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Motivation

A method for analyzing Crypto-Protocols:

R = convergent TRS modeling ‘Intruder’ abilities
C = set of Horn clauses (constraints) modeling protocol steps
G = Intruder’s initial knowledge

Cap-closure(G) = Evolution of Intruder’s knowledge:
Computed using R-Narrowing and (usual or R-) Unification,
with, or without, active interaction with protocol steps

Secrecy Attack:
A certain ground term m – intended secret for Intruder –
is in the Cap-closure

Authentication Attack:
A certain “frame of Cap-constraints” is satisfiable
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Motivation - contd.

Each attack formulable as a Deduction Problem: Solving a set of
Cap-constraints in terms of R-Unification and/or R-narrowing

Deduction Active, or Passive:
Intruder participates, or not, in the Protocol

Decidability of R-Unification: Necessary for Active Deduction

Deduction problems studied by many:
Baudet, Abadi-Cortier, Comon-Treinen, Comon-Shmatikov,
Rusinowitch-Turuani, Rusinowitch-Chevalier, ...

Algos obtained, mostly when:
- R is pure: RHS of each rule in R is a variable
- R is dwindling (subterm property):

each RHS is subterm of corresponding LHS
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Motivation - contd.

S.A, Narendran, Rusinowitch (RTA’07): A complete Algoritm for Passive
Deduction, if R is dwindling or “Delta-Strong”

Algorithm does not resort to R-unification; holds for a non-dwindling
convergent TRS HE specifying Homomorphic Encryption

We are thus led to:
Question: Is Unification modulo HE decidable?
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Spec HE for Homomorphic Encryption

The following rewrite system HE is convergent:
p1(x .y) → x
p2(x .y) → y

enc(dec(x , y), y) → x
dec(enc(x , y), y) → x

enc(x .y , z) → enc(x , z).enc(y , z)

dec(x .y , z) → dec(x , z).dec(y , z)

HE models Homomorphic Encryption in the following case:
‘ ·’ stands for ‘pairing’ message-blocks; enc(x , y) is message x
encrypted with key y , dec(x , y) is message x decrypted with key y .

enc (resp. dec) stands for ciphering (resp. deciphering) ‘fixed-size’
message-blocks (ECB = Electronic Code Book)
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Comments on HE

For any key y defines a homomorphism on terms, wrt pairing ‘·’:
hy (x) = enc(x , y), which admits as inverse hy (x) = dec(x , y)

Remark 1. HE-Unifn does not reduce to Unifn modulo 1-sided distributivity
(of Tiden-Arnborg), due to existence of inverse homomorphisms.

Remark 2. The reasonings we develop hold also for some other specs for
homomorphic encryption, not using an explicit decryption function
(e.g., decrypt = encrypt with inverse key. cf. Concluding Section).

In particular, they are easily adapted to the case of asymmetric keys.
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Unification modulo HE

We assume: Pur HE-Unifn problems P are in standard form,
with the following type of equations
(where X , Y , Z , T are variables, a is any ground constant):
- Pairings: Z = X .Y
- Equations of enc-type: Z = enc(X , T ) = hT (X )
- Equalities: Z = T or Z = a

XP = set of all variables of P
KP = set of all key variables (and key constants) of P
H = HP = set of all homomorphisms (and their inverses) defined by
the key variables/constants of P.
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Unification modulo HE - contd.

Dependency graph G = GP for P:
Nodes = the variables (or constants) of P

From node Z to node X on G, there is an oriented arc on G iff:
- P has an equation Z = hY (X ) (resp. X = hY (Z )), for some Y :

then label the arc with hY (resp. hY )
- P has an equation Z = X .V (resp. Z = V .X ):

then label the arc with p1 (resp. with p2).

No ‘equality arc’ on the graph GP .

Semantics: If G contains an edge Z →h X , with h ∈ H,
then Z evaluable by applying homomorphism h to the evaluation of X .
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Unification modulo HE: the Method

Let Pair, Eq, Enc, denote respectively:
the set of pairings, equalities, and enc-equations of P.

Observation 1: If Enc = ∅ then P is easily solved.
So always assume the presence of enc-equations.

• Suppose the following two properties - denoted (#) - hold:
- G is irredundant:

V , W distinct nodes on G ⇒ V 6=Eq W
- Every node Z on G is ‘non-critical’:

If there is an outgoing h- or h- arc from Z on G,
then there’s NO outgoing p1- or p2- arc from Z .

• And suppose also, we know then how to solve the
subproblem P ′ of P formed of its enc-equations.

Then we can solve P by combining solution for P ′

with (solution for) the pairings and equalities of P.
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Unification modulo HE: the Method

Method for solving any HE-Unifn problem P in standard form:
Transform P into an equivalent problem P1 such that
the depenedency graph of P1 has the above properties.

Example 1: Consider the problem P:
Z = enc(X , Y ), Y = enc(Z , T ), Y = Y1.Y2.

Its graph is irredundant, but node Y is ‘crtitical’ ( = not non-critical).
We transform P, by reasoning as follows:

Since Y is a pair, Z must also be a pair
So we split Z as Z = Z1.Z2, introducing fresh vars Z1, Z2.

We also need to split X subsequently, for the same reason.

The problem and its graph evolve, as follows
(where, for readability the h-arcs are not put in):
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HE-Unification: the Method (contd.)

Initial graph:
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HE-Unification: the Method (contd.)

No node on the final graph is critical, so we stop.
It is the graph of the following problem P1:

Z1 = enc(X1, Y ), Z2 = enc(X2, Y ),
Y1 = enc(Z1, T ), Y2 = enc(Z2, T ),
Y = Y1.Y2, Z = Z1.Z2, X = X1.X2.

We solve – without difficulty in this case – the subproblem P ′
1

of P1 formed of its four enc-equations.
We do it in a “lazy” style: No variable is instantiated unless necessary.

We thus solve for P ′
1 here, as:

Z1 = hY (X1), Z2 = hY (X2), Y1 = hT (Z1), Y2 = hT (Z2)
leaving Y , T , X1, X2 uninstantiated.

We end up by solving for Y , Z and X ,
by combining this solution for P ′

1 with the pairings of P1
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HE-Unification: the Method (contd.)

Thus, our method for solving an HE-Unifn problem P consists in
three essential steps:

Step 1. Transform P into an equivalent P1 such that the graph
GP1 satisfies the two properties (#)

Step 2. Solve the subproblem P ′
1 formed of the enc-equations of P1.

Step 3. Solve P1: combine solution for P ′
1 with pairings and equalities of P1.

Definition:
(i) A problem P is admissible iff GP satisfies properties (#)
(ii) P is simple iff P is admissible and has no ‘pairings’
(iii) Kernel of an admissible problem P

= the simple subproblem of P formed of its enc-equations.
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The Method - Step 1

Guiding principles for transforming a problem P in standard from,
into equivalent an admissible problem:
• Perfect Encryption:

(Z = enc(X , Y ) ∈ P ∧ Z = enc(X , Y ′) ∈ P) ⇒ (Y = Y ′ ∈ P)
(Z = enc(X , Y ) ∈ P ∧ Z = enc(X ′, Y ) ∈ P) ⇒ (X = X ′ ∈ P)

• Pairing is free in HE:
(Z = X .Y ∈ P ∧ Z = X ′.Y ′ ∈ P) ⇒ (X = X ′ ∈ P ∧ Y = Y ′ ∈ P)

• Split on Pairs:
If Z = enc(X , Y ) ∈ P and either Z or X splits as a pair, then
the other must split too (intoduce fresh vars if necessary

• Keep the graph G of P irredundant:
Distinct nodes Z ′, Z ′′ on G must not be equal modulo =Eq

These Principles are
- sound from the viewpoint of unification
- also meaningful cryptographically
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Inference System for Step 1

The main Inference rules (the Trimming rules), on how Eq, Pair, Enc evolve
under transformation, are based on these principles

Also an ‘Occur-Check’ inference: leads to Failure for easy cases of
unsolvability; such as when Z = enc(X , T ) ∈ P and Z = X .Y ∈ P
Couple of other Failure rules:
- cases of clash between ground constants and/or pairings in P

How far do we need to go under Splitting, for introducing fresh variables
starting from any given variable of P?

Answer:
the splitting depth (sp-depth) of that variable, defined below.
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Technical Notions - Step 1

First a relation:
U ∼ V is the finest equivalence relation on X = XP such that:

if U = V ∈ P then U ∼ V ;
if U = enc(V , T ) ∈ P or V = enc(U, T ) ∈ P, then U ∼ V ;
if two pairings of the form W = U.X , W ′ = V .X ′ are in P,
with W ∼ W ′, then U ∼ V and X ∼ X ′.

For any Z ∈ X = XP , define:
sp-depth of Z = maximum number of p1- or p2- steps from
Z to all possible X ∈ X , along the loop-free chains formed of
∼- or p1/p2-steps from Z to X .
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Technical Notions - Step 1

We then observe:
Suffices to look for discriminating solutions for P; that is to say:

Ground solutions in HE-normal form, assigning
distinct values to distinct key variables of P.

Reason: A non-discriminating solution for P is a discriminating solution for
a Variant of P derivable under a suitable inference (‘Equate some Keys’)
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Technical Notions - Step 1

Necessary condition SNF, for P to admit a discriminating solution:

For any directed loop from a node Z to itself on the graph G,
each arc of which is labeled by a homomorhism in H, the word
α ∈ H∗ labeling the loop must simplify to ε under the rules:

hT hT → ε, hT hT → ε, T ∈ KP

Reason:
If σ is such a solution, and Z �α Z a non-trivial loop on G formed of
h/h-arcs, the ground term σ(α)(σZ ) must normalize to σ(Z ); that can be
done only by the two rewrite rules in HE:

dec(enc(x , y), y) → x , enc(dec(x , y), y) → x

So we add a Failure Inference rule if SNF not satisfied.

Consequence:
Between any two nodes on the graph of a simple problem,
unique directed loop-free path
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Method-Step 1: Results

Proposition 1. On any problem P given in standard form, the Inference
procedure terminates. In case of non-Failure, it returns an admissible
problem P1 equivalent to P.

Remark. Number of equations in P1 can be exponential wrt that in P.
A typical example:

X1 = enc(X2, U1)
X1 = X11.X12

X11 = enc(X12, U2)
X11 = X111.X112

X111 = enc(X112, U3)
X111 = X1111.X1112
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Method-Step 1: Results

From now on our problems P are assumed admissible.

As observed earlier:
If Z �α X is a directed path on G, labeled with word α ∈ H∗,
then Z evaluable by applying α to the evaluation of X ,
and/or X evaluable by applying ᾱ to the evaluation of Z .

Makes sense only if: h̃Z 6∈ α or h̃X 6∈ ᾱ, where h̃ stands for h or h.

So notion of No-Key-Dependency-Cycle (NKDC):

Z �k X iff Z 6= X , there is a directed path from Z to X on GP ,
an arc of which is labeled with hX ′ or hX ′ , with X ′ = X or X ′ m X .

(NKDC) The graph G = GP does not contain any node X
such that X �+

k X , where �+
k = transitive closure of �k .

Proposition 2. An admissible P has a discriminating solution
if and only if its graph G satisfies NKDC.
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Makes sense only if: h̃Z 6∈ α or h̃X 6∈ ᾱ, where h̃ stands for h or h.
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Makes sense only if: h̃Z 6∈ α or h̃X 6∈ ᾱ, where h̃ stands for h or h.
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Step 2: Solving a Simple problem

From now, we assume our problem P to be simple,
and that its graph G satisfies NKDC.

To solve such a P:
(i) Choose a base-node V on each connected component Γ of G:

a node V on Γ that is minimal for the relation �+
k .

(ii) For any node Z on Γ, assign the value α(V ) where α ∈ H∗ is the word
that labels the path from Z to V (V is uninstantiated, unless necessary).

Example 2. Following problem P ′ is simple, its graph is connected:
X = enc(U, V ), U = enc(V , T ), V = enc(Y , U)

T
X

h h h

hh
U V Y

U

U
hV

V T

Key-dependencies: X �k V and Y �k U, so NKDC holds.
Both U and V are minimal for �+

k . Choosing U as base-node gives the following
discriminating solution for P ′:

V = hT (U), Y = hU(V ) = hUhT (U), X = hV (U).
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Step 3: Solving an Admissible problem

So we get: If P is admissible, and Graph G of P satisfies NKDC,
let P ′ = kernel of P, G′ its graph. Then we know how to solve P ′.

On any connected compoent Γ of G, define an end-node for P on Γ as
any node X ∈ Γ such that:

- there is an incoming path at X only formed of p1/p2- arcs;
- there is no outgoing arc from X .

Note: Path from any node Z on G to any given end-node is unique.

Example 2b: Problem P below is admissible, its graph G is connected:
Z = X .W , X = enc(U, V ), U = enc(V , T ), V = enc(Y , U)

T
Z

W

p

p
2

1
X

h h h

hh
U V Y

U

U
hV

V T

W is the only end-node here.
(In general: there may be many end-nodes, or none at all)
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Solving an Admissible problem (contd.)

To solve an admissible P, its graph G satisfying NKDC,
P ′ = kernel of P, G′ = GP′ seen as subgraph of G:
- On each connected component Γ of G, choose one base-node,

and all the end-nodes, if any.
- Choose a solution σ′ for P ′, that is minimal in the sense:

does not instantiate any node of G not on G′

- For any Z ∈ Γ, assign the value obtained by ‘propagating’
the value assigned by σ′ to the chosen base-node on Γ
and the values assigned to the end-nodes on Γ, if any.

Propagation = use the homomorphisms and/or projections labeling
the arcs along (uniquely determined) paths.
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Example 2b - contd.

Example 2b (contd): For problem P of Example 2b,
kernel = problem P ′ of Example 2.

We got the following solution for P ′:
V = hT (U), Y = hU(V ) = hUhT (U), X = hV (U).

Propagation assigns the value hV (U).W to variable Z
(W a priori unistantiated, unless gets a specific value, e.g. with W = a).
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Solving HE-Unifn problems: Results

Proposition 3.
(a) Solving an HE-Unifn problem given in standard form, by the

above method, is in NEXPTIME wrt its number of equations.
(b) Solving simple HE-Unifn problems is NP-hard.

(a) The NEXPTIME upper bound:
- Transforming P to an admissible P1 is in NEXPTIME
- Solving the kernel P ′

1 of P1 is in NP
(amounts to checking for NKDC on its graph)

- Solving subsequently P1 is in P.

(b) NP-lower bound via reduction from the following
Monotone 1-in-3 SAT problem - known to be NP-complete:
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Solving HE-Unifn problems: Results

The Monotone 1-in-3 SAT problem:
Given a propositional formula without negation, in CNF over
3 variables, check for satisfiability under the assumption that
exactly one literal in each clause evaluates to true.

Let P = simple problem derived from the following HE-Unifn problem,
in 3 variables x1, x2, x3, and ground constants a, b, c:

dec(enc(dec(enc(dec(enc(a, b), x1), b), x2), b), x3) = dec(enc(a, b), c).

Solving this P:
Exactly one of the three variables x1, x2, x3 is assigned the value c.
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Concluding Remarks

Other possible specs for Hom. Encryption

1. HE1: with ‘Pairings’. Decrypt = “Encrypt with Inverse key”

p1(x .y) → x

p2(x .y) → y

enc(x .y , z) → enc(x , z).enc(y , z)

enc(enc(x , f (y)), g(y)) → x

enc(enc(x , g(y)), f (y)) → x

Method works almost unchanged for HE1.

2. HE2 = Drop the p1, p2 rules of HE1:
enc(x .y , z) → enc(x , z).enc(y , z)

enc(enc(x , f (y)), g(y)) → x

enc(enc(x , g(y)), f (y)) → x

Models RSA, if ‘.’ is integer multiplication (mod suitable integer N),
Encrypt = exponentiation mod N with ‘public key’
Decrypt = exponentiation mod N with ‘private key’

Method unchanged for simple problems. Inferences on Pairings modified
appropriately, for the “combination reasoning” to go through.
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Concluding Remarks - contd.

3. HE3: with ‘Pairings’, but dec only left-inverse for enc:
p1(x .y) → x

p2(x .y) → y

enc(x .y , z) → enc(x , z).enc(y , z)

dec(enc(x , y), y) → x

(HE3 can be made convergent by adding a meta- or schematized rule.)

Method above doesn’t work for HE3. But Active Deduction modulo HE3 can be
shown to be decidable, via an Inference procedure for solving Cap Constraints,
based on ‘Cap Unification’ (“no combination” here..!!); cf. UNIF-2009.

So, unification modulo HE3 decidable too (implicitly).
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Concluding Remarks - contd.

As observed earlier, the Hom. Encryption specs considered above model
crypto-protocols using ECB block-ciphering.

But ECB known to be vulnerable, so encryption might use ‘CBC-based’
paddings of message blocks.

The convergent AC-TRS below models a CBC-based padding of enc
with XOR (here ‘+’ stands for XOR, and is AC):

x + 0 → x , x + x → 0
p1(cons(x , y))→ x , p2(cons(x , y))→ y
dec(enc(x , y), y)→ x
cbc(cons(x , y), z, w)→ cons( enc(z + x , w), cbc(y , enc(z + x , w), w) )
cbc(nil, z, k)→ nil

Active deduction modulo this TRS: ongoing work...

Passive deduction modulo this TRS can be shown to be decidable
(However passive deduction might be ‘unrelated’ to unification!!).
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