# Learning to integrate deduction and search in reasoning about quantified Boolean formulas

#### Luca Pulina and Armando Tacchella

Laboratory of Machine Intelligence for Diagnosis (MIND-Lab)

Department of Computer, Communication and System Sciences (DIST)

University of Genoa - Italy







### What is a quantified Boolean Formula?

Consider a Boolean formula in conjunctive normal form (CNF), e.g.,

$$\underbrace{\left(x_1 \vee x_2\right)}_{\textit{clause}} \land \underbrace{\left(\neg x_1 \vee x_2\right)}_{\textit{literal}} \lor \underbrace{\left(x_1 \vee x_2\right)}_{\textit{literal}}$$

Adding existential "∃" and universal "∀" quantifiers, e.g.,

$$\underbrace{\forall x_1 \exists x_2}_{prefix} \underbrace{(x_1 \lor x_2) \land (\neg x_1 \lor x_2)}_{matrix}$$

yields a quantified Boolean formula (QBF).

### What is the meaning of a QBF?

#### The QBF

$$\forall x_1 \exists x_2 (x_1 \vee x_2) \wedge (\neg x_1 \vee x_2)$$

is true if and only if

for **every value of**  $x_1$  there **exist a value of**  $x_2$  such that  $(x_1 \lor x_2) \land (\neg x_1 \lor x_2)$  is propositionally satisfiable.

#### Given any QBF $\psi$ :

- if  $\psi = \forall x \varphi$  then  $\psi$  is true iff  $\varphi_{|_{x=0}} \wedge \varphi_{|_{x=1}}$  is true
- if  $\psi = \exists x \varphi$  then  $\psi$  is true iff  $\varphi_{|_{x=0}} \vee \varphi_{|_{x=1}}$  is true

#### **Problem QSAT**

Decide whether a given QBF is true or false.

### Why QBFs?

- QSAT is PSPACE-complete, i.e., the (supposedly) hardest class of problems for which we could not prove EXPTIME-hardness.
- Several reasoning tasks admit a compact QBF encoding
  - ► Conformant planning: does there exist a sequence of actions such that for all initial conditions we can reach the goal?
  - "Black box" circuit verification: does there exist a set of inputs to a circuit such that for all possible realizations of some of its modules, the output is not correct?
  - Adversarial games: does there exist a sequence of moves such that for all possible counter-moves of my adversary I am guaranteed to win?















### Our research: motivations, aims, current results

In QBFEVAL'08 even the **most sophisticated** QBF solvers **failed** on encodings from several **real-world** applications.

### Our research: motivations, aims, current results

In QBFEVAL'08 even the **most sophisticated** QBF solvers **failed** on encodings from several **real-world** applications.

Our (long term?) research goal is QBF reasoning made practical.

### Our research: motivations, aims, current results

In QBFEVAL'08 even the **most sophisticated** QBF solvers **failed** on encodings from several **real-world** applications.

Our (long term?) research goal is **QBF reasoning made practical**.

In this paper we show that

- Integrating search and resolution enables a structure-aware QBF solver to outperform both of them.
- Machine learning can be used to derive an effective combination strategy from example runs.
- The resulting solver is competitive with sophisticated state-of-the-art tools.

### Agenda

- Structure and basic algorithms
  - QBFs as graphs
  - Resolution
  - Search
- Learning to integrate resolution and search
  - Learning to reason in QURES
  - Experimental results
- Final remarks
  - QuReS performances: can we do better?
  - Conclusions and future work

#### What is the structure of a QBF?

 $\begin{array}{l} \mathsf{QBF}\ \varphi \\ \mathsf{(prenex\ CNF)} \end{array}$ 



### What is the structure of a QBF?

QBF  $\varphi$  (prenex CNF)

 $\begin{array}{c} \text{variables} & \text{clause} \\ \hline \forall y_1 \exists x_1 \forall y_2 \exists x_2 \exists x_3 ( \underbrace{(y_1 \vee y_2 \vee x_2)}_{} \land (y_1 \vee \neg y_2 \vee \neg x_2 \vee \neg x_3) \land \\ (y_1 \vee \neg x_2 \vee x_3) \land (\neg y_1 \vee x_1 \vee x_3) \land \\ (\neg y_1 \vee y_2 \vee x_2) \land (\neg y_1 \vee y_2 \vee \neg x_2) \land \\ (\neg y_1 \vee \neg x_1 \vee \neg y_2 \vee \neg x_3) \land \\ (\neg x_2 \vee \neg x_3)). \end{array}$ 

Gaifman graph  $G_{\omega}$ 



### Treewidth and QBFs (1)

The **Treewidth** tw(G) of a graph G = (V, E) measures its "tree-likeness"

- Given an ordering  $\sigma$  on the vertices of G we can define as "parents" of  $v \in V$  its neighbors  $u \in V$  s.t.  $\sigma(u) \leq \sigma(v)$ .
- The **width** of G along  $\sigma$  is the maximum number of parents of a node.



• Treewidth is the minimum width along all orderings for G.

### Treewidth and QBFs (2)

#### When it comes to QBFs:

- $tw(G_{\varphi}) = tw(\varphi)$  is **not enough** to capture the structure of  $\varphi$
- Prefix matters: orderings cannot bypass alternations.
- Quantified treewidth  $tw_p(\varphi)$  minimizes over orderings which are compatible with the prefix of  $\varphi$ .
- Because of this,  $tw_p(\varphi) \ge tw(\varphi)$ .



#### **Deduction**

Given two clauses  $Q \vee x$  and  $R \vee \neg x$  of a QBF  $\varphi$ , the clause min( $Q \vee R$ ) can be derived, where

- x is an **existential** variable,
- Q and R do not share any literal I such that I occurs in Q and I occurs in R, and
- min(C) is obtained from C by removing the universal literals appearing in the prefix of φ after all the existential literals in C.

#### Q-resolution

#### Deduction

Given two clauses  $Q \vee x$  and  $R \vee \neg x$  of a QBF  $\varphi$ , the clause min( $Q \vee R$ ) can be derived, where

- x is an **existential** variable,
- Q and R do not share any literal I such that I occurs in Q and I occurs in R, and
- min(C) is obtained from C by removing the universal literals appearing in the prefix of φ after all the existential literals in C.

Backtrack-free **control strategy**. Given a QBF  $\varphi$ :

- Start from the innermost variable in the prefix of  $\varphi$ .
- If it is universal, eliminate it, or
- if it is existential, perform all the possible Q-resolutions on it.

Stop when all variables are eliminated ( $\varphi$  is true) or an emtpy clause is derived ( $\varphi$  is false).

#### Q-resolution

### Variable Elimination

### Q-resolution: an example

$$\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2} \exists x_{3} ((y_{1} \lor y_{2} \lor x_{2})_{1} \land (y_{1} \lor \neg y_{2} \lor \neg x_{2} \lor \neg x_{3})_{2} \land (y_{1} \lor \neg x_{2} \lor x_{3})_{3} \land (\neg y_{1} \lor x_{1} \lor x_{3})_{4} \land (\neg y_{1} \lor y_{2} \lor x_{2})_{5} \land (\neg y_{1} \lor y_{2} \lor \neg x_{2})_{6} \land (\neg y_{1} \lor \neg x_{1} \lor \neg y_{2} \lor \neg x_{3})_{7} \land (\neg x_{2} \lor \neg x_{3})_{8})$$

Resolving away the variable  $x_3$  yields the QBF:

$$\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2} ((y_{1} \lor y_{2} \lor x_{2})_{1} \land (y_{1} \lor \neg y_{2} \lor \neg x_{2})_{2,3} \land (y_{1} \lor x_{1} \lor \neg y_{2} \lor \neg x_{2})_{2,4} \land (\neg y_{1} \lor y_{2} \lor x_{2})_{5} \land (\neg y_{1} \lor y_{2} \lor \neg x_{2})_{6} \land (y_{1} \lor \neg x_{2})_{8,3} \land (\neg y_{1} \lor x_{1} \lor \neg x_{2})_{8,4})$$

#### Given the QBF:

$$\exists x_1 \forall y \exists x_3 (x_1 \vee y \vee x_3) \wedge (y \vee \neg x_3) \wedge (\neg x_1 \vee y \vee x_3)$$

Given the QBF:

$$\exists x_1 \forall y \exists x_3 (x_1 \vee y \vee x_3) \wedge (y \vee \neg x_3) \wedge (\neg x_1 \vee y \vee x_3)$$

we can eliminate  $x_3$  by performing the resolutions

$$\frac{(x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{x_1 \vee y} \quad \frac{(\neg x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{\neg x_1 \vee y}$$

Given the QBF:

$$\exists x_1 \forall y \exists x_3 (x_1 \vee y \vee x_3) \wedge (y \vee \neg x_3) \wedge (\neg x_1 \vee y \vee x_3)$$

we can eliminate  $x_3$  by performing the resolutions

$$\frac{(x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{x_1 \vee y} \quad \frac{(\neg x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{\neg x_1 \vee y}$$

which yields

$$\exists x_1 \forall y (x_1 \vee y) \wedge (\neg x_1 \vee y)$$

Given the QBF:

$$\exists x_1 \forall y \exists x_3 (x_1 \vee y \vee x_3) \wedge (y \vee \neg x_3) \wedge (\neg x_1 \vee y \vee x_3)$$

we can eliminate  $x_3$  by performing the resolutions

$$\frac{(x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{x_1 \vee y} \quad \frac{(\neg x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{\neg x_1 \vee y}$$

which yields

$$\exists x_1 \forall y (x_1 \vee y) \wedge (\neg x_1 \vee y)$$

Removing y we obtain

$$\exists x_1(x_1) \wedge (\neg x_1)$$

Given the QBF:

$$\exists x_1 \forall y \exists x_3 (x_1 \vee y \vee x_3) \wedge (y \vee \neg x_3) \wedge (\neg x_1 \vee y \vee x_3)$$

we can eliminate  $x_3$  by performing the resolutions

$$\frac{(x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{x_1 \vee y} \quad \frac{(\neg x_1 \vee y \vee x_3) \quad (y \vee \neg x_3)}{\neg x_1 \vee y}$$

which yields

$$\exists x_1 \forall y (x_1 \vee y) \wedge (\neg x_1 \vee y)$$

Removing y we obtain

$$\exists x_1(x_1) \wedge (\neg x_1)$$

which is trivially false.

#### Search

# AND-OR branching

Initially, the current QBF is  $\varphi$ 

- If  $\varphi = \exists x \psi$  then create an OR-node, whose children are the checks  $\varphi_{|_{x=1}}$  is true or  $\varphi_{|_{x=0}}$  is true.
- If  $\varphi = \forall y \psi$  then create an AND-node, whose children are the checks of whether  $\varphi_{|_{\gamma=1}}$  and  $\varphi_{|_{\gamma=0}}$  are true.

#### Search

# AND-OR branching

Initially, the current QBF is  $\varphi$ 

- If  $\varphi = \exists x \psi$  then create an OR-node, whose children are the checks  $\varphi_{|_{x=1}}$  is true or  $\varphi_{|_{x=0}}$  is true.
- If  $\varphi = \forall y \psi$  then create an AND-node, whose children are the checks of whether  $\varphi_{|_{v=1}}$  and  $\varphi_{|_{v=0}}$  are true.

#### The leaves are of two kinds:

- conflicts, if current QBF is trivially false;
- solutions, if current QBF is trivially true.

### Backtracking

#### Backtracking amounts to:

- from a conflict, reaching back to the deepest open OR-node: if there is no such node, then  $\varphi$  is false:
- from a solution, reaching back to the deepest open AND-node: if there is no such node, then  $\varphi$  is true.

$$\exists x_1 \forall y \exists x_2 \exists x_3 \{ \{\bar{x}_1, \bar{y}, x_2\}, \{x_1, \bar{y}, \bar{x}_3\}, \{\bar{y}, \bar{x}_2\}, \{y, x_2, \bar{x}_3\}, \{x_2, x_3\} \}$$

$$\exists x_{1} \forall y \exists x_{2} \exists x_{3} \{ \{\overline{x}_{1}, \overline{y}, x_{2}\}, \{x_{1}, \overline{y}, \overline{x}_{3}\}, \{\overline{y}, \overline{x}_{2}\}, \{y, x_{2}, \overline{x}_{3}\}, \{x_{2}, x_{3}\} \}$$

$$x_{1} = 0 \qquad \qquad \text{OR node}$$

$$\forall y \exists x_{2} \exists x_{3} \{ \{\overline{y}, \overline{x}_{3}\}, \{\overline{y}, \overline{x}_{2}\}, \{y, x_{2}, \overline{x}_{3}\}, \{x_{2}, x_{3}\} \}$$

$$y = 0 \qquad \qquad \text{AND node}$$

$$\exists x_{2} \exists x_{3} \{ \{x_{2}, \overline{x}_{3}\}, \{x_{2}, x_{3}\} \}$$

$$\{x_{2}, x_{2}\} \}$$

$$\exists x_{1} \forall y \exists x_{2} \exists x_{3} \{\{\bar{x}_{1}, \bar{y}, x_{2}\}, \{x_{1}, \bar{y}, \bar{x}_{3}\}, \{\bar{y}, \bar{x}_{2}\}, \{y, x_{2}, \bar{x}_{3}\}, \{x_{2}, x_{3}\}\}\}$$

$$x_{1} = 0 \qquad \qquad \bigcirc \text{OR node}$$

$$\forall y \exists x_{2} \exists x_{3} \{\{\bar{y}, \bar{x}_{3}\}, \{\bar{y}, \bar{x}_{2}\}, \{y, x_{2}, \bar{x}_{3}\}, \{x_{2}, x_{3}\}\}\}$$

$$y = 0 \qquad \qquad \boxed{\text{AND node}}$$

$$\exists x_{2} \exists x_{3} \{\{x_{2}, \bar{x}_{3}\}, \{x_{2}, \bar{x}_{3}\}\}\}$$

$$x_{2} = 1 \qquad \{\}$$

$$\exists x_{1} \forall y \exists x_{2} \exists x_{3} \{ \{\overline{x}_{1}, \overline{y}, x_{2}\}, \{x_{1}, \overline{y}, \overline{x}_{3}\}, \{\overline{y}, \overline{x}_{2}\}, \{y, x_{2}, \overline{x}_{3}\}, \{x_{2}, x_{3}\}\}$$

$$x_{1} = 0 \qquad \qquad \bigcirc \text{OR node}$$

$$\forall y \exists x_{2} \exists x_{3} \{ \{\overline{y}, \overline{x}_{3}\}, \{\overline{y}, \overline{x}_{2}\}, \qquad \qquad \{y, x_{2}, \overline{x}_{3}\}, \{x_{2}, x_{3}\}\}$$

$$y = 0 \qquad \qquad \bigvee = 1$$

$$\exists x_{2} \exists x_{3} \{ \{x_{2}, \overline{x}_{3}\}, \exists x_{2} \exists x_{3} \{ \{\overline{x}_{3}\}, \{\overline{x}_{2}\}, \{x_{2}, x_{3}\}\} \}$$

$$\{x_{2}, x_{3}\}\} \qquad \{x_{2}, x_{3}\}\}$$

$$x_{2} = 1 \qquad \qquad \{\}$$

## Search: an example

# Variable elimination, search and treewidth

#### Variable elimination

- Can generate an exponential number of resolvents!
- Given a QBF  $\varphi$  the number of resolvents is  $O(2^{tw_p(\varphi)})$ .

# Variable elimination, search and treewidth

#### Variable elimination

- Can generate an exponential number of resolvents!
- Given a QBF  $\varphi$  the number of resolvents is  $O(2^{tw_p(\varphi)})$ .

### Backtracking search

- Can explore an exponentially large tree! (without storing it)
- Given a QBF with n variables, the time to explore the search tree is  $O(2^n)$ .

# Variable elimination, search and treewidth

#### Variable elimination

- Can generate an exponential number of resolvents!
- Given a QBF  $\varphi$  the number of resolvents is  $O(2^{tw_p(\varphi)})$ .

### Backtracking search

- Can explore an exponentially large tree! (without storing it)
- Given a QBF with n variables, the time to explore the search tree is  $O(2^n)$ .



#### A structural approach

A sequence  $\varphi_1, \varphi_2, \ldots$  where  $\varphi_1 = \varphi$ , and  $\varphi_{i+1}$  is obtained from  $\varphi_i$  by

- variable elimination (one step) whenever  $tw_p(\varphi_i)$  is "small", and
- backtracking search (one step) otherwise.

### But there is a catch...

- Computing treewidth is an NP-hard problem!
- Non trivial lower/upper bounds of treewidth can be computed in polynomial time however
  - algorithms are way too slow for graphs of the size we are interested in: ≈1K vertices or more;
  - they **do not guarantee** the quality of the approximation.



We need a **computationally efficient** yet **effective** way of choosing between variable elimination and search.



















# Choosing features

If *x* is any variable that qualifies for elimination,

- n<sub>x</sub> # of clauses where x occurs, and
- $I_x$  sum of the # of literals in clauses where x occurs.

#### We consider:

- The **number of occurrences** of x, denoted as occs(x) and computed as  $occs(x) = n_x + n_{\neg x}$ .
- The **diversity** of x, denoted as div(x) and computed as  $div(x) = n_x \cdot n_{\neg x}$ .
- The **companion literals** of x, denoted as lits(x) and computed as  $lits(x) = l_x \cdot l_{\neg x}$ .

Are the values of such features discriminative enough?

## Are features ok?

#### Two basic versions of QURES:

- QuRes-by, implements search plus intelligent backtracking.
- QuRes-ve, implements variable elimination.

## A relevant set of examples (QBFEVAL'08-unique):

- Subset of 2008 QBF solvers competition dataset.
- Formulas solved either by QURES or by QURES-VE (not both!)

### A plan for validating features:

- Run QuReS-ve on the QBFEVAL'08-unique subset.
- Collect the values of occs(x), div(x) and lits(x) for each variable x eliminated by QURES-VE.
- Compare the distributions between problems solved by QURES-VE and those solved by QURES-BJ.

# Discriminating QuRES-BJ and QuRES-VE



The center (and also the spread for occs(x) and div(x)) of the distributions differs in a statistically significant way between QURES-VE and QURES-BJ.

### QuRES versions

- QURES-c4.5 featuring a selection strategy learned with C4.5 decision trees (WEKA's implementation J48)
- QuRES-svm featuring a selection strategy learned with SVMs (libSVM implementation)
- "Control" versions:
  - QURES-HM featuring a "hand-made" strategy proposed in previous literature.
  - QuReS-RND featuring a random selection strategy
- The basic algorithms QuRES-ve and QuRES-bj.

QURES C++ source code is available from

www.mind-lab.it/projects/

### QuRES in action: smallest "hard" instance



- QuReS-ve (yellow-left) decreases  $tw_p$  (96  $\rightarrow$  86), but it exhausts memory
- $\bullet~$  QURES-BJ (blue-left) gets "trapped" and times out in  $\sim 9 \times 10^6$  steps.
- QURES changes its behavior according to the current value of tw<sub>ρ</sub>:
  - First 206 steps are variable elimination only (yellow).
  - Search (blue) yields structurally simpler subproblems.

QuRES takes less than  $4 \times 10^5$  steps (25% search).

## QURES vs. QURES

| Solver     | Solved |       | True |       | False |       |
|------------|--------|-------|------|-------|-------|-------|
|            | #      | Time  | #    | Time  | #     | Time  |
| QuRES-c4.5 | 1282   | 53812 | 569  | 27547 | 713   | 26265 |
| QuRES-svm  | 1249   | 68423 | 548  | 30592 | 702   | 37831 |
| QuRES-HM   | 883    | 64062 | 382  | 32989 | 501   | 31073 |
| QuRES-RND  | 670    | 24640 | 260  | 8428  | 410   | 16212 |
| QuRES-BJ   | 614    | 31543 | 208  | 13099 | 406   | 18444 |
| QuRES-VE   | 528    | 12834 | 228  | 6384  | 300   | 6450  |

600s of CPU time, 3GB of main memory

### QuRES vs. state-of-the-art solvers

| Solver     | Solved |       | True |       | False |       |
|------------|--------|-------|------|-------|-------|-------|
|            | #      | Time  | #    | Time  | #     | Time  |
| AQME       | 2434   | 43987 | 977  | 19747 | 1457  | 24240 |
| QuBE6.1    | 2144   | 32414 | 828  | 18248 | 1316  | 14166 |
| sKızzo     | 1887   | 40864 | 631  | 17550 | 1256  | 23314 |
| QuRES-c4.5 | 1282   | 53812 | 569  | 27547 | 713   | 26265 |
| QuBE3.0    | 1077   | 16700 | 406  | 6536  | 671   | 10164 |
| NENOFEX    | 985    | 22360 | 459  | 13853 | 526   | 8507  |
| QUANTOR    | 972    | 15718 | 485  | 10418 | 487   | 5300  |
| SSOLVE     | 965    | 23059 | 450  | 9866  | 515   | 13193 |
| YQUAFFLE   | 948    | 16708 | 389  | 9058  | 559   | 7650  |
| 2clsQ      | 780    | 21287 | 391  | 13234 | 389   | 8053  |
| QMRES      | 704    | 13576 | 360  | 7722  | 344   | 5853  |

- AQME includes QUBE and SKIZZO as engines.
- Both AQME and SKIZZO are far more sophisticated than QURES (tens of thousands vs. hundreds LOCs).

### Current limitations of QURES

- The algorithm selection strategy is somehow suboptimal:
  - QuRes does not solve a superset of the instances solved by either StruQS[BJ] and StruQS[ve].
  - the same is true of STRUQS[BT,VE] vs. STRUQS[BT] and STRUQS[VE].
- Use of forward subsumption (FS) to reduce the number of resolvents:
  - without FS, the number of formulas solved by STRUQS[BJ,VE] drops by 15%.
  - ► FS accounts for **8%** of STRUQS[BJ,VE] time on **solved formulas**, but for **20%** of STRUQS[BJ,VE] time on **unsolved formulas**.
  - A time limit of 1200s allows STRUQS[BJ,VE] to solve about 10% additional problems.

### Future work

- Improve on the algorithm selection strategy
  - Look at corner cases for insight
  - Investigate further on features
- Improve on the algorithmics
  - Current data structure is "biased" towards the search part
  - Forward subsumption can probably be made more efficient

## Take home message

Learning can aid the integration of algorithms when the "frontier" is not practically computable, e.g., treewidth of QBFs.

# Some advertising...

- www.qbflib.org contains the largest publicly available collection of QBFs in standard format, and more (links to developers, relevant QBF papers, ...)
- www.qbfeval.org is the home of QBFEVAL, an international event seeking to compare state-of-the-art QBF solvers.
- QBFEVAL'10 (seventh event in the series) is coming soon. Results will be presented at the annual SAT conference (see www.satisfiability.org)

Thank you for your attention!