xiVy23xe3xa((y1 V Yo V X2) A(Y1 V 22 V 2Xa V 2X3)A
(11 vV =x2 Vxa) A(=yr VX VXg)A

QBF ¢
I (my1 VY2 VX)) A(=y1 VY2 V mXo) A
(prenex CNF) (=y1 VX1 V aya V —x3)A

(% V X)),

clauses = cliques

Gaifman
graph G,

variables = vertices
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Treewidth and QBFs (1)

The Treewidth tw(G) of a graph G = (V, E) measures its
“tree-likeness”

@ Given an ordering o on the vertices of G we can define as
“parents” of v € Vits neighbors u € V s.t. o(u) < o(v).

@ The width of G along ¢ is the maximum number of parents of a
node.

I width =5

@ Treewidth is the minimum width along all orderings for G.
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Treewidth and QBFs (2)

When it comes to QBFs:
e w(G,) = tw(y) is not enough to capture the structure of ¢

@ Prefix matters: orderings cannot bypass alternations.

@ Quantified treewidth tw,() minimizes over orderings which are
compatible with the prefix of .

@ Because of this, twy() > tw(yp).
X V

16/45
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Deduction

Given two clauses Q v x and R Vv —x of a QBF ¢, the
clause min(Q Vv R) can be derived, where

@ x is an existential variable,

@ Qand R do not share any literal / such that /
occurs in Q and / occurs in R, and

@ min(C) is obtained from C by removing the
universal literals appearing in the prefix of
after all the existential literals in C.

Q-resolution J
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Deduction

Q-resolution

)

Variable
Elimination

Armando Tacchella (UNIGE)

Given two clauses Q v x and R Vv —x of a QBF ¢, the
clause min(Q Vv R) can be derived, where

@ x is an existential variable,

@ Qand R do not share any literal / such that /
occurs in Q and / occurs in R, and

@ min(C) is obtained from C by removing the
universal literals appearing in the prefix of ¢
after all the existential literals in C.

Backtrack-free control strategy. Given a QBF ¢:
@ Start from the innermost variable in the prefix of ¢.
@ If it is universal, eliminate it, or

@ if it is existential, perform all the possible
Q-resolutions on it.

Stop when all variables are eliminated (¢ is true) or an
emtpy clause is derived (¢ is false).

Integrating reasoning and search
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Q-resolution: an example

Vy13x1Vya3xe3xs((y1 V2 V X)1 A (V1 V =2 V 2Xo V —X3)2 A
(y1 V = Xo V X3)3 VAN (—\y1 V Xy V X3)4/\
(=1 VY2V X2)5 A (2¥1V Y2 V —X2)e /A
(Y1 Voxg V oy V oXz)7A
(—X2 V —X3)8)

Resolving away the variable x5 yields the QBF:

Vy13xiVye3xa((y1 V y2 V X2)1 A (V1 V Y2 V —Xe)2,3A
(Y1 VX1 VayaVoxe)aa A(myr VeV Xe)sA
(=y1 VY2 V—xa)e A (Y1 V —X2)g 3/
(=y1 VX1V —X2)g.4)

Armando Tacchella (UNIGE) Integrating reasoning and search 18 /45



Variable elimination: an example

Given the QBF:

Ix1Vy3Ixg(x1 VYV Xz) A (Y V —x3) A(—X1 VYV X3)
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Variable elimination: an example

Given the QBF:
IxVyAxs (X1 Vy VX)) Ay Voxz) A(-xi VYV xs)
we can eliminate x3 by performing the resolutions

(xavyvxs)  (yV=x3)  (oxiVyVxs)  (YV—oxs)
x1Vy —X1Vy
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Variable elimination: an example

Given the QBF:

I Vy3Ixs(x1 Vy vV xs) Ay V oxz) A(=x VyVxs)
we can eliminate x3 by performing the resolutions

(xavyvxs)  (yV=x3)  (oxiVyVxs)  (YV—oxs)
x1Vy —X1Vy

which yields
IxVy(xi Vy)A(-x V)
Removing y we obtain
I (x1) A (—x1)
which is trivially false.
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Search

Initially, the current QBF is ¢
@ If o = 3Ixv then create an OR-node, whose children

AND-OR are the checks ¢, _, is true or |, _ is true.
branching @ If ¢ = Yy then create an AND-node, whose children

are the checks of whether ¢ _, and ¢ _; are true.
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Search

Initially, the current QBF is ¢
@ If o = 3Ixv then create an OR-node, whose children
AND-OR are the checks ¢, _, is true or |, _ is true.
branching @ If ¢ = Yy then create an AND-node, whose children

are the checks of whether ¢ _, and ¢ _; are true.

The leaves are of two kinds:
@ conflicts, if current QBF is trivially false;
@ solutions, if current QBF is trivially true.

Backtracking amounts to:

Backtrackin
—gJ @ from a conflict, reaching back to the deepest open
OR-node: if there is no such node, then ¢ is false;

@ from a solution, reaching back to the deepest open
AND-node: if there is no such node, then ¢ is true.
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Search: an example

Hxlvy3x23x3{{'f1:y=x2}={xlsyVEB}:{y=‘f2}={y=x2=‘f3}a{x2=x3}}
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Search: an example

Elxlv}',zleEle{{flnfan}a {xln y“ E3}'! {y“ 52}3 {.y“ xZn f3}3 {x21 xB}}

X =0‘
RAISEVEE R SIRETH I STRE T N

{.}4,:x21£3}1{x2:x3}}

|
OR node
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Search: an example

Elxlv}',zleEle{{flnfan}a {xln y“ E3}'! {y“ 52}3 {.y“ xZn f3}3 {x21 xB}}

= |
i _Ol L OR node
Vydx, v, LV, ) {5,
{.}4,:x21£3}1{x2:x3}}
=0
Y AND node
a3, { o, x5},
{2y, x50}
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Search: an example

Elxlv}',zleEle{{flnfan}a {xln y“ E3}'! {y“ 52}3 {.y“ xZn f3}3 {x21 xB}}

= |
i _Ol L OR node
Vydx, v, LV, ) {5,
{.}4,:x21£3}1{x2:x3}}
=0
Y AND node
a3, { o, x5},
{2y, x50}

x, =1

U
\/solution
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Search: an example

Elxlv}',zleEle{{flnfan}a {xln y“ E3}'! {y“ 52}3 {.y“ xZn f3}3 {x21 xB}}

X =0‘
RAISEVEE R SIRETH I STRE T N

{.}4,:x21£3}1{x2:x3}}

=0 ‘ =1
! | AND node \y
E|x2E|x3 { {x2 E EB}: E|x2zlx3{ {EB}: {£2} 2

{2y, 253} {25,253}

x, =1

|
OR node

U
\/solution
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Search: an example

oy T, T XL VL a1 v, BN VL N L 1 xn ) fx, a) )

= |

, M _Ol . OR node

Vyde, A Ly x5 (.51,
1.3, X ) 4xy, x5}

. | C

Y ANDnode
SR A S U U e N R S O S O8I
{a,. a0} fx,,x.}}
x, =1 x, =0
x,=0

U i
\/solution X conflict
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Search: an example

Elxl\v’)',zl‘xZEle { {'A_‘l > f.ﬂ 'xZ } > {‘xl > y‘! 53} E] {f‘! 52 } > {J”‘! A:Z.ﬂ "?3} > {‘x2‘! 'xB} }

x =1

x, =0 |

) S OR node

Vyde, A Ly x5 (.51,
1.3, X ) 4xy, x5}

. | .

Y ANDnode
SR A S U U e N R S O S O8I
{a,. a0} fx,,x.}}
x, =1 x, =0
x,=0

U
\/solution
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Search: an example

Elxl\v’)',zl‘xZEle { {'A_‘l > f.ﬂ 'xZ } > {‘xl > y‘! 53} E] {f‘! 52 } > {J”‘! A:Z.ﬂ "?3} > {‘x2‘! 'xB} }

xl =0 | xl =]
, e ORnode L
Tyda,dn, 4. 5} {0, 5,5, Vydxe,dxe v, x, b {7 X,
{}", Xy, -fz} > {xg > xg} } {}"1 X, 53} > {x2, xz} }
=0 ‘ =1 =0 | =1
! | AND node \') ! | \') N
3 {5}, I I {{n b {xg ), e g {ix, ), I I i) {x, )
{a,. a0} fx,,x.}} fr,. 51} {x,,x1}
x, =0
x, =1 ,:32=0 x, =1 x, =0
{4 {3} {4 i

\/solution X conflict \/ X
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Variable elimination, search and treewidth
Variable elimination
@ Can generate an exponential number of resolvents!

@ Given a QBF ¢ the number of resolvents is O(2/%(¢)).
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Variable elimination
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@ Given a QBF ¢ the number of resolvents is O(2/%(¢)).

Backtracking search
@ Can explore an exponentially large tree! (without storing it)

@ Given a QBF with n variables, the time to explore the search tree is
o(2m).
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Variable elimination, search and treewidth
Variable elimination
@ Can generate an exponential number of resolvents!

@ Given a QBF ¢ the number of resolvents is O(2/%(¢)).

Backtracking search
@ Can explore an exponentially large tree! (without storing it)

@ Given a QBF with n variables, the time to explore the search tree is
o(2m).

U

A structural approach
A sequence o1, @2, ... Where 1 = ¢, and ;1 is obtained from ; by

@ variable elimination (one step) whenever tw,(y;) is “small”, and

@ backtracking search (one step) otherwise.
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But there is a catch...

@ Computing treewidth is an NP-hard problem!

@ Non trivial lower/upper bounds of treewidth can be computed in
polynomial time however

- algorithms are way too slow for graphs of the size we are
interested in: ~1K vertices or more;
- they do not guarantee the quality of the approximation.

4

We need a computationally efficient yet effective way of choosing
between variable elimination and search. J
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Our solution: learn to choose!

k—

| Choose features |

v

5 A | Choose a set of examples

features OK?

| Choose an inducer |

v

| Leamn a model |

:b‘r

model OK?

YES
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Our solution: learn to choose!

°
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v
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features OK?
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4
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Y

@ variable elimination is best

@ Search is best
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Our solution: learn to choose!

k—

| Choose features

v

B A ? | Choose a set of examples
H
o\
- [ ]
L
WV
(]
features OK?
o Q o
@ [ ]
@ YES
™ o .
@
\ - | Choose an inducer |
»>
A v
@ variable elimination is best
Leam a model
@ Search is best
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Choosing features

If x is any variable that qualifies for elimination,

@ ny # of clauses where x occurs, and

@ /x sum of the # of literals in clauses where x occurs.
We consider:

@ The number of occurrences of x, denoted as occs(x) and
computed as occs(x) = ny + N-x.

@ The diversity of x, denoted as div(x) and computed as
div(x) = ny - N—x.

@ The companion literals of x, denoted as lits(x) and computed as
lits(x) = Ix - I-x.

v

Are the values of such features discriminative enough?
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Are features ok?

Two basic versions of QURES:

@ QURES-BJ, implements search plus intelligent backtracking.
@ QURES-VE, implements variable elimination.

A relevant set of examples (QBFEVALO08-unique):
@ Subset of 2008 QBF solvers competition dataset.
@ Formulas solved either by QURES or by QURES-VE (not both!)

A plan for validating features:
@ Run QURES-VE on the QBFEVALO08-unique subset.

@ Collect the values of occs(x), div(x) and lits(x) for each variable x
eliminated by QURES-VE.

@ Compare the distributions between problems solved by
QURES-VE and those solved by QURES-BJ.
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Discriminating QURES-BJ and QURES-VE

oces(x)

div(x)

oce
1020 S0 100 200 SO0 1000 s000
L P T L

uTs

The center (and also the spread for occs(x) and div(x)) of the
distributions differs in a statistically significant way between

QURES-VE and QURES-Bu.

Armando Tacchella (UNIGE)
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QURES versions

@ QURES-c4.5 featuring a selection strategy learned with C4.5
decision trees (WEKA'’s implementation J48)

@ QURES-sVM featuring a selection strategy learned with SVMs
(IbSVM implementation)

@ “Control” versions:

» QURES-HM featuring a “hand-made” strategy proposed in previous
literature.
» QURES-RND featuring a random selection strategy

@ The basic algorithms QURES-VE and QURES-BJ.

QURES C++ source code is available from
www.mind—-lab.it/projects/
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www.mind-lab.it/projects/

QURES in action: smallest “hard” instance

s
212 o Search o Search
Variable Elimination \ Variable Elimination
2
e

P ,‘;,”,/, e B g

100
I

50
1
50
1

20

Treewidth
10
1

Treewidth
10
1
000000

T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

#steps #steps

@ QURES-VE (yellow-left) decreases tw, (96 — 86), but it exhausts memory
@ QURES-BJ (blue-left) gets “trapped” and times out in ~ 9 x 10° steps.
@ QURES changes its behavior according to the current value of tw:

» First 206 steps are variable elimination only (yellow).
» Search (blue) yields structurally simpler subproblems.

QURES takes less than 4 x 10° steps (25% search).
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QURES vs. QURES

Solver Solved True False

# Time # Time # Time
QURES-c4.5 | 1282 | 53812 | 569 | 27547 | 713 | 26265
QURES-svM | 1249 | 68423 | 548 | 30592 | 702 | 37831
QURES-HM 883 | 64062 | 382 | 32989 | 501 | 31073
QURES-RND 670 | 24640 | 260 8428 | 410 | 16212
QURES-BJ 614 | 31543 | 208 | 13099 | 406 | 18444
QURES-VE 528 | 12834 | 228 | 6384 | 300 | 6450

600s of CPU time, 3GB of main memory

Armando Tacchella (UNIGE)
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QURES vs. state-of-the-art solvers

Solver Solved True False

# Time # Time # Time
AQME 2434 | 43987 | 977 | 19747 | 1457 | 24240
QUBE®6.1 2144 | 32414 | 828 | 18248 | 1316 | 14166
sKizzo 1887 | 40864 | 631 | 17550 | 1256 | 23314
QURES-c4.5 | 1282 | 53812 | 569 | 27547 713 | 26265
QUBES.0 1077 | 16700 | 406 6536 671 | 10164
NENOFEX 985 | 22360 | 459 | 13853 526 8507
QUANTOR 972 | 15718 | 485 | 10418 487 5300
SSOLVE 965 | 23059 | 450 9866 515 | 13193
YQUAFFLE 948 | 16708 | 389 9058 559 7650
2cLsQ 780 | 21287 | 391 | 13234 389 8053
QMRES 704 | 13576 | 360 7722 344 5853

@ AQME includes QUBE and sKizzo as engines.

@ Both AQME and sKizzo are far more sophisticated than QURES
(tens of thousands vs. hundreds LOCs).
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Current limitations of QURES

@ The algorithm selection strategy is somehow suboptimal:

» QURES does not solve a superset of the instances solved by either
STRUQS[BJ] and STRUQSJVE].

» the same is true of STRUQSIBT,VE] vs. STRUQSI[BT] and
STRUQSIVE].

@ Use of forward subsumption (FS) to reduce the number of
resolvents:

» without FS, the number of formulas solved by STRUQS[BJ,VE]
drops by 15%.

» FS accounts for 8% of STRUQS[BJ,VE] time on solved formulas,
but for 20% of STRUQS|[BJ,VE] time on unsolved formulas.

» A time limit of 1200s allows STRUQS][BJ,VE] to solve about 10%
additional problems.
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Future work

@ Improve on the algorithm selection strategy

» Look at corner cases for insight
» Investigate further on features

@ Improve on the algorithmics

» Current data structure is “biased” towards the search part
» Forward subsumption can probably be made more efficient

Take home message

Learning can aid the integration of algorithms when the “frontier” is not
practically computable, e.g., treewidth of QBFs.
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Some advertising...

@ www.gbflib.org contains the largest publicly available
collection of QBFs in standard format, and more (links to
developers, relevant QBF papers, ...)

@ www.gbfeval.org is the home of QBFEVAL, an international
event seeking to compare state-of-the-art QBF solvers.

@ QBFEVAL10 (seventh event in the series) is coming soon. Results
will be presented at the annual SAT conference (see
www.satisfiability.org)

Thank you for your attention!
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