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What is a quantified Boolean Formula?

Consider a Boolean formula in conjunctive normal form (CNF), e.g.,

(x1 ∨ x2)︸ ︷︷ ︸
clause

∧(

literal︷︸︸︷
¬x1 ∨

literal︷︸︸︷
x2 )

Adding existential “∃” and universal “∀” quantifiers, e.g.,

∀x1∃x2︸ ︷︷ ︸
prefix

(x1 ∨ x2) ∧ (¬x1 ∨ x2)︸ ︷︷ ︸
matrix

yields a quantified Boolean formula (QBF).
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What is the meaning of a QBF?

The QBF
∀x1∃x2(x1 ∨ x2) ∧ (¬x1 ∨ x2)

is true if and only if

for every value of x1 there exist a value of x2 such that
(x1 ∨ x2) ∧ (¬x1 ∨ x2) is propositionally satisfiable.

Given any QBF ψ:
if ψ = ∀xϕ then ψ is true iff ϕ|x=0

∧ ϕ|x=1
is true

if ψ = ∃xϕ then ψ is true iff ϕ|x=0
∨ ϕ|x=1

is true

Problem QSAT
Decide whether a given QBF is true or false.
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Why QBFs?

QSAT is PSPACE-complete, i.e., the (supposedly) hardest class
of problems for which we could not prove EXPTIME-hardness.

Several reasoning tasks admit a compact QBF encoding
I Conformant planning: does there exist a sequence of actions

such that for all initial conditions we can reach the goal?

I “Black box” circuit verification: does there exist a set of inputs
to a circuit such that for all possible realizations of some of its
modules, the output is not correct?

I Adversarial games: does there exist a sequence of moves such
that for all possible counter-moves of my adversary I am
guaranteed to win?
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A capsule history of reasoning with QBFs
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Our research: motivations, aims, current results

In QBFEVAL’08 even the most sophisticated QBF solvers failed on
encodings from several real-world applications.

Our (long term?) research goal is QBF reasoning made practical.

In this paper we show that
Integrating search and resolution enables a structure-aware
QBF solver to outperform both of them.
Machine learning can be used to derive an effective combination
strategy from example runs.
The resulting solver is competitive with sophisticated
state-of-the-art tools.
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Agenda

1 Structure and basic algorithms
QBFs as graphs
Resolution
Search

2 Learning to integrate resolution and search
Learning to reason in QURES
Experimental results

3 Final remarks
QURES performances: can we do better?
Conclusions and future work
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What is the structure of a QBF?

QBF ϕ
(prenex CNF)

variablesz }| {
∀y1∃x1∀y2∃x2∃x3(

clausez }| {
(y1 ∨ y2 ∨ x2)∧(y1 ∨ ¬y2 ∨ ¬x2 ∨ ¬x3)∧
(y1 ∨ ¬x2 ∨ x3) ∧ (¬y1 ∨ x1 ∨ x3)∧
(¬y1 ∨ y2 ∨ x2) ∧ (¬y1 ∨ y2 ∨ ¬x2)∧
(¬y1 ∨ ¬x1 ∨ ¬y2 ∨ ¬x3)∧
(¬x2 ∨ ¬x3)).

Gaifman
graph Gϕ
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Treewidth and QBFs (1)

The Treewidth tw(G) of a graph G = (V ,E) measures its
“tree-likeness”

Given an ordering σ on the vertices of G we can define as
“parents” of v ∈ V its neighbors u ∈ V s.t. σ(u) ≤ σ(v).
The width of G along σ is the maximum number of parents of a
node.

Treewidth is the minimum width along all orderings for G.
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Treewidth and QBFs (2)

When it comes to QBFs:
tw(Gϕ) = tw(ϕ) is not enough to capture the structure of ϕ
Prefix matters: orderings cannot bypass alternations.
Quantified treewidth twp(ϕ) minimizes over orderings which are
compatible with the prefix of ϕ.
Because of this, twp(ϕ) ≥ tw(ϕ).
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Deduction

Q-resolution

Given two clauses Q ∨ x and R ∨ ¬x of a QBF ϕ, the
clause min(Q ∨ R) can be derived, where

x is an existential variable,

Q and R do not share any literal l such that l
occurs in Q and l occurs in R, and

min(C) is obtained from C by removing the
universal literals appearing in the prefix of ϕ
after all the existential literals in C.

Variable
Elimination

Backtrack-free control strategy. Given a QBF ϕ:

Start from the innermost variable in the prefix of ϕ.

If it is universal, eliminate it, or

if it is existential, perform all the possible
Q-resolutions on it.

Stop when all variables are eliminated (ϕ is true) or an
emtpy clause is derived (ϕ is false).
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Q-resolution: an example

∀y1∃x1∀y2∃x2∃x3((y1 ∨ y2 ∨ x2)1 ∧ (y1 ∨ ¬y2 ∨ ¬x2 ∨ ¬x3)2∧
(y1 ∨ ¬x2 ∨ x3)3 ∧ (¬y1 ∨ x1 ∨ x3)4∧
(¬y1 ∨ y2 ∨ x2)5 ∧ (¬y1 ∨ y2 ∨ ¬x2)6∧
(¬y1 ∨ ¬x1 ∨ ¬y2 ∨ ¬x3)7∧
(¬x2 ∨ ¬x3)8)

Resolving away the variable x3 yields the QBF:

∀y1∃x1∀y2∃x2((y1 ∨ y2 ∨ x2)1 ∧ (y1 ∨ ¬y2 ∨ ¬x2)2,3∧
(y1 ∨ x1 ∨ ¬y2 ∨ ¬x2)2,4 ∧ (¬y1 ∨ y2 ∨ x2)5∧
(¬y1 ∨ y2 ∨ ¬x2)6 ∧ (y1 ∨ ¬x2)8,3∧
(¬y1 ∨ x1 ∨ ¬x2)8,4)
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Variable elimination: an example

Given the QBF:

∃x1∀y∃x3(x1 ∨ y ∨ x3) ∧ (y ∨ ¬x3) ∧ (¬x1 ∨ y ∨ x3)

we can eliminate x3 by performing the resolutions

(x1∨y∨x3) (y∨¬x3)
x1∨y

(¬x1∨y∨x3) (y∨¬x3)
¬x1∨y

which yields
∃x1∀y(x1 ∨ y) ∧ (¬x1 ∨ y)

Removing y we obtain
∃x1(x1) ∧ (¬x1)

which is trivially false.
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Search

AND-OR
branching

Initially, the current QBF is ϕ

If ϕ = ∃xψ then create an OR-node, whose children
are the checks ϕ|x=1 is true or ϕ|x=0 is true.

If ϕ = ∀yψ then create an AND-node, whose children
are the checks of whether ϕ|y=1 and ϕ|y=0 are true.

Backtracking

The leaves are of two kinds:

conflicts, if current QBF is trivially false;

solutions, if current QBF is trivially true.

Backtracking amounts to:

from a conflict, reaching back to the deepest open
OR-node: if there is no such node, then ϕ is false;

from a solution, reaching back to the deepest open
AND-node: if there is no such node, then ϕ is true.
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Search: an example
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Variable elimination, search and treewidth
Variable elimination

Can generate an exponential number of resolvents!

Given a QBF ϕ the number of resolvents is O(2twp(ϕ)).

Backtracking search

Can explore an exponentially large tree! (without storing it)

Given a QBF with n variables, the time to explore the search tree is
O(2n).

⇓
A structural approach

A sequence ϕ1, ϕ2, . . . where ϕ1 = ϕ, and ϕi+1 is obtained from ϕi by

variable elimination (one step) whenever twp(ϕi) is “small”, and

backtracking search (one step) otherwise.
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But there is a catch...

Computing treewidth is an NP-hard problem!
Non trivial lower/upper bounds of treewidth can be computed in
polynomial time however

- algorithms are way too slow for graphs of the size we are
interested in: ≈1K vertices or more;

- they do not guarantee the quality of the approximation.

⇓
We need a computationally efficient yet effective way of choosing
between variable elimination and search.
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Our solution: learn to choose!
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Choosing features

If x is any variable that qualifies for elimination,
nx # of clauses where x occurs, and
lx sum of the # of literals in clauses where x occurs.

We consider:
The number of occurrences of x , denoted as occs(x) and
computed as occs(x) = nx + n¬x .
The diversity of x , denoted as div(x) and computed as
div(x) = nx · n¬x .
The companion literals of x , denoted as lits(x) and computed as
lits(x) = lx · l¬x .

Are the values of such features discriminative enough?
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Are features ok?
Two basic versions of QURES:

QURES-BJ, implements search plus intelligent backtracking.
QURES-VE, implements variable elimination.

A relevant set of examples (QBFEVAL’08-unique):
Subset of 2008 QBF solvers competition dataset.
Formulas solved either by QURES or by QURES-VE (not both!)

A plan for validating features:
Run QURES-VE on the QBFEVAL’08-unique subset.
Collect the values of occs(x), div(x) and lits(x) for each variable x
eliminated by QURES-VE.
Compare the distributions between problems solved by
QURES-VE and those solved by QURES-BJ.

Armando Tacchella (UNIGE) Integrating reasoning and search 37 / 45



Discriminating QURES-BJ and QURES-VE

occs(x) div(x) lits(x)

The center (and also the spread for occs(x) and div(x)) of the
distributions differs in a statistically significant way between
QURES-VE and QURES-BJ.

Armando Tacchella (UNIGE) Integrating reasoning and search 38 / 45



QURES versions

QURES-C4.5 featuring a selection strategy learned with C4.5
decision trees (WEKA’s implementation J48)
QURES-SVM featuring a selection strategy learned with SVMs
(libSVM implementation)
“Control” versions:

I QURES-HM featuring a “hand-made” strategy proposed in previous
literature.

I QURES-RND featuring a random selection strategy

The basic algorithms QURES-VE and QURES-BJ.

QURES C++ source code is available from
www.mind-lab.it/projects/
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QURES in action: smallest “hard” instance

QURES-VE (yellow-left) decreases twp (96→ 86), but it exhausts memory

QURES-BJ (blue-left) gets “trapped” and times out in ∼ 9× 106 steps.

QURES changes its behavior according to the current value of twp:
I First 206 steps are variable elimination only (yellow).
I Search (blue) yields structurally simpler subproblems.

QURES takes less than 4× 105 steps (25% search).
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QURES vs. QURES

Solver Solved True False
# Time # Time # Time

QURES-C4.5 1282 53812 569 27547 713 26265
QURES-SVM 1249 68423 548 30592 702 37831
QURES-HM 883 64062 382 32989 501 31073
QURES-RND 670 24640 260 8428 410 16212
QURES-BJ 614 31543 208 13099 406 18444
QURES-VE 528 12834 228 6384 300 6450

600s of CPU time, 3GB of main memory
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QURES vs. state-of-the-art solvers

Solver Solved True False
# Time # Time # Time

AQME 2434 43987 977 19747 1457 24240
QUBE6.1 2144 32414 828 18248 1316 14166
SKIZZO 1887 40864 631 17550 1256 23314
QURES-C4.5 1282 53812 569 27547 713 26265
QUBE3.0 1077 16700 406 6536 671 10164
NENOFEX 985 22360 459 13853 526 8507
QUANTOR 972 15718 485 10418 487 5300
SSOLVE 965 23059 450 9866 515 13193
YQUAFFLE 948 16708 389 9058 559 7650
2CLSQ 780 21287 391 13234 389 8053
QMRES 704 13576 360 7722 344 5853

AQME includes QUBE and SKIZZO as engines.
Both AQME and SKIZZO are far more sophisticated than QURES
(tens of thousands vs. hundreds LOCs).
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Current limitations of QURES

The algorithm selection strategy is somehow suboptimal:
I QURES does not solve a superset of the instances solved by either

STRUQS[BJ] and STRUQS[VE].
I the same is true of STRUQS[BT,VE] vs. STRUQS[BT] and

STRUQS[VE].
Use of forward subsumption (FS) to reduce the number of
resolvents:

I without FS, the number of formulas solved by STRUQS[BJ,VE]
drops by 15%.

I FS accounts for 8% of STRUQS[BJ,VE] time on solved formulas,
but for 20% of STRUQS[BJ,VE] time on unsolved formulas.

I A time limit of 1200s allows STRUQS[BJ,VE] to solve about 10%
additional problems.
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Future work

Improve on the algorithm selection strategy
I Look at corner cases for insight
I Investigate further on features

Improve on the algorithmics
I Current data structure is “biased” towards the search part
I Forward subsumption can probably be made more efficient

Take home message
Learning can aid the integration of algorithms when the “frontier” is not
practically computable, e.g., treewidth of QBFs.
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Some advertising...

www.qbflib.org contains the largest publicly available
collection of QBFs in standard format, and more (links to
developers, relevant QBF papers, ...)
www.qbfeval.org is the home of QBFEVAL, an international
event seeking to compare state-of-the-art QBF solvers.
QBFEVAL’10 (seventh event in the series) is coming soon. Results
will be presented at the annual SAT conference (see
www.satisfiability.org)

Thank you for your attention!
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